1932

Abstract

Rising atmospheric carbon dioxide (CO) levels, from fossil fuel combustion and deforestation, along with agriculture and land-use practices are causing wholesale increases in seawater CO and inorganic carbon levels; reductions in pH; and alterations in acid-base chemistry of estuarine, coastal, and surface open-ocean waters. On the basis of laboratory experiments and field studies of naturally elevated CO marine environments, widespread biological impacts of human-driven ocean acidification have been posited, ranging from changes in organism physiology and population dynamics to altered communities and ecosystems. Acidification, in conjunction with other climate change–related environmental stresses, particularly under future climate change and further elevated atmospheric CO levels, potentially puts at risk many of the valuable ecosystem services that the ocean provides to society, such as fisheries, aquaculture, and shoreline protection. Thisreview emphasizes both current scientific understanding and knowledge gaps, highlighting directions for future research and recognizing the information needs of policymakers and stakeholders.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-environ-012320-083019
2020-10-17
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/energy/45/1/annurev-environ-012320-083019.html?itemId=/content/journals/10.1146/annurev-environ-012320-083019&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Gingerich PD. 2019. Temporal scaling of carbon emission and accumulation rates: modern anthropogenic emissions compared to estimates of PETM onset accumulation. Paleoceanogr. Paleoclim. 34:329–35
    [Google Scholar]
  2. 2. 
    Le Quéré C, Andrew RM, Friedlingstein P, Sitch S, Hauck J et al. 2018. Global Carbon Budget 2018. Earth Syst. Sci. Data 10:2141–94
    [Google Scholar]
  3. 3. 
    Gruber N, Clement D, Carter BR, Feely RA, van Heuven S et al. 2019. The oceanic sink for anthropogenic CO2 from 1994 to 2007. Science 363:1193–99
    [Google Scholar]
  4. 4. 
    Zeebe RE, Wolf-Gladrow D. 2001. CO2 in Seawater: Equilibrium, Kinetics, Isotopes Amsterdam: Elsevier Sci.
  5. 5. 
    Tilbrook B, Jewett EB, DeGrandpre MD, Hernandez-Ayon JM, Feely RA et al. 2019. An enhanced ocean acidification observing network: from people to technology to data synthesis and information exchange. Front. Mar. Sci. 6:337
    [Google Scholar]
  6. 6. 
    Cross JN, Turner JA, Cooley SR, Newton JA, Azetsu-Scott K et al. 2019. Building the knowledge-to-action pipeline: connecting ocean acidification research and actionable decision support. Front. Mar. Sci. 6:356
    [Google Scholar]
  7. 7. 
    Royal Society 2005. Ocean acidification due to increasing atmospheric carbon dioxide Policy Doc. 12/05, R. Soc London:Seminal interdisciplinary report that raised the visibility of ocean acidification and galvanized new research.
  8. 8. 
    Gattuso J-P, Hansson L 2011. Ocean Acidification Oxford, UK: Oxford Univ. PressFirst authoritative book on the subject with comprehensive set of edited chapters.
  9. 9. 
    Doney SC, Fabry VJ, Feely RA, Kleypas JA 2009. Ocean acidification: the other CO2 problem. Annu. Rev. Mar. Sci. 1:169–92
    [Google Scholar]
  10. 10. 
    Mathis JT, Cooley SR, Yates KK, Williamson P 2015. Introduction to this special issue on ocean acidification: the pathway from science to policy. Oceanography 28:210–15
    [Google Scholar]
  11. 11. 
    Ciais P, Sabine C, Bala G, Bopp L, Brovkin V et al. 2013. Carbon and other biogeochemical cycles. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change TF Stocker, D Qin, G-K Plattner, M Tignor, SK Allen et al.465–570 Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  12. 12. 
    Hoegh-Guldberg O, Cai R, Poloczanska ES, Brewer PG, Sundby S et al. 2014. The ocean. Climate Change 2014: Impacts, Adaptation, and Vulnerability. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change VR Barros, CB Field, DJ Dokken, MD Mastrandrea, KJ Mach et al.1655–731 Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  13. 13. 
