1932

Abstract

With 20% of the world's population but just 7% of the arable land, China has invested heavily in crop biotechnology to increase agricultural productivity. We examine research on insect-resistant genetically engineered (IRGE) crops in China, including strategies to promote their sustainable use. IRGE cotton, rice, and corn lines have been developed and proven efficacious for controlling lepidopteran crop pests. Ecological impact studies have demonstrated conservation of natural enemies of crop pests and halo suppression of crop-pest populations on a local scale. Economic, social, and human health effects are largely positive and, in the case of cotton, have proven sustainable over 20 years of commercial production. Wider adoption of IRGE crops in China is constrained by relatively limited innovation capacity, public misperception, and regulatory inaction, suggesting the need for further financial investment in innovation and greater scientific engagement with the public. The Chinese experience with cotton might inform adoption of other crops in China and other developing countries.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-ento-011019-025039
2020-01-07
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/ento/65/1/annurev-ento-011019-025039.html?itemId=/content/journals/10.1146/annurev-ento-011019-025039&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Abbas HK, Zablotowicz RM, Weaver MA, Shier WT, Bruns HA et al. 2013. Implications of Bt traits on mycotoxin contamination in maize: overview and recent experimental results in southern United States. J. Agric. Food Chem. 61:11759–70
    [Google Scholar]
  2. 2. 
    Abedullah KS, Qaim M. 2005. Bt cotton, pesticide use and environmental efficiency in Pakistan. J. Agric. Econ. 66:66–86
    [Google Scholar]
  3. 3. 
    Adamczyk JJ, Greenberg S, Armstrong JS, Mullins WJ, Braxton LB et al. 2008. Evaluation of Bollgard®, Bollgard II®, and WideStrike® technologies against beet and fall armyworm larvae (Lepidoptera: Noctuidae). Fla. Entomol. 91:531–36
    [Google Scholar]
  4. 4. 
    Adenle AA, Morris EJ, Murphy DJ, Phillips PWB, Trigo E et al. 2018. Rationalizing governance of genetically modified products in developing countries. Nat. Biotechnol. 36:2137–39
    [Google Scholar]
  5. 5. 
    Bajwa U, Sandhu KS. 2014. Effect of handling and processing on pesticide residues in food: a review. J. Food Sci. Technol. 51:201–20
    [Google Scholar]
  6. 6. 
    Boobis AR, Ossendorp BC, Banasiak U, Hamey PY, Sebestyen I, Moretto A 2008. Cumulative risk assessment of pesticide residues in food. Toxicol. Lett. 180:137–50
    [Google Scholar]
  7. 7. 
    Brookes G, Barfoot P. 2015. GM crops: global socio-economic and environmental impacts 1996–2014. AgBioForm 8:187–96
    [Google Scholar]
  8. 8. 
    Brookes G, Barfoot P. 2017. GM Crops: Global Socio-Economic and Environmental Impacts 1996–2015 Dorchester, UK: PG Econ.
  9. 9. 
    Brookes G, Barfoot P. 2018. Farm income and production impacts of using GM crop technology 1996–2016. GM Crops Food 9:59–89
    [Google Scholar]
  10. 10. 
    Carpenter J. 2010. Peer-reviewed surveys indicate positive impact of commercialized GM crops. Nat. Biotechnol. 28:319–21
    [Google Scholar]
  11. 11. 
    Carrière Y, Crowder DW, Tabashnik BE 2010. Evolutionary ecology of insect adaptation to Bt crops. Evol. Appl. 3:561–73
    [Google Scholar]
  12. 12. 
    Carrière Y, Fabrick JA, Tabashnik BE 2016. Can pyramids and seed mixtures delay resistance to Bt crops. ? Trends Biotechnol 34:291–302
    [Google Scholar]
  13. 13. 
    CAST (Counc. Agric. Sci. Technol.) 2018. Regulatory barriers to the development of innovative agricultural biotechnology by small businesses and universities Issue Pap. 59, CAST Ames, IA:
  14. 14. 
    Catarino R, Ceddia G, Areal FJ, Park J 2015. The impact of secondary pests on Bacillusthuringiensis (Bt) crops. Plant Biotechnol. J. 13:601–12
    [Google Scholar]
  15. 15. 
    Chen L, Lee D, Song Z, Suh H, Lu B 2004. Gene flow from cultivated rice (Oryzasativa) to its weedy and wild relatives. Ann. Bot. 93:67–73
    [Google Scholar]
  16. 16. 
