1932

Abstract

Babesiosis, caused by piroplasmid protozoans in the genus , is arguably the most important vector-borne disease of livestock and companion animals and is growing in importance as a zoonosis. Ixodid ticks were identified as vectors more than a hundred years ago, but the particular tick species transmitting some significant pathogens are still unknown. Moreover, it is only recently that the complexity of the pathogen–tick relationship has been revealed as a result of studies enabled by gene expression and RNA interference methodology. In this article, we provide details of demonstrated and incriminated vectors, maps of the current knowledge of vector distribution, a summary of established features of the pathogen life cycle in the vector, and an outline of molecular research on pathogen–tick relationships. The article concludes with a discussion of vector ecology and disease epidemiology in a global-change context and with suggestions for future research.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-ento-011118-111932
2019-01-07
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/ento/64/1/annurev-ento-011118-111932.html?itemId=/content/journals/10.1146/annurev-ento-011118-111932&mimeType=html&fmt=ahah

Literature Cited

  1. 1.  Agbede RI, Kemp DH 1985. Digestion in the cattle-tick Boophilus microplus: light microscope study of the gut cells in nymphs and females. Int. J. Parasitol. 15:147–57
    [Google Scholar]
  2. 2.  Akinboade OA, Dipeolu OO 1981. Detection of Babesia bovis infections in Boophilus geigyi with egg crushings, larval smears, and haemolymph puncture. Vet. Q. 3:143–47
    [Google Scholar]
  3. 3.  Akinboade OA, Dipeolu OO 1985. Bovine babesiosis in Nigeria: the vectorial capacity of Boophilus geigyi for Babesia bigemina and Babesia bovis. Acarologia 26:235–37
    [Google Scholar]
  4. 4.  Allsopp MT, Allsopp BA 2006. Molecular sequence evidence for the reclassification of some Babesia species. Ann. N. Y. Acad. Sci. 1081:509–17
    [Google Scholar]
  5. 5.  Antunes S, Galindo RC, Almazan C, Rudenko N, Golovchenko M et al. 2012. Functional genomics studies of Rhipicephalus (Boophilus) annulatus ticks in response to infection with the cattle protozoan parasite. Babesia bigemina. Int. J. Parasitol. 42:187–95
    [Google Scholar]
  6. 6.  Antunes S, Rosa C, Couto J, Ferrolho J, Domingos A et al. 2017. Deciphering Babesia-vector interactions. Front. Cell. Infect. Microbiol. 7:429
    [Google Scholar]
  7. 7.  Apanaskevich DA, Horak IG, Camicas JL 2007. Redescription of Haemaphysalis (Rhipistoma) elliptica (Koch, 1844), an old taxon of the Haemaphysalis (Rhipistoma) leachi group from East and southern Africa, and of Haemaphysalis (Rhipistoma) leachi (Audouin, 1826) (Ixodida, Ixodidae). Onderstepoort J. Vet. Res. 74:181–208
    [Google Scholar]
  8. 8.  Arsuaga M, Gonzalez LM, Lobo CA, de la Calle F, Bautista JM et al. 2016. First report of Babesia microti-caused babesiosis in Spain. Vector Borne Zoonotic Dis 16:677–79
    [Google Scholar]
  9. 9.  Battsetseg B, Lucero S, Xuan X, Claveria F, Byambaa B et al. 2002. Detection of equine Babesia spp. gene fragments in Dermacentor nuttalli Olenev 1929 infesting Mongolian horses, and their amplification in egg and larval progenies. J. Vet. Med. Sci. 64:727–30
    [Google Scholar]
  10. 10.  Bell JF, Stewart SJ, Wikel SK 1979. Resistance to tick-borne Francisella tularensis by tick-sensitized rabbits: allergic klendusity. Am. J. Trop. Med. Hyg. 28:876–80