    Jewett L, Romanou A. 2017. Ocean acidification and other ocean changes. Climate Science Special Report: Fourth National Climate Assessment Volume I, ed. DJ Wuebbles, DW Fahey, KA Hibbard, DJ Dokken, BC Stewart, TK Maycock 364–92 Washington: DC: US Glob. Change Res. Progr.
    [Google Scholar]
  14. 14. 
    Bindoff NL, Cheung WWL, Kairo JG, Arístegui J, Guinder JA et al. 2019. Changing ocean, marine ecosystems, and dependent communities. Special Report on the Ocean and Cryosphere in a Changing Climate Geneva, Switz: Int. Panel Clim. Change
    [Google Scholar]
  15. 15. 
    Falkenberg LJ, Dupont S, Bellerby RGJ 2018. Approaches to reconsider literature on physiological effects of environmental change: examples from ocean acidification research. Front. Mar. Sci. 5:453
    [Google Scholar]
  16. 16. 
    Espinel-Velasco N, Linn Hoffmann L, Agüera A, Byrne M, Dupont S et al. 2018. Effects of ocean acidification on the settlement and metamorphosis of marine invertebrate and fish larvae: a review. Mar. Ecol. Prog. Ser. 606:237–57
    [Google Scholar]
  17. 17. 
    Nagelkerken I, Munday PL. 2016. Animal behaviour shapes the ecological effects of ocean acidification and warming: moving from individual to community‐level responses. Glob. Change Biol. 22:3974–89
    [Google Scholar]
  18. 18. 
    Wannicke N, Frey C, Law CS, Voss M 2018. The response of the marine nitrogen cycle to ocean acidification. Glob. Change Biol. 24:115031–43
    [Google Scholar]
  19. 19. 
    Kleypas JA. 2019. Climate change and tropical marine ecosystems: a review with an emphasis on coral reefs. UNED Res. J. 11:1S24–S35
    [Google Scholar]
  20. 20. 
    Gaylord B, Kroeker KJ, Sunday JM, Anderson KM, Barry JP et al. 2015. Ocean acidification through the lens of ecological theory. Ecology 96:13–15Connects acidification to fundamental ecological principles and conceptual models of population‐ and community‐level effects.
    [Google Scholar]
  21. 21. 
    Gattuso J-P, Magnan AK, Bopp L, Cheung WWL, Duarte CM et al. 2018. Ocean solutions to address climate change and its effects on marine ecosystems. Front. Mar. Sci. 5:337Systematic assessment of a dozen different ocean-based mitigation and adaptation solutions to climate change.
    [Google Scholar]
  22. 22. 
    Millero FJ. 2007. The marine inorganic carbon cycle. Chem. Rev. 107:308–41
    [Google Scholar]
  23. 23. 
    Hurd CL, Beardall J, Comeau S, Cornwall CE, Havenhand JN et al. 2019. Ocean acidification as a multiple driver: how interactions between changing seawater carbonate parameters affect marine life. Mar. Freshwater Res. 71:263–74
    [Google Scholar]
  24. 24. 
    Dickson AG, Sabine CL, Christian JR 2007. Guide to Best Practices for Ocean CO2 Measurements Sidney, BC, Can: PICES, Spec. Publ3
  25. 25. 
    Riebesell U, Fabry VJ, Hansson L, Gattuso J-P 2010. Guide to Best Practices for Ocean Acidification Research and Data Reporting Luxembourg: Publ. Off. Eur. UnionAuthoritative guide to improve reproducibility and consistency of ocean acidification experiments and data across communities.
  26. 26. 
    Benway HM, Lorenzoni L, White AE, Fiedler B, Levine NM et al. 2019. Ocean time series observations of changing marine ecosystems: an era of integration, synthesis, and societal applications. Front. Mar. Sci. 6:393
    [Google Scholar]
  27. 27. 
    Bakker DCE, Pfeil B, Landa CS, Metzl N, O'Brien KM et al. 2016. A multi-decade record of high-quality fCO2 data in version 3 of the Surface Ocean CO2 Atlas (SOCAT). Earth Syst. Sci. Data 8:383–413
    [Google Scholar]
  28. 28. 