    Chen M, Shelton A, Ye GY 2011. Insect-resistant genetically modified rice in China: from research to commercialization. Annu. Rev. Entomol. 56:81–101
    [Google Scholar]
  17. 17. 
    Chen M, Ye G, Hu C, Tu J, Datta S 2003. Effect of transgenic Bt rice on dispersal of planthoppers and leafhoppers as well as their egg parasitic wasps. J. Zhejiang Univ. Agric. Life Sci. 29:29–33
    [Google Scholar]
  18. 18. 
    Chen R, Huang J, Qiao F 2013. Farmers' knowledge on pest management and pesticide use in Bt cotton production in China. China Econ. Rev. 27:15–24
    [Google Scholar]
  19. 19. 
    Chen X, Yang C, Jia H 2014. Issues confronting GMO crops in China. J. Huanzhong Agric. Univ. 33:118–20
    [Google Scholar]
  20. 20. 
    Chen Y, Tian J, Wang W, Fang Q, Akhtar ZR et al. 2012. Bt rice expressing Cry1Ab does not stimulate an outbreak of its non-target herbivore, Nilaparvatalugens. Transgenic Res. 21:279–91
    [Google Scholar]
  21. 21. 
    Cui K, Shoemaker SP. 2018. Public perception of genetically-modified (GM) food: a nationwide Chinese consumer study. NPJ Sci. Food 2:10
    [Google Scholar]
  22. 22. 
    Dang C, Lu Z, Wang L, Chang X, Wang F et al. 2017. Does Bt rice pose risks to non-target arthropods? Results of a meta-analysis in China. Plant Biotechnol. J. 15:1047–53
    [Google Scholar]
  23. 23. 
    Dively GP, Venugopal PD, Bean D, Whalen J, Holmstrom K et al. 2018. Regional pest suppression associated with widespread Bt maize adoption benefits vegetable growers. PNAS 115:3320–25
    [Google Scholar]
  24. 24. 
    Dorhout DL, Rice ME. 2010. Intraguild competition and enhanced survival of western bean cutworm (Lepidoptera: Noctuidae) on transgenic Cry1Ab (MON810) Bacillusthuringiensis corn. J. Econ. Entomol. 103:54–62
    [Google Scholar]
  25. 25. 
    Du D, Geng C, Zhang X, Zhang Z, Zheng Y et al. 2013. Transgenic maize lines expressing a cry1C* gene are resistant to insect pests. Plant Mol. Biol. Rep. 32:549–57
    [Google Scholar]
  26. 26. 
    Duan JJ, Lundgren JG, Naranjo S, Marvier M 2010. Exrapolating non-target risk of Bt crops from laboratory to field. Biol. Lett. 6:74–77
    [Google Scholar]
  27. 27. 
    Duan JJ, Marvier M, Huesing J, Dively G, Huang ZY 2008. A meta-analysis of effects of Bt crops on honey bees (Hymenoptera: Apidae). PLOS ONE 3:1e1415
    [Google Scholar]
  28. 28. 
    Ferré J, Van Rie J, MacIntosh SC 2008. Insecticidal genetically modified crops and insect resistance management. Integration of Insect-Resistant Genetically Modified Crops Within IPM Programs J Romeis, AM Shelton, GG Kennedy 41–86 Berlin: Springer
    [Google Scholar]
  29. 29. 
    Folcher L, Delos M, Marengue E, Jarry M, Weissenberger A et al. 2010. Lower mycotoxin levels in Bt maize grain. Agron. Sustain. Dev. 30:711–19
    [Google Scholar]
  30. 30. 
    Gould F. 1998. Sustainability of transgenic insecticidal cultivars: integrating pest genetics and ecology. Annu. Rev. Entomol. 43:701–26
    [Google Scholar]
  31. 31. 
    Han F, Shelton AM, Zhou D 2016. How China can enhance adoption of biotech crops. Nat. Biotechnol. 34:7693
    [Google Scholar]
  32. 32. 
    Han L, Jiang X, Peng Y 2016. Potential resistance management for the sustainable use of insect-resistant genetically modified corn and rice in China. Curr. Opin. Insect Sci. 15:139–43
    [Google Scholar]
  33. 33. 
    Hellmich RL, Albajes R, Bergvinson D, Prasifka JR, Wang Z et al. 2008. The present and future role of insect-resistant genetically modified maize in IPM. Integration of Insect-Resistant Genetically Modified Crops Within IPM Programs J Romeis, AM Shelton, GG Kennedy 119–58 Berlin: Springer
    [Google Scholar]
  34. 34. 