    [Google Scholar]
  11. 11.  Berkvens DL, Geysen DM, Chaka G, Madder M, Brandt JR 1998. A survey of the ixodid ticks parasitising cattle in the Eastern province of Zambia. Med. Vet. Entomol. 12:234–40
    [Google Scholar]
  12. 12.  Bock R, Jackson L, de Vos A, Jorgensen W 2004. Babesiosis of cattle. Parasitology 129:Suppl. 1S247–69
    [Google Scholar]
  13. 13.  Boldbaatar D, Battsetseg B, Matsuo T, Hatta T, Umemiya-Shirafuji R et al. 2008. Tick vitellogenin receptor reveals critical role in oocyte development and transovarial transmission of Babesia parasite. Biochem. Cell. Biol. 86:331–44
    [Google Scholar]
  14. 14.  Bonnet S, Jouglin M, Malandrin L, Becker C, Agoulon A et al. 2007. Transstadial and transovarial persistence of Babesia divergens DNA in Ixodes ricinus ticks fed on infected blood in a new skin-feeding technique. Parasitology 134:197–207
    [Google Scholar]
  15. 15.  Busch JD, Stone NE, Nottingham R, Araya-Anchetta A, Lewis J et al. 2014. Widespread movement of invasive cattle fever ticks (Rhipicephalus microplus) in southern Texas leads to shared local infestations on cattle and deer. Parasit. Vectors 7:188
    [Google Scholar]
  16. 16.  Callow LL, Stewart NP 1978. Immunosuppression by Babesia bovis against its tick vector. Boophilus microplus. Nature 272:818–19
    [Google Scholar]
  17. 17.  Cen-Aguilar JF, Rodríguez-Vivas RI, Domínguez-Alpizar JL, Wagner GG 1998. Studies on the effect of infection by Babesia sp. on oviposition of Boophilus microplus engorged females naturally infected in the Mexican tropics. Vet. Parasitol. 78:253–57
    [Google Scholar]
  18. 18.  Chauvin A, Moreau E, Bonnet S, Plantard O, Malandrin L 2009. Babesia and its hosts: adaptation to long-lasting interactions as a way to achieve efficient transmission. Vet. Res. 40:37
    [Google Scholar]
  19. 19.  Clay K, Fuqua C 2011. The tick microbiome: diversity, distribution and influence of the internal microbial community for a blood-feeding disease vector. Critical Needs and Gaps in Understanding Prevention, Amelioration and Resolution of Lyme and Other Tick-borne Diseases: The Short-term and Long-term OutcomesA193–214 Washington, DC: Natl. Acad. Press
    [Google Scholar]
  20. 20.  de Clercq EM, Leta S, Estrada-Peña A, Madder M, Adehan S, Vanwambeke SO 2015. Species distribution modelling for Rhipicephalus microplus (Acari: Ixodidae) in Benin, West Africa: comparing datasets and modelling algorithms. Prev. Vet. Med. 118:8–21
    [Google Scholar]
  21. 21.  de Clercq EM, Vanwambeke SO, Sungirai M, Adehan S, Lokossou R, Madder M 2012. Geographic distribution of the invasive cattle tick Rhipicephalus microplus, a country-wide survey in Benin. Exp. Appl. Acarol. 58:441–52
    [Google Scholar]
  22. 22.  de la Fuente J, Antunes S, Bonnet S, Cabezas-Cruz A, Domingos AG et al. 2017. Tick-pathogen interactions and vector competence: identification of molecular drivers for tick-borne diseases. Front. Cell. Infect. Microbiol. 7:114
    [Google Scholar]
  23. 23.  de Rezende J, Rangel CP, McIntosh D, Silveira JA, Cunha NC et al. 2015. In vitro cultivation and cryopreservation of Babesia bigemina sporokinetes in hemocytes of Rhipicephalus microplus. Vet. Parasitol 212:400–3
    [Google Scholar]
  24. 24.  de Vos AJ 1979. Epidemiology and control of bovine babesiosis in South Africa. J. S. Afr. Vet. Assoc. 50:357–62