    Feely RA, Sabine CL, Hernandez-Ayon JM, Ianson D, Hales B 2008. Evidence for upwelling of corrosive “acidified” water onto the continental shelf. Science 320:58821490–92
    [Google Scholar]
  29. 29. 
    Feely RA, Okazaki RR, Cai W-J, Bednaršek N, Alin SR et al. 2018. The combined effects of acidification and hypoxia on pH and aragonite saturation in the coastal waters of the California current ecosystem and the northern Gulf of Mexico. Cont. Shelf Res. 152:50–60
    [Google Scholar]
  30. 30. 
    Feely RA, Alin SR, Newton J, Sabine CL, Warner M et al. 2010. The combined effects of ocean acidification, mixing, and respiration on pH and carbonate saturation in an urbanized estuary. Estuar. Coast. Shelf Sci 88:442–49
    [Google Scholar]
  31. 31. 
    Gledhill DK, White MM, Salisbury J, Thomas H, Mlsna I et al. 2015. Ocean and coastal acidification off New England and Nova Scotia. Oceanography 8:2182–97
    [Google Scholar]
  32. 32. 
    Rheuban JE, Doney SC, McCorkle DC, Jakuba RW 2019. Quantifying the effects of nutrient enrichment and freshwater mixing on coastal ocean acidification. J. Geophys. Res. Oceans. 124:9085–9100
    [Google Scholar]
  33. 33. 
    Evans W, Mathis JT, Cross JN 2013. Calcium carbonate corrosivity in an Alaskan inland sea. Biogeosciences 11:365–79
    [Google Scholar]
  34. 34. 
    Waldbusser GG, Salisbury JE. 2014. Ocean acidification in the coastal zone from an organism's perspective: multiple system parameters, frequency domains, and habitats. Annu. Rev. Mar. Sci. 6:221–47
    [Google Scholar]
  35. 35. 
    Browman HI. 2016. Applying organized scepticism to ocean acidification research. ICES J. Mar. Sci. 73:529–36
    [Google Scholar]
  36. 36. 
    Heuer RM, Grosell M. 2014. Physiological impacts of elevated carbon dioxide and ocean acidification on fish. Am. J. Physiol.-Regul. Integr. Comp. Physiol. 307:R1061–84
    [Google Scholar]
  37. 37. 
    Tresguerres M, Hamilton TJ. 2017. Acid-base physiology, neurobiology and behaviour in relation to CO2-induced ocean acidification. J. Exp. Biol. 220:2136–48
    [Google Scholar]
  38. 38. 
    Cattano C, Claudet J, Domenici P, Milazzo M 2018. Living in a high CO2 world: a global meta-analysis shows multiple trait-mediated fish responses to ocean acidification. Ecol. Monogr. 88:320–35
    [Google Scholar]
  39. 39. 
    Esbaugh AJ. 2018. Physiological implications of ocean acidification for marine fish: emerging patterns and new insights. J. Comp. Physiol. B 188:1–13Synthesis covering marine fish respiratory acid-base, early-life, metabolic, reproductive, and neurosensory physiological impacts.
    [Google Scholar]
  40. 40. 
    Nagelkerken I, Doney SC, Munday PL 2019. Consequences of anthropogenic changes in the sensory landscape of marine animals. Oceanogr. Mar. Biol. 57:229–64
    [Google Scholar]
  41. 41. 
    Wang M, Jeong C-B, Lee YH, Lee J-S 2018. Effects of ocean acidification on copepods. Aquat. Toxicol. 196:17–24
    [Google Scholar]
  42. 42. 
    Dutkiewicz S, Morris JJ, Follows MJ, Scott J, Levitan O et al. 2015. Impact of ocean acidification on the structure of future phytoplankton communities. Nat. Clim. Chang. 5:1002–6
    [Google Scholar]
  43. 43. 
    Busch DS, McElhany P. 2017. Using mineralogy and higher-level taxonomy as indicators of species sensitivity to pH: a case-study of Puget Sound. Elementa 5:53
    [Google Scholar]
  44. 44. 