    Hirai K. 1995. Migration of the oriental armyworm Mythimnaseparata in East Asia in relation to weather and climate. III. Japan. Insect Migration Tracking Resources Through Space and Time VA Drake, AG Gatehouse 117–30 Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  35. 35. 
    Hossain F, Pray CE, Lu Y, Huang J, Fan C et al. 2004. Genetically modified cotton and farmers' health in China. Int. J. Occup. Environ. Health 10:296–303
    [Google Scholar]
  36. 36. 
    Hu N, Hu J, Jiang X, Lu Z, Peng Y et al. 2014. Establishment and optimization of a regionally applicable maize gene-flow model. Transgenic Res 23:795–807
    [Google Scholar]
  37. 37. 
    Huang F, Andow DA, Buschman LL 2011. Success of the high-dose/refuge resistance management strategy after 15years of Bt crop use in North America. Entomol. Exp. Appl. 141:1–16
    [Google Scholar]
  38. 38. 
    Huang J, Hu R, Meijl HV, Tongeren FV 2003. Economic impacts of genetically modified crops in China. Genet. Mol. Biol. 24:183–90
    [Google Scholar]
  39. 39. 
    Huang J, Hu R, Qiao F, Yin Y, Liu H et al. 2015. Impact of insect-resistant GM rice on pesticide use and farmers’ health in China. Sci. China Life Sci. 58:5466–71
    [Google Scholar]
  40. 40. 
    Huang J, Hu R, Rozelle S, Pray C 2005. Insect-resistant GM rice in farmers’ fields: assessing productivity and health effects in China. Science 308:688–90
    [Google Scholar]
  41. 41. 
    Huang J, Hu R, Rozelle S, Qiao F, Pray CE 2002. Transgenic varieties and productivity of smallholder cotton farmers in China. Austral. J. Agric. Resour. Econ. 46:367–87
    [Google Scholar]
  42. 42. 
    Huang J, Peng B. 2015. Consumers’ perceptions on GM food safety in urban China. J. Integr. Agric. 14:112391–400
    [Google Scholar]
  43. 43. 
    Huang Y, Wan P, Zhang H, Huang M, Li Z et al. 2013. Diminishing returns from increased percent Bt cotton: the case of pink bollworm. PLOS ONE 8:7e68573
    [Google Scholar]
  44. 44. 
    Hutchison WD, Burkness EC, Mitchell PD, Moon RD, Leslie TW et al. 2010. Areawide suppression of European corn borer with Bt maize reaps savings to non-Bt maize growers. Science 330:222–25
    [Google Scholar]
  45. 45. 
    Icol I, Stotzky G. 2008. Fate and effects of insect-resistant Bt crops in soil ecosystems. Soil Biol. Biochem. 40:559–86
    [Google Scholar]
  46. 46. 
    ISAAA (Int. Serv. Acquis. Agri-Biotech Appl.) 2017. Global status of commercialized biotech/GM crops in 2017: Biotech crop adoption surges as economic benefits accumulate in 22 years ISAAA Brief 53, ISAAA Ithaca, NY:
  47. 47. 
    Jia S, Yuan Q, Pei X, Wang F, Hu N et al. 2014. Rice transgene flow: its patterns, model and risk management. Plant Biotechnol. J. 12:1259–70
    [Google Scholar]
  48. 48. 
    Jiang S, Wu H, Liu H, Zheng J, Lin Y, Chen H 2017. The overexpression of insect endogenous small RNAs in transgenic rice inhibits growth and delays pupation of striped stem borer (Chilosuppressalis). Pest Manag. Sci. 73:1453–61
    [Google Scholar]
  49. 49. 
    Jiang Y, Li C, Zeng J, Liu J 2014. Population dynamics of the armyworm in China: a review of the past 60 years’ research. Chinese J. Appl. Entomol. 51:4890–98
    [Google Scholar]
  50. 50. 
    Jiao Y, Hu X, Peng Y, Wu K, Romeis J et al. 2018. Bt rice plants may protect neighboring non-Bt rice plants against the striped stemborer Chilosuppressalis. Proc. R. Soc. B 285:20181283
    [Google Scholar]
  51. 51. 
    Jin L, Zhang H, Lu Y, Yang Y, Wu K et al. 2015. Large-scale test of the natural refuge strategy for delaying insect resistance to transgenic Bt crops. Nat. Biotechnol. 33:169–74
    [Google Scholar]
  52. 52. 