    [Google Scholar]
  25. 25.  de Vos AJ, Stewart NP, Dalgliesh RJ 1989. Effect of different methods of maintenance on the pathogenicity and infectivity of Babesia bigemina for the vector Boophilus microplus. Res. Vet. Sci 46:139–42
    [Google Scholar]
  26. 26.  de Waal DT 1990. The transovarial transmission of Babesia caballi by Hyalomma truncatum. Onderstepoort J. Vet. Res 57:99–100
    [Google Scholar]
  27. 27.  de Waal DT, Potgieter FT 1987. The transstadial transmission of Babesia caballi by Rhipicephalus evertsi evertsi. Onderstepoort J. Vet. Res 54:655–56
    [Google Scholar]
  28. 28.  Dunn JM, Krause PJ, Davis S, Vannier EG, Fitzpatrick MC et al. 2014. Borrelia burgdorferi promotes the establishment of Babesia microti in the northeastern United States. PLOS ONE 9:e115494
    [Google Scholar]
  29. 29.  Estrada-Peña A, Ayllón N, de la Fuente J 2012. Impact of climate trends on tick-borne pathogen transmission. Front. Physiol. 3:64
    [Google Scholar]
  30. 30.  Estrada-Peña A, Bouattour A, Camicas JL, Guglielmone A, Horak I et al. 2006. The known distribution and ecological preferences of the tick subgenus Boophilus (Acari: Ixodidae) in Africa and Latin America. Exp. Appl. Acarol. 38:219–35
    [Google Scholar]
  31. 31.  Estrada-Peña A, Jongejan F 1999. Ticks feeding on humans: a review of records on human-biting Ixodoidea with special reference to pathogen transmission. Exp. Appl. Acarol. 23:685–715
    [Google Scholar]
  32. 32.  Estrada-Peña A, Venzal JM, Nava S, Mangold A, Guglielmone AA et al. 2012. Reinstatement of Rhipicephalus (Boophilus) australis (Acari: Ixodidae) with redescription of the adult and larval stages. J. Med. Entomol. 49:794–802
    [Google Scholar]
  33. 33.  Florin-Christensen M, Schnittger L 2009. Piroplasmids and ticks: a long-lasting intimate relationship. Front. Biosci. 14:3064–73
    [Google Scholar]
  34. 34.  Földvári G, Široký P, Szekeres S, Majoros G, Sprong H 2016. Dermacentor reticulatus: a vector on the rise. Parasit. Vectors 9:314
    [Google Scholar]
  35. 35.  Francis J, Little DG 1964. Resistance of droughtmaster cattle to tick infestation and babesiosis. Aust. Vet. J. 40:247–53
    [Google Scholar]
  36. 36.  Fredericks DN, Relman DA 1996. Sequence-based identification of microbial pathogens: a reconsideration of Koch's postulates. Clin. Microbiol. Rev. 9:18–33
    [Google Scholar]
  37. 37.  Friedhoff KT 1988. Transmission of Babesia. Babesiosis of Domestic Animals and Man M Ristic 1–52 Boca Raton, FL: CRC Press
    [Google Scholar]
  38. 38.  Giles JR, Peterson AT, Busch JD, Olafson PU, Scoles GA et al. 2014. Invasive potential of cattle fever ticks in the southern United States. Parasit. Vectors 7:189
    [Google Scholar]
  39. 39.  Ginsberg HS, Albert M, Acevedo L, Dyer MC, Arsnoe IM 2017. Environmental factors affecting survival of immature Ixodes scapularis and implications for geographical distribution of Lyme disease: the climate/behavior hypothesis. PLOS ONE 12:e0168723
    [Google Scholar]
  40. 40.  Gough JM, Jorgensen WK, Kemp DH 1998. Development of tick gut forms of Babesia bigemina in vitro. J. Eukaryot. Microbiol. 45:298–306
    [Google Scholar]
  41. 41.  Gray JS 1982. The effects of the piroplasm Babesia bigemina on the survival and reproduction of the blue tick, Boophilus decoloratus. J. Invertebr. Pathol 39:413–15
    [Google Scholar]