    Gobler CJ, Baumann H. 2016. Hypoxia and acidification in ocean ecosystems: coupled dynamics and effects on marine life. Biol. Lett. 12:20150976
    [Google Scholar]
  45. 45. 
    Kroeker KJ, Kordas RL, Crim R, Hendriks IE, Ramajo L et al. 2013. Impacts of ocean acidification on marine organisms: quantifying sensitivities and interaction with warming. Glob. Change Biol. 19:1884–96Comprehensive meta‐analysis synthesizing the results of 228 studies examining biological responses to ocean acidification.
    [Google Scholar]
  46. 46. 
    Sunday JM, Calosi P, Dupont S, Munday PL, Stillman JH, Reusch TBH 2013. Evolution in an acidifying ocean. Trends Ecol. Evol. 29:211725
    [Google Scholar]
  47. 47. 
    Boyd PW, Collins S, Dupont S, Fabricius K, Gattuso JP et al. 2018. Experimental strategies to assess the biological ramifications of multiple drivers of global ocean change—a review. Glob. Change Biol. 24:2239–61
    [Google Scholar]
  48. 48. 
    Kroeker KJ, Kordas RL, Crim RN, Singh GG 2010. Meta-analysis reveals negative yet variable effects of ocean acidification on marine organisms. Ecol. Lett. 13:1419–34
    [Google Scholar]
  49. 49. 
    Busch DS, McElhany P. 2016. Estimates of the direct effect of seawater pH on the survival rate of species groups in the California Current ecosystem. PLOS ONE 11:e0160669
    [Google Scholar]
  50. 50. 
    Chevin L-M, Collins S, Lefèvre F 2013. Phenotypic plasticity and evolutionary demographic responses to climate change: taking theory out to the field. Funct. Ecol. 27:967–79
    [Google Scholar]
  51. 51. 
    Murray C, Baumann H. 2018. You better repeat it: complex CO2 × temperature effects in Atlantic silverside offspring revealed by serial experimentation. Diversity 10:69
    [Google Scholar]
  52. 52. 
    Guscelli E, Spicer JI, Calosi P 2019. The importance of inter-individual variation in predicting species' responses to global change drivers. Ecol. Evol. 9:4327–39
    [Google Scholar]
  53. 53. 
    Kelly MW, Padilla-Gamiño JL, Hofmann GE 2013. Natural variation, and the capacity to adapt to ocean acidification in the keystone sea urchin Strongylocentrotus purpuratus. Glob. . Change Biol 19:2536–46
    [Google Scholar]
  54. 54. 
    Vargas CA, Lagos NA, Lardies MA, Duarte C, Manríquez PH 2017. Species-specific responses to ocean acidification should account for local adaptation and adaptive plasticity. Nat. Ecol. Evol. 1:0084
    [Google Scholar]
  55. 55. 
    Hollarsmith JA, Buschmann AH, Camus C, Grosholz ED 2020. Varying reproductive success under ocean warming and acidification across giant kelp (Macrocystis pyrifera) populations. J. Exp. Mar. Biol. Ecol. 522:151247
    [Google Scholar]
  56. 56. 
    Calosi PS, Melatunan S, Turner LM, Artioli Y, Davidson RL et al. 2017. Regional adaptation defines sensitivity to future ocean acidification. Nat. Comm. 8:13994
    [Google Scholar]
  57. 57. 
    Busch DS, Maher M, Thibodeau P, McElhany P 2014. Shell condition and survival of Puget Sound pteropods are impaired by ocean acidification conditions. PLOS ONE 9:e105884
    [Google Scholar]
  58. 58. 
    McLaskey AK, Keister JE, McElhany P, Olson MB, Busch DS et al. 2016. Development of Euphausia pacifica (krill) larvae is impaired under pCO2 levels currently observed in the Northeast Pacific. Mar. Ecol. Prog. Ser. 555:65–78
    [Google Scholar]
  59. 59. 