    Kouser S, Qaim M. 2011. Impact of Bt cotton on pesticide poisoning in smallholder agriculture: a panel data analysis. Ecol. Econ. 70:112105–13
    [Google Scholar]
  53. 53. 
    Lee JH, Uhm KB. 1995. Migration of the Oriental armyworm Mythimnaseparata in East Asia in relation to weather and climate. II. Korea. Insect Migration Tracking Resources Through Space and Time VA Drake, AG Gatehouse 105–16 Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  54. 54. 
    Li B, Xu Y, Han C, Han L, Hou M et al. 2015. Chilosuppressalis and Sesamiainferens display different susceptibility responses to Cry1A insecticidal proteins. Pest Manag. Sci. 71:1433–40
    [Google Scholar]
  55. 55. 
    Li G, Ji T, Sun X, Jiang Y, Wu K et al. 2019. Susceptibility evaluation of invaded Spodopterafrugiperda population in Yunnan province to five Bt proteins. Plant Prot 45:15–20
    [Google Scholar]
  56. 56. 
    Li N, He K, Cui L, Wang Z 2011. Environmental safety of genetically modified insect resistant maize and future perspectives for implementation in China. Plant Protect 37:18–26
    [Google Scholar]
  57. 57. 
    Li R, He L, Wei W, Hao L, Ji X et al. 2015. Chlorpyrifos residue levels on field crops (rice, maize and soybean) in China and their dietary risks to consumers. Food Control 51:212–17
    [Google Scholar]
  58. 58. 
    Li Y, Gao Y, Wu K 2017. Function and effectiveness of natural refuge in IRM strategies for Bt crops. Curr. Opin. Insect Sci. 21:1–6
    [Google Scholar]
  59. 59. 
    Li Y, Hallerman EM, Liu Q, Wu K, Peng Y 2016. The development and status of Bt rice in China. Plant Biotechnol. J. 14:839–48
    [Google Scholar]
  60. 60. 
    Li Y, Hallerman EM, Peng Y 2018. How can China prepare for the domestic cultivation of Bt maize. ? Trends Food Sci. Technol. 73:87–88
    [Google Scholar]
  61. 61. 
    Li Y, Lu Y, Hallerman EM, Peng Y, Wu K 2017. Commercial use and governance of Bt cotton in China. 2017. Genetically Modified Organisms in Developing Countries AA Adenle, EJ Morris, DJ Murphy 225–35 Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  62. 62. 
    Li Y, Romeis J, Wu K, Peng Y 2014. Tier-1 assays for assessing the toxicity of insecticidal proteins produced by genetically engineered plants to non-target arthropods. Insect Sci 21:125–34
    [Google Scholar]
  63. 63. 
    Li Y, Zhang Q, Liu Q, Meissle M, Yang Y et al. 2017. Bt rice in China: focusing the non-target risk assessment. Plant Biotechnol. J. 15:101340–45
    [Google Scholar]
  64. 64. 
    Lin K, Hou M, Han L, Liu Y 2008. Research progress in host selection and underlying mechanisms, and factors affecting population dynamics of Chilosuppressalis. Plant Protect 34:122–28
    [Google Scholar]
  65. 65. 
    Liu L, Cao C. 2014. Who owns the intellectual property rights to Chinese genetically modified rice? Evidence from patent portfolio analysis. Biotechnol. Law Rep. 33:5181–92
    [Google Scholar]
  66. 66. 
    Liu QS, Hallerman E, Peng YF, Li YH 2016. Development of Bt rice and Bt corn in China and their efficacy in target pest control. Int. J. Mol. Sci. 17:101561
    [Google Scholar]
  67. 67. 
    Liu Z, Guo W, Zhu X, Zhu Z, Zhang T 2003. Inheritance analysis of resistance of transgenic Bt+GNA cotton line to Helicoverpaarmigera. J. Agric. Biotechnol 11:4388–93
    [Google Scholar]
  68. 68. 
    Lopez R. 2013. China rejects shipment of genetically modified corn. Los Angeles Times Dec 27. https://www.latimes.com/business/la-fi-mo-china-rejects-shipment-of-gmo-corn-20131227-story.html
    [Google Scholar]
  69. 69. 
    Lu B. 2016. Challenges of transgenic crop commercialization in China. Nat. Plants 2:616077
    [Google Scholar]
  70. 70. 
    Lu B, Snow AA. 2005. Gene flow from genetically modified rice and its environmental consequences. Bioscience 55:669–78
    [Google Scholar]
  71. 71. 