  42. 42.  Gray JS 1998. The ecology of Lyme borreliosis vectors. Exp. Appl. Acarol. 22:249–58
    [Google Scholar]
  43. 43.  Gray JS, Dautel H, Estrada-Peña A, Kahl O, Lindgren E 2009. Effects of climate change on ticks and tick-borne diseases in Europe. Interdiscip. Perspect. Infect. Dis. 2009:593232
    [Google Scholar]
  44. 44.  Gray JS, de Vos AJ 1981. Studies on a bovine babesia transmitted by Hyalomma marginatum rufipes Koch 1844. Onderstepoort J. Vet. Res. 48:215–23
    [Google Scholar]
  45. 45.  Gray JS, von Stedingk L-V, Gürtelschmid M, Granström M 2002. Transmission studies on Babesia microti in Ixodes ricinus ticks and gerbils. J. Clin. Microbiol. 40:1258–63
    [Google Scholar]
  46. 46.  Gray JS, Zintl A, Hildebrandt A, Hunfeld K-P, Weiss L 2010. Zoonotic babesiosis: overview of the disease and novel aspects of pathogen identity. Ticks Tick-Borne Dis 1:3–10
    [Google Scholar]
  47. 47.  Hajdušek O, Síma R, Ayllón N, Jalovecká M, Perner J et al. 2013. Interaction of the tick immune system with transmitted pathogens. Front. Cell. Infect. Microbiol. 3:26
    [Google Scholar]
  48. 48.  Heekin AM, Guerrero FD, Bendele KG, Saldivar L, Scoles GA et al. 2012. Analysis of Babesia bovis infection-induced gene expression changes in larvae from the cattle tick, Rhipicephalus (Boophilus) microplus. Parasit. Vectors 5:162
    [Google Scholar]
  49. 49.  Heekin AM, Guerrero FD, Bendele KG, Saldivar L, Scoles GA et al. 2013. The ovarian transcriptome of the cattle tick, Rhipicephalus (Boophilus) microplus, feeding upon a bovine host infected with Babesia bovis. Parasit. Vectors 6:276
    [Google Scholar]
  50. 50.  Higuchi S, Ezura K, Hamana M, Kawamura S, Yasuda Y 1989. Development of Babesia ovata in the midgut of the tick, Haemaphysalis longicornis. Jpn. J. Vet. Sci 51:1129–35
    [Google Scholar]
  51. 51.  Hildebrandt A, Hunfeld KP, Baier M, Krumbholz A, Sachse S et al. 2007. First confirmed autochthonous case of human Babesia microti infection in Europe. Eur. J. Clin. Microbiol. Infect. Dis. 26:595–601
    [Google Scholar]
  52. 52.  Hoch T, Goebel J, Agoulon A, Malandrin L 2012. Modelling bovine babesiosis: a tool to simulate scenarios for pathogen spread and to test control measures for the disease. Prev. Vet. Med. 106:136–42
    [Google Scholar]
  53. 53.  Hoffmann G 1971. Infection susceptibility of various strains of Boophilus to Babesia bigemina as well as the influencing of ticks by host or parasite. Z. Tropenmed. Parasitol. 22:270–84
    [Google Scholar]
  54. 54.  Holbrook Anthony DW, Johnson AJ 1968. Observations on the development of Babesia caballi (Nuttall) in the tropical horse tick Dermacentor nitens Neumann. J. Protozool. 15:391–96
    [Google Scholar]
  55. 55.  Irwin PJ 2010. Canine babesiosis. Vet. Clin. North. Am. Small. Anim. Pract. 40:1141–56
    [Google Scholar]
  56. 56.  Jones LD, Nuttall PA 1990. The effect of host resistance to tick infestation on the transmission of Thogoto virus by ticks. J. Gen. Virol. 71:1039–43
    [Google Scholar]
  57. 57.  Lu P, Zhou Y, Yu Y, Cao J, Zhang H et al. 2016. RNA interference and the vaccine effect of a subolesin homolog from the tick Rhipicephalus haemaphysaloides. Exp. Appl. Acarol 68:113–26
    [Google Scholar]
  58. 58.  Lynen G, Zeman P, Bakuname C, Di Giulio G, Mtui P et al. 2008. Shifts in the distributional ranges of Boophilus ticks in Tanzania: evidence that a parapatric boundary between Boophilus microplus and B. decoloratus follows climate gradients. Exp. Appl. Acarol. 44:147–64