    Pespeni MH, Chan F, Menge BA, Palumbi SR 2013. Signs of adaptation to local pH conditions across an environmental mosaic in the California Current Ecosystem. Integr. Comp. Biol. 53:857–70
    [Google Scholar]
  60. 60. 
    Bednaršek N, Feely RA, Reum JCP, Peterson B, Menkel J et al. 2014. Limacina helicina shell dissolution as an indicator of declining habitat suitability due to ocean acidification in the California Current Ecosystem. Proc. R. Soc. B 281:20140123
    [Google Scholar]
  61. 61. 
    Bednaršek N, Feely RA, Beck MW, Glippa O, Kanerva M, Engström-Öst J 2018. El Niño-related thermal stress coupled with upwelling-related ocean acidification negatively impacts cellular to population-level responses in pteropods along the California Current System with implications for increased bioenergetic costs. Front. Mar. Sci. 5:486
    [Google Scholar]
  62. 62. 
    Engström-Öst J, Glippa O, Feely RA, Kanerva M, Keister JE et al. 2019. Eco-physiological responses of copepods and pteropods to ocean warming and acidification. Sci. Rep. 9:4748
    [Google Scholar]
  63. 63. 
    Sanford E, Kelly MW. 2011. Local adaptation in marine invertebrates. Annu. Rev. Mar. Sci. 3:509–35
    [Google Scholar]
  64. 64. 
    Moore RS, Kaletsky R, Murphy CT 2019. Piwi/PRG-1 argonaute and TGF-β mediate transgenerational learned pathogenic avoidance. Cell 177:1827–41.e1812
    [Google Scholar]
  65. 65. 
    Perez MF, Lehner B. 2019. Intergenerational and transgenerational epigenetic inheritance in animals. Nat. Cell Biol. 21:143–51
    [Google Scholar]
  66. 66. 
    Strader ME, Wong JM, Kozal LC, Leach TS, Hofmann GE 2019. Parental environments alter DNA methylation in offspring of the purple sea urchin. Strongylocentrotus purpuratus. J. Exp. Mar. Biol. Ecol. 517:54–64
    [Google Scholar]
  67. 67. 
    Wong JM, Johnson KM, Kelly MW, Hofmann GE 2018. Transcriptomics reveal transgenerational effects in purple sea urchin embryos: Adult acclimation to upwelling conditions alters the response of their progeny to differential pCO2 levels. Mol. Ecol. 27:1120–37
    [Google Scholar]
  68. 68. 
    Wong JM, Kozal LC, Leach TS, Hoshijima U, Hofmann GE 2019. Transgenerational effects in an ecological context: conditioning of adult sea urchins to upwelling conditions alters maternal provisioning and progeny phenotype. J. Exp. Mar. Bio. Ecol. 517:65–77
    [Google Scholar]
  69. 69. 
    Pespeni MH, Sanford E, Gaylord B, Hill TM, Hosfelt JD et al. 2013. Evolutionary change during experimental ocean acidification. PNAS 110:6937–43Experiments with purple sea urchins showing rapid evolution at genetic level in response to acidification.
    [Google Scholar]
  70. 70. 
    Collins S. 2011. Competition limits adaptation and productivity in a photosynthetic alga at elevated CO2. Proc. R. Soc. B 278:247–55
    [Google Scholar]
  71. 71. 
    Lohbeck KT, Riebesell U, Reusch TBH 2012. Adaptive evolution of a key phytoplankton species to ocean acidification. Nat. Geosci. 5:346–51
    [Google Scholar]
  72. 72. 
    Schaum CE, Collins S. 2014. Plasticity predicts evolution in a marine alga. Proc. R. Soc. B 281:20141486
    [Google Scholar]
  73. 73. 
    Wahl M, Saderne V, Sawall Y 2016. How good are we at assessing the impact of ocean acidification in coastal systems? Limitations, omissions and strengths of commonly used experimental approaches with special emphasis on the neglected role of fluctuations. Mar. Freshwater Res. 67:25–36
    [Google Scholar]
  74. 74. 