    Lu Y. 2012. Advance in insect pest management in Bt cotton worldwide. Chinese J. Appl. Entomol. 49:809–19
    [Google Scholar]
  72. 72. 
    Lu Y, Liang G. 2016. Research advance on the succession of insect pest complex in Bt crop ecosystem. Plant Protect 42:7–11
    [Google Scholar]
  73. 73. 
    Lu Y, Wu K. 2011. Mirid bugs in China: pest status and management strategies. Outlooks Pest Manag 22:248–52
    [Google Scholar]
  74. 74. 
    Lu Y, Wu K, Jiang Y, Guo Y, Desneux N 2012. Widespread adoption of Bt cotton and insecticide decrease promotes biocontrol services. Nature 487:362–65
    [Google Scholar]
  75. 75. 
    Lu Y, Wu K, Jiang Y, Xia B, Li P et al. 2010. Mirid bug outbreaks in multiple crops correlated with wide-scale adoption of Bt cotton in China. Science 328:1151–54
    [Google Scholar]
  76. 76. 
    Mao Y, Tao X, Xue X, Wang L, Chen X 2011. Cotton plants expressing CYP6AE14 double-stranded RNA show enhanced resistance to bollworms. Transgen. Res. 20:665–73
    [Google Scholar]
  77. 77. 
    Mao Y, Xue X, Tao X, Yang C, Wang L et al. 2013. Cysteine protease enhances plant-mediated bollworm RNA interference. Plant Mol. Biol. 83:119–29
    [Google Scholar]
  78. 78. 
    Marvier M, McCreedy C, Regetz J, Kareiva P 2007. A meta-analysis of effects of Bt cotton and maize on nontarget invertebrates. Science 316:1475–77
    [Google Scholar]
  79. 79. 
    Matten SR, Frederick RJ, Reynolds AH 2012. United States Environmental Protection Agency insect resistance management programs for plant-incorporated protectants and use of simulation modeling. Regulation of Agricultural Biotechnology: The United States and Canada CA Wozniak, A McHughen 175–267 Berlin: Springer
    [Google Scholar]
  80. 80. 
    Meissle M, Romeis J, Bigler F 2011. Bt maize and integrated pest management: a European perspective. Pest Manag. Sci. 67:1049–58
    [Google Scholar]
  81. 81. 
    Michel AP, Krupke CH, Baute TS, Difonzo CD 2010. Ecology and management of the western bean cutworm (Lepidoptera: Noctuidae) in corn and dry Beans. J. Integr. Pest Manag. 1:A1–10
    [Google Scholar]
  82. 82. 
    Miller JD. 2008. Mycotoxins in small grains and maize: old problems, new challenges. Food Addit. Contam. A 25:219–30
    [Google Scholar]
  83. 83. 
    Nag SK, Raikwar MK. 2011. Persistent organochlorine pesticide residues in animal feed. Environ. Monit. Assess. 174:327–35
    [Google Scholar]
  84. 84. 
    Naranjo SE. 2011. Impacts of Bt transgenic cotton on integrated pest management. J. Agric. Food Chem. 59:5842–51
    [Google Scholar]
  85. 85. 
    Naranjo SE, Ruberson JR, Sharma HC, Wilson L, Wu K 2008. The present and future role of insect-resistant genetically modified cotton in IPM. Integration of Insect-Resistant Genetically Modified Crops Within IPM Programs J Romeis, AM Shelton, GG Kennedy 119–58 Berlin: Springer
    [Google Scholar]
  86. 86. 
    NASEM (Natl. Acad. Sci. Eng. Med.) 2016. Genetically Engineered Crops: Experiences and Prospects Washington, DC: Natl. Acad. Press
  87. 87. 
    Neher DA, Muthumbi AWN, Dively GP 2014. Impact of coleopteran-active Bt corn on non-target nematode communities in soil and decomposing corn roots. Soil Biol. Biochem. 76:127–35
    [Google Scholar]
  88. 88. 
    Ni M, Ma W, Wang X, Gao M, Dai Y et al. 2017. Next-generation transgenic cotton: Pyramiding RNAi and Bt counters insect resistance. Plant Biotechnol. J. 15:1204–13
    [Google Scholar]
  89. 89. 
    NRC (Natl. Res. Counc.) 2010. The Impact of Genetically Engineered Crops on Farm Sustainability in the United States Washington, DC: Natl. Acad. Press
  90. 90. 
    Pott A, Otto M, Schulz R 2018. Impact of genetically modified organisms on aquatic environments: review of available data for the risk assessment. Sci. Total Environ. 635:687–98
    [Google Scholar]
  91. 91. 