    [Google Scholar]
  59. 59.  Madder M, Thys E, Achi L, Touré A, De Deken R 2011. Rhipicephalus (Boophilus) microplus: a most successful invasive tick species in West-Africa. Exp. Appl. Acarol. 53:139–45
    [Google Scholar]
  60. 60.  Madder M, Thys E, Geysen D, Baudoux C, Horak I 2007. Boophilus microplus ticks found in West Africa. Exp. Appl. Acarol. 43:233–34
    [Google Scholar]
  61. 61.  Maeda H, Kurisu K, Miyata T, Kusakisako K, Galay RL et al. 2015. Identification of the Babesia-responsive leucine-rich repeat domain-containing protein from the hard tick Haemaphysalis longicornis. Parasitol. Res 114:1793–802
    [Google Scholar]
  62. 62.  Medlock JM, Hansford KM, Bormane A, Derdakova M, Estrada-Peña A et al. 2013. Driving forces for changes in geographical distribution of Ixodes ricinus ticks in Europe. Parasit. Vectors 6:1
    [Google Scholar]
  63. 63.  Mehlhorn H, Schein E 1985. The piroplasms: life cycle and sexual stages. Adv. Parasitol. 23:38–103
    [Google Scholar]
  64. 64.  Mehlhorn H, Schein E, Voigt WP 1980. Light and electron microscopic study on developmental stages of Babesia canis within the gut of the tick Dermacentor reticulatus. J. Parasitol 66:220–28
    [Google Scholar]
  65. 65.  Merino O, Almazan C, Canales M, Villar M, Moreno-Cid JA 2011. Targeting the tick protective antigen subolesin reduces vector infestations and pathogen infection by Anaplasma marginale and Babesia bigemina. Vaccine 29:8575–79
    [Google Scholar]
  66. 66.  Merino O, Antunes S, Mosqueda J, Moreno-Cid JA, Pérez de la Lastra JM et al. 2013. Vaccination with proteins involved in tick–pathogen interactions reduces vector infestations and pathogen infection. Vaccine 31:5889–96
    [Google Scholar]
  67. 67.  Mierzejewska EJ, Alsarraf M, Behnke JM, Bajer A 2015. The effect of changes in agricultural practices on the density of Dermacentor reticulatus ticks. Vet. Parasitol. 211:259–65
    [Google Scholar]
  68. 68.  Norval RAI, Fivaz BH, Lawrence JA, Daillecourt T 1983. Epidemiology of tick-borne diseases of cattle in Zimbabwe. I. Babesiosis. Trop. Anim. Health Prod. 15:87–94
    [Google Scholar]
  69. 69.  Ogden NH, Maarouf A, Barker IK, Bigras-Poulin M, Lindsay LR et al. 2016. Climate change and the potential for range expansion of the Lyme disease vector Ixodes scapularis in Canada. Int. J. Parasitol. 36:63–70
    [Google Scholar]
  70. 70.  Pal U, Li X, Wang T, Montgomery RR, Ramamoorthi N et al. 2004. TROSPA, an Ixodes scapularis receptor for Borrelia burgdorferi. Cell 119:457–68
    [Google Scholar]
  71. 71.  Pérez de León A, Strickman DA, Knowles DP, Fish D, Thacker E 2010. One Health approach to identify research needs in bovine and human babesioses: workshop report. Parasit. Vectors 3:36
    [Google Scholar]
  72. 72.  Petney TN 1997. Ecological implications of control strategies: arthropods of domestic and production animals. Int. J. Parasitol. 27:155–65
    [Google Scholar]
  73. 73.  Potgieter FT, Els HJ 1976. Light and electron microscopic observations on the development of small merozoites of Babesia bovis in Boophilus microplus larvae. Onderstepoort J. Vet. Res. 43:123–28
    [Google Scholar]
  74. 74.  Potgieter FT, Els HJ 1977. Light and electron microscopic observations on the development of Babesia bigemina in larvae, nymphae and non-replete females of Boophilus decoloratus. Onderstepoort J. Vet. Res 44:213–31