    Przeslawski R, Byrne M, Mellin C 2015. A review and meta-analysis of the effects of multiple abiotic stressors on marine embryos and larvae. Glob. Change Biol. 21:2122–40Meta-analysis of multi-stressor studies of temperature, salinity, and pH targeting marine embryos to larvae.
    [Google Scholar]
  75. 75. 
    Hamilton SL, Kashef NS, Stafford DM, Mattiasen EG, Kapphahn LA et al. 2019. Ocean acidification and hypoxia can have opposite effects on rockfish otolith growth. J. Exp. Mar. Biol. Ecol. 521:151245
    [Google Scholar]
  76. 76. 
    Trigg SA, McElhany P, Maher PM, Perez D, Busch DS, Nichols KM 2019. Uncovering mechanisms of global ocean change effects on the Dungeness crab (Cancer magister) through metabolomics analysis. Sci. Rep. 9:10717
    [Google Scholar]
  77. 77. 
    McElhany P. 2016. CO2 sensitivity experiments are not sufficient to show an effect of ocean acidification. ICES J. Mar. Sci. 74:926–28
    [Google Scholar]
  78. 78. 
    Rivero-Calle S, Gnanadesikan A, Del Castillo CE, Balch WM, Guikema SD 2015. Multidecadal increase in North Atlantic coccolithophores and the potential role of rising CO2. Science 350:1533–37
    [Google Scholar]
  79. 79. 
    Beare D, McQuatters-Gollop A, van der Hammen T, Machiels M, Teoh SJ, Hall-Spencer JM 2013. Long-term trends in calcifying plankton and pH in the North Sea. PLOS ONE 8:e61175
    [Google Scholar]
  80. 80. 
    Howes EL, Stemmann L, Assailly C, Irisson JO, Dima M, Bijma J, Gattuso JP 2015. Pteropod time series from the North Western Mediterranean (1967–2003): impacts of pH and climate variability. Mar. Ecol. Prog. Ser. 531:193–206
    [Google Scholar]
  81. 81. 
    Thibodeau PS, Steinberg DK, Stammerjohn SE, Hauri C 2019. Environmental controls on pteropod biogeography along the Western Antarctic Peninsula. Limnol. Oceanogr. 64:S240–56
    [Google Scholar]
  82. 82. 
    de Moel H, Ganssen GM, Peeters FJC, Jung SJA, Kroon D et al. 2009. Planktic foraminiferal shell thinning in the Arabian Sea due to anthropogenic ocean acidification. Biogeosciences 6:1917–25
    [Google Scholar]
  83. 83. 
    Wall-Palmer D, Hart MB, Smart CW, Sparks RSJ, Le Friant A et al. 2012. Pteropods from the Caribbean Sea: variations in calcification as an indicator of past ocean carbonate saturation. Biogeosciences 9:309–15
    [Google Scholar]
  84. 84. 
    Howes EL, Eagle RA, Gattuso J-P, Bijma J 2017. Comparison of Mediterranean pteropod shell biometrics and ultrastructure from historical (1910 and 1921) and present day 2012 samples provides baseline for monitoring effects of global change. PLOS ONE 12:e0167891
    [Google Scholar]
  85. 85. 
    Osborne EB, Thunell RC, Gruber N, Feely RA, Benitez-Nelson C 2020. Climatic modulation of anthropogenic ocean acidification in the California Current. Nature 13:43–49
    [Google Scholar]
  86. 86. 
    Beaufort L, Probert I, de Garidel-Thoron T, Bendif EM, Ruiz-Pino D et al. 2011. Sensitivity of coccolithophores to carbonate chemistry and ocean acidification. Nature 476:80–83
    [Google Scholar]
  87. 87. 
    Krumhardt KM, Lovenduski NS, Freeman NM, Bates NR 2016. Apparent increase in coccolithophore abundance in the subtropical North Atlantic from 1990 to 2014. Biogeosciences 13:1163–77
    [Google Scholar]
  88. 88. 
    Silbiger NJ, Donahue MJ, Brainard RE 2017. Environmental drivers of coral reef carbonate production and bioerosion: a multi-scale analysis. Ecology 98:2547–60
    [Google Scholar]
  89. 89. 