    Pray CE, Huang J, Hu R, Rozelle S 2002. Five years of Bt cotton in China: the benefits continue. Plant J 31:423–30
    [Google Scholar]
  92. 92. 
    Qaim M. 2009. The economics of genetically modified crops. Annu. Rev. Resour. Econ. 1:665–93
    [Google Scholar]
  93. 93. 
    Qi G, Lv L, Lan R, Xie J, Zhang W 2011. Tracking the source regions of Cnaphalocrocismedinalis in the rice growing region of northern Guangdong Province. Chinese J. Appl. Entomol. 50:3601–7
    [Google Scholar]
  94. 94. 
    Qiao F. 2015. Fifteen years of Bt cotton in China: the impact and its dynamics. World Dev 70:177–85
    [Google Scholar]
  95. 95. 
    Qiao F, Huang J. 2019. Genetically modified (GM) rice versus non-GM rice: pesticide use and yield—a case study. Sci. China Life Sci. In press
    [Google Scholar]
  96. 96. 
    Qiao F, Huang J, Wang X 2017. Fifteen years of Bt cotton in China: results from household surveys. World Dev 98:351–59
    [Google Scholar]
  97. 97. 
    Qiao F, Huang J, Zhang C 2016. The sustainability of the farm-level impact of Bt cotton in China. J. Agric. Econ. 67:3602–18
    [Google Scholar]
  98. 98. 
    Raybould A, Quemada H. 2010. Bt crops and food security in developing countries: realised benefits, sustainable use and lowering barriers to adoption. Food Secur 2:3247–59
    [Google Scholar]
  99. 99. 
    Romeis J, Bartsch D, Bigler F, Candolfi MP, Gielkens MMC et al. 2008. Assessment of risk of insect-resistant transgenic crops to nontarget arthropods. Nat. Biotechnol. 26:203–8
    [Google Scholar]
  100. 100. 
    Romeis J, Meissle M, Bigler F 2006. Transgenic crops expressing Bacillusthuringiensis toxins and biological control. Nat. Biotechnol. 24:63–71
    [Google Scholar]
  101. 101. 
    Romeis J, Raybould A, Bigler F, Candolfi MP, Hellmich RL et al. 2013. Deriving criteria to select arthropod species for laboratory tests to assess the ecological risks from cultivating arthropod-resistant genetically engineered crops. Chemosphere 90:901–9
    [Google Scholar]
  102. 102. 
    Rong J, Lu B, Song Z, Su J, Snow A et al. 2007. Dramatic reduction of crop-to-crop gene flow within a short distance from transgenic rice fields. New Phytol 173:346–53
    [Google Scholar]
  103. 103. 
    Rong J, Song Z, Su J, Xia H, Lu B et al. 2005. Low frequency of transgene flow from Bt/CpTI rice to its nontransgenic counterparts planted at close spacing. New Phytol 168:559–66
    [Google Scholar]
  104. 104. 
    Rong J, Song Z, Su J, Xia H, Lu B, Wang F 2006. Low frequencies of transgene flow between Bt/CpTI rice and their non-transgenic counterparts under alternating cultivation. Biodiv. Sci. 14:309–14
    [Google Scholar]
  105. 105. 
    Shankar B, Thirtle C. 2005. Pesticide productivity and transgenic cotton technology: the South African smallholder case. J. Agric. Econ. 56:97–116
    [Google Scholar]
  106. 106. 
    Shelton AM, Badenes-Perez FR. 2006. Concepts and applications of trap cropping in pest management. Annu. Rev. Entomol. 51:285–308
    [Google Scholar]
  107. 107. 
    Sheng C, Wang H, Sheng S, Gao L, Xuan W 2003. Pest status and loss assessment of crop damage caused by the rice borers, Chilosuppressalis and Tryporyzaincertulas in China. Chinese J. Appl. Entomol. 40:289–94
    [Google Scholar]
  108. 108. 
    Sobek EA, Munkvold GP. 1999. European corn borer (Lepidoptera: Pyralidae) larvae as vectors of Fusariummoniliforme, causing kernel rot and symptomless infection of maize kernels. J. Econ. Entomol. 92:503–9
    [Google Scholar]
  109. 109. 
    Song L, Wei L, Wang Z, He K, Cong B 2009. Effect of infestation by the Asian corn borer together with Fusariumverticillioides on corn yield loss. Acta Phytophylacica Sin 36:487–90
    [Google Scholar]
  110. 110. 