    [Google Scholar]
  75. 75.  Purnell RE, Brocklesby DW, Hendry DJ, Young ER 1976. Separation and recombination of Babesia divergens and Ehrlichia phagocytophila from a field case of redwater from Eire. Vet. Rec. 99:415–17
    [Google Scholar]
  76. 76.  Rachinsky A, Guerrero FD, Scoles GA 2007. Differential protein expression in ovaries of uninfected and Babesia-infected southern cattle ticks, Rhipicephalus (Boophilus) microplus. Insect Biochem. Mol. Biol 37:1291–308
    [Google Scholar]
  77. 77.  Rachinsky A, Guerrero FD, Scoles GA 2008. Proteomic profiling of Rhipicephalus (Boophilus) microplus midgut responses to infection with Babesia bovis. Vet. Parasitol 152:294–313
    [Google Scholar]
  78. 78.  Ramamoorthi N, Narasimhan S, Pal U, Bao F, Yang XF et al. 2005. The Lyme disease agent exploits a tick protein to infect the mammalian host. Nature 436:573–77
    [Google Scholar]
  79. 79.  Randolph SE The effect of Babesia microti on feeding and survival in its tick vector, Ixodes trianguliceps. Parasitology 102:9–16
    [Google Scholar]
  80. 80.  Reddy GR, Chakrabarti D, Yowell CA, Dame JB 1991. Sequence microheterogeneity of the three small subunit ribosomal RNA genes of Babesia bigemina: expression in erythrocyte culture. Nucleic Acids Res 19:3641–45
    [Google Scholar]
  81. 81.  Riek RF 1964. The life cycle of Babesia bigemina (Smith and Kilbourne, 1893) in the tick vector Boophilus microplus (Canestrini). Aust. J. Agric. Res. 15:802–21
    [Google Scholar]
  82. 82.  Riek RF 1966. The life cycle of Babesia argentina (Lignieres, 1903) (Sporozoa: Piroplasmidea) in the tick vector Boophilus microplus (Canestrini). Aust. J. Agric. Res. 17:247–54
    [Google Scholar]
  83. 83.  Rizzoli A, Silaghi C, Obiegala A, Rudolf I, Hubálek Z et al. 2014. Ixodes ricinus and its transmitted pathogens in urban and peri-urban areas in Europe: new hazards and relevance for public health. Front. Public Health 2:251
    [Google Scholar]
  84. 84.  Rodríguez-Hernández E, Mosqueda J, León-Ávila G, Castañeda-Ortiz EJ, Álvarez-Sánchez ME et al. 2015. BmVDAC upregulation in the midgut of Rhipicephalus microplus, during infection with Babesia bigemina. Vet. Parasitol 212:368–74
    [Google Scholar]
  85. 85.  Rubel F, Brugger K, Pfeffer M, Chitimia-Dobler L, Didyk YM et al. 2016. Geographical distribution of Dermacentor marginatus and Dermacentor reticulatus in Europe. Ticks Tick-Borne Dis 7:224–33
    [Google Scholar]
  86. 86.  Rudzinska MA, Spielman A, Lewengrub S, Trager W, Piesman J 1983. Sexuality in piroplasms as revealed by electron microscopy in Babesia microti. PNAS 80:2966–70
    [Google Scholar]
  87. 87.  Schnittger L, Rodriguez AE, Florin-Christensen M, Morrison DA 2012. Babesia: a world emerging. Infect. Genet. Evol. 12:1788–809
    [Google Scholar]
  88. 88.  Shayan P, Hooshmand E, Rahbari S, Nabian S 2007. Determination of Rhipicephalus spp. as vectors for Babesia ovis in Iran. Parasitol. Res. 101:1029–33
    [Google Scholar]
  89. 89.  Shortt HE 1973. Babesia canis: the life cycle and laboratory maintenance in its arthropod and mammalian hosts. Int. J. Parasitol. 3:119–48
    [Google Scholar]
  90. 90.  Smith T, Kilbourne FL 1893. Investigations into the nature causation and prevention of Texas or southern cattle fever. Ninth Annual Report of the Bureau of Animal Industry for the Year 1892 Washington, DC: Gov. Print. Off.