    Subramanian A, Qaim M. 2009. Village-wide effects of agricultural biotechnology: the case of Bt cotton in India. World Dev 37:256–67
    [Google Scholar]
  111. 111. 
    Sun H, Zhang F. 2014. Analysis on the GMO's intellectual property strategy in China. Agric. Econ. 2:11–16
    [Google Scholar]
  112. 112. 
    Tabashnik BE, Brévault T, Carrière Y 2013. Insect resistance to Bt crops: lessons from the first billion acres. Nat. Biotechnol. 31:510–21
    [Google Scholar]
  113. 113. 
    Tabashnik BE, Gassmann AJ, Crowder DW, Carriére Y 2008. Insect resistance to Bt crops: evidence versus theory. Nat. Biotechnol. 26:199–202
    [Google Scholar]
  114. 114. 
    Wan P, Huang Y, Tabashnik BE, Huang M, Wu K 2012. The halo effect: suppression of pink bollworm on non-Bt cotton by Bt cotton in China. PLOS ONE 7:7e42004
    [Google Scholar]
  115. 115. 
    Wan P, Wu K, Huang M, Wu J 2004. Seasonal pattern of infestation by pink bollworm Pectinophoragossypiella (Saunders) in field plots of Bt transgenic cotton in the Yangtze River valley of China. Crop Protect 23:463–67
    [Google Scholar]
  116. 116. 
    Wan P, Wu K, Huang M, Yu D, Wu J 2008. Population dynamics of Spodopteralitura (Lepidoptera: Noctuidae) on Bt cotton in the Yangtze River Valley of China. Environ. Entomol. 37:1043–48
    [Google Scholar]
  117. 117. 
    Wan P, Xu D, Cong S, Jiang Y, Huang Y et al. 2017. Hybridizing transgenic Bt cotton with non-Bt cotton counters resistance in pink bollworm. PNAS 114:5413–18
    [Google Scholar]
  118. 118. 
    Wang F, Hu G, Chen X, Shen H, Luo S et al. 2009. Analysis on the causes of recent outbreaks of Cnaphalocrocismedinalis in Nanning, China. Chinese J. Rice Sci. 23:5537–45
    [Google Scholar]
  119. 119. 
    Wang X, Liu Q, Meissle M, Peng Y, Wu K et al. 2018. Bt rice could provide ecological resistance against nontarget planthoppers. Plant Biotechnol. J. 16:1748–55
    [Google Scholar]
  120. 120. 
    Wei T, Zhu W, Pang M, Liu Y, Wang Z et al. 2013. Influence of the damage of cotton bollworm and corn borer to ear rot in corn. J. Maize Sci. 21:4116–18
    [Google Scholar]
  121. 121. 
    Wolfenbarger LL, Naranjo SE, Lundgren JG, Bitzer RJ, Watrud LS 2008. Bt crop effects on functional guilds of non-target arthropods: a meta-analysis. PLOS ONE 3:5e2118
    [Google Scholar]
  122. 122. 
    Wu K. 2007. Monitoring and management strategy for Helicoverpaarmigera resistance to Bt cotton in China. J. Invert. Pathol. 95:220–23
    [Google Scholar]
  123. 123. 
    Wu K, Feng H, Guo Y 2004. Evaluation of maize as a refuge for management of resistance to Bt cotton by Helicoverpaarmigera (Hubner) in the Yellow River cotton-farming region of China. Crop Protect 23:523–30
    [Google Scholar]
  124. 124. 
    Wu K, Guo Y. 2005. The evolution of cotton pest management practices in China. Annu. Rev. Entomol. 50:31–52
    [Google Scholar]
  125. 125. 
    Wu K, Guo Y, Gao S 2002. Evaluation of the natural refuge function for Helicoverpaarmigera (Lepidoptera: Noctuidae) within Bacillusthuringiensis transgenic cotton growing areas in North China. J. Econ. Entomol. 95:832–37
    [Google Scholar]
  126. 126. 
    Wu K, Lu Y, Feng H, Jiang Y, Zhao J 2008. Suppression of cotton bollworm in multiple crops in China in areas with Bt toxin-containing cotton. Science 321:1676–78
    [Google Scholar]
  127. 127. 
    Wu X, Yang C, Mao Y, Wang L, Shangguan X et al. 2016. Targeting insect mitochondrial complex I for plant protection. Plant Biotechnol. J. 14:1925–35
    [Google Scholar]
  128. 128. 