    [Google Scholar]
  91. 91.  Sonenshine DE 1991. Biology of Ticks 1 New York/Oxford, UK: Oxford Univ. Press
  92. 92.  Spielman A, Wilson ML, Levine JF, Piesman J 1985. Ecology of Ixodes dammini-borne human babesiosis and Lyme disease. Annu. Rev. Entomol. 30:439–60
    [Google Scholar]
  93. 93.  Sutherst RW 1987. The dynamics of hybrid zones between tick (Acari) species. Int. J. Parasitol. 17:921–26
    [Google Scholar]
  94. 94.  Tamzali Y 2013. Equine piroplasmosis: an updated review. Equine Vet. Educ. 25:590–98
    [Google Scholar]
  95. 95.  Taylor D 2006. Innate immunity in ticks: a review. J. Acarol. Soc. Jpn. 15:109–27
    [Google Scholar]
  96. 96.  Taylor SM, Elliott CT, Kenny J 1986. Babesia divergens: sequential exposure to heterologous tick-borne challenge of cattle immunized with a fraction of parasitized erythrocytes. J. Comp. Pathol. 96:101–7
    [Google Scholar]
  97. 97.  Tønnesen MH, Penzhorn BL, Bryson NR, Stoltsz WH, Masibigiri T 2004. Displacement of Boophilus decoloratus by Boophilus microplus in the Soutpansberg region, Limpopo province, South Africa. Exp. Appl. Acarol. 32:199–208
    [Google Scholar]
  98. 98.  Tsuji N, Battsetseg B, Boldbaatar D, Miyoshi T, Xuan X et al. 2007. Babesial vector tick defensin against Babesia sp. parasites. Infect. Immun. 75:3633–40
    [Google Scholar]
  99. 99.  Tsuji N, Miyoshi T, Battsetseg B, Matsuo T, Xuan X, Fujisaki K 2008. A cysteine protease is critical for Babesia spp. transmission in Haemaphysalis ticks. PLOS Pathog 4:e1000062
    [Google Scholar]
  100. 100.  Uilenberg G 2006. Babesia—a historical overview. Vet. Parasitol. 138:3–10
    [Google Scholar]
  101. 101.  Vannier EG, Diuk-Wasser MA, Ben Mamoun C, Krause PJ 2015. Babesiosis. Infect. Dis. Clin. North Am. 29:357–70
    [Google Scholar]
  102. 102.  Vannier EG, Gewurz BE, Krause PJ 2008. Human babesiosis. Infect. Dis. Clin. North Am. 22:469–88
    [Google Scholar]
  103. 103.  Wikel S 2013. Ticks and tick-borne pathogens at the cutaneous interface: host defenses, tick countermeasures, and a suitable environment for pathogen establishment. Front. Microbiol. 4:337
    [Google Scholar]
  104. 104.  Yeruham I, Hadani A, Galker F 2001. The effect of the ovine host parasitaemia on the development of Babesia ovis (Babes, 1892) in the tick Rhipicephalus bursa (Canestrini and Fanzago, 1877). Vet. Parasitol. 96:195–202
    [Google Scholar]
  105. 105.  Zhou J, Ueda M, Umemiya R, Battsetseg B, Boldbaatar D et al. 2006. A secreted cystatin from the tick Haemaphysalis longicornis and its distinct expression patterns in relation to innate immunity. Insect Biochem. Mol. Biol. 36:527–35
    [Google Scholar]
  106. 106.  Zintl A, McGrath G, O'Grady L, Fanning J, Downing K et al. 2014. Changing incidence of bovine babesiosis in Ireland. Irish Vet. J. 67:19
    [Google Scholar]
  107. 107.  Zintl A, Mulcahy G, Skerrett HE, Taylor SM, Gray JS 2003. Babesia divergens: a bovine blood parasite of veterinary and zoonotic importance. Clin. Microbiol. Rev. 16:622–36
    [Google Scholar]
  108. 108.  Zivkovic Z, Torina A, Mitra R, Alongi A, Scimeca S et al. 2010. Subolesin expression in response to pathogen infection in ticks. BMC Immunol 11:7
    [Google Scholar]
/content/journals/10.1146/annurev-ento-011118-111932
Loading
/content/journals/10.1146/annurev-ento-011118-111932
Loading

Data & Media loading...

Supplemental Material

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error