    Xia Z, Pan H, Zhang L, Liu C 1995. The relationship between corn ear rot caused by Fusariummoniliforme and corn ear-feeding rate caused by Asian borer (Ostriniafurnacalis). China Acad. J. Electron. Publ. House 10:88–91
    [Google Scholar]
  129. 129. 
    Xie W, Ali T, Cui Q, Huang J 2017. Economic impacts of commercializing insect-resistant GM maize in China. China Agric. Econ. Rev. 9:340–54
    [Google Scholar]
  130. 130. 
    Xu L, Wang Z, Zhang J, He K, Ferry N et al. 2010. Cross-resistance of Cry1Ab-selected Asian corn borer to other Cry toxins. J. Appl. Entomol. 134:429–38
    [Google Scholar]
  131. 131. 
    Yang F, Kerns D, Huang F 2015. Refuge-in-the-bag strategy for managing insect resistance to Bt maize. Outlooks Pest Manag 26:5226–28
    [Google Scholar]
  132. 132. 
    Yang J, Yang Y, Bao Y, Lu P 2008. Effects of transgenic cotton varieties on nutrition development and α-NA carboxylesterase activity of Prodenialitura (Fabricius). Jiangsu J. Agric. Sci. 24:210–12
    [Google Scholar]
  133. 133. 
    Yang Y, Zhang B, Zhou X, Romeis J, Peng Y et al. 2018. Toxicological and biochemical analyses demonstrate the absence of lethal or sublethal effects of cry1C- or cry2A-expressing Bt rice on the collembolan Folsomiacandida. Front. Plant Sci 9:131
    [Google Scholar]
  134. 134. 
    Yu X, Xu H, Lv Z, Chen J, Zheng X, Tao L 2002. Differentiation of striped stem borer (SSB), Chilosuppressalis Walker from rice and Zizaniacaduciflora habitats. Acta Ecol. Sin. 22:3341–45
    [Google Scholar]
  135. 135. 
    Yuan Z, Wang W, Wang Z, He K, Bai S 2015. Host plants of the Asian corn borer, Ostriniafurnacalis (Guenée) (Lepidoptera: Crambidae). J. Plant Protect. 42:957–64
    [Google Scholar]
  136. 136. 
    Zhang F, Liu Y, Song J, Lei S, Ying Q et al. 2012. Research on frequency of exogenous gene flow from marber-free insect-resistant transgenic rice to conventional rice varieties. Agric. Sci. Technol. 13:693–97
    [Google Scholar]
  137. 137. 
    Zhang H, Tian W, Zhao J, Jin L, Yang J et al. 2012. Diverse genetic basis of field-evolved resistance to Bt cotton in cotton bollworm from China. PNAS 109:10275–80
    [Google Scholar]
  138. 138. 
    Zhang R, Wang Y, Meng Z, Sun G, Guo S 2007. Retrospect and prospect of research on Chinese transgenic insecticidal cotton. J. Agric. Sci. Technol. 9:32–42
    [Google Scholar]
  139. 139. 
    Zhang T, He M, Gatehouse AMR, Wang Z, Edwards M et al. 2014. Inheritance patterns, dominance and cross-resistance of Cry1Ab- and Cry1Ac-selected Ostriniafurnacalis. Toxins 6:2694–707
    [Google Scholar]
  140. 140. 
    Zhang W, Lu Y, van der Werf W, Huang J, Wu F et al. 2018. Multidecadal, county-level analysis of the effects of land use, Bt cotton, and weather on cotton pests in China. PNAS 115:E7700–9
    [Google Scholar]
  141. 141. 
    Zhang X, Chen P, Chen C, Yang Y 2007. Effect of the transgenic Bt cotton on laboratory population increasing of the beet armyworm Spodopteraexigua Hübner. Acta Phytophylacica Sin 34:391–95
    [Google Scholar]
  142. 142. 
    Zhang X, Geng J, Zhou W 1981. Research on the migration of rice leaf roller, Cnaphalocrocismedinalis Guenée in China. J. Nanjing Agric. Coll. 3:43–54
    [Google Scholar]
  143. 143. 
    Zhao C, Jurat-Fuentes JL, Abdelgaffar HM, Pan H, Song F et al. 2015. Identification of a new cry1I-type gene as a candidate for gene pyramiding in corn to control Ostrinia species larvae. Appl. Environ. Microbiol. 81:3699–705
    [Google Scholar]
/content/journals/10.1146/annurev-ento-011019-025039
Loading
/content/journals/10.1146/annurev-ento-011019-025039
Loading

Data & Media loading...

Supplemental Material

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error