    Doo S, Kealoha A, Andersson AJ, Cohen A, Hicks TL et al. 2020. The challenges of detecting and attributing ocean acidification impacts on marine ecosystems. ICES J. Mar. Sci. 2020:fsaa094
    [Google Scholar]
  90. 90. 
    Silbiger NJ, Guadayol Ò, Thomas FIM, Donahue MJ 2014. Reefs shift from net accretion to net erosion along a natural environmental gradient. Mar. Ecol. Prog. Ser. 515:33–44
    [Google Scholar]
  91. 91. 
    Meseck SL, Alix JH, Swiney KM, Long WC, Wikfors GH, Foy RJ 2016. Ocean acidification affects hemocyte physiology in the tanner crab (Chionoecetes bairdi). PLOS ONE 11:e0148477
    [Google Scholar]
  92. 92. 
    Sutton AJ, Feely RA, Maenner-Jones S, Musielwicz S, Osborne J et al. 2019. Autonomous seawater pCO2 and pH time series from 40 surface buoys and the emergence of anthropogenic trends. Earth Syst. Sci. Data 11:421–39
    [Google Scholar]
  93. 93. 
    Hall-Spencer JM, Rodolfo-Metalpa R, Martin S, Ransome E, Fine M et al. 2008. Volcanic carbon dioxide vents show ecosystem effects of ocean acidification. Nature 454:96–99
    [Google Scholar]
  94. 94. 
    Fabricius KE, Langdon C, Uthicke S, Humphrey C, Noonan S et al. 2011. Losers and winners in coral reefs acclimatized to elevated carbon dioxide concentrations. Nat. Clim. Chang. 1:3165–69
    [Google Scholar]
  95. 95. 
    Enochs IC, Manzello DP, Donham EM, Kolodziej G, Okano R et al. 2015. Shift from coral to macroalgae dominance on a volcanically acidified reef. Nat. Clim. Chang. 5:1083–88
    [Google Scholar]
  96. 96. 
    Teixidó N, Gambi MC, Parravacini V, Kroeker K, Micheli F et al. 2018. Functional biodiversity loss along natural CO2 gradients. Nat. Commun. 9:15149
    [Google Scholar]
  97. 97. 
    Kroeker KJ, Micheli F, Gambi MC 2013. Ocean acidification causes ecosystem shifts via altered competitive interactions. Nat. Clim. Chang. 3:2156–59Experiments on acidification-driven competition for substrate between recruitment of calcareous species and fleshy seaweeds.
    [Google Scholar]
  98. 98. 
    Brustolin MC, Nagelkerken I, Moitinho Ferreira C, Urs Goldenberg S, Ullah H, Fonseca G 2019. Future ocean climate homogenizes communities across habitats through diversity loss and rise of generalist species. Glob. Chang. Biol. 25:103539–48
    [Google Scholar]
  99. 99. 
    Micheli F, Halpern BS. 2005. Low functional redundancy in coastal marine assemblages. Ecol. Lett. 8:4391–400
    [Google Scholar]
  100. 100. 
    Baggini C, Issaris Y, Salomidi M, Hall-Spencer J 2015. Herbivore diversity improves benthic community resilience to ocean acidification. J. Exp. Mar. Bio. Ecol. 469:98–104
    [Google Scholar]
  101. 101. 
    Doubleday ZA, Nagelkerken I, Coutts MD, Goldenberg SU, Connell SD 2019. A triple trophic boost: how carbon emissions indirectly change a marine food chain. Glob. Chang. Biol. 25:3978–84
    [Google Scholar]
  102. 102. 
    Alsterberg C, Eklöf JS, Gamfeldt L, Havenhand JN, Sundbäck K 2013. Consumers mediate the effects of experimental ocean acidification and warming on primary producers. PNAS 110:218603–8
    [Google Scholar]
  103. 103. 
    Ghedini G, Russell BD, Connell SD 2015. Trophic compensation reinforces resistance: herbivory absorbs the increasing effects of multiple disturbances. Ecol. Lett. 18:2182–87
    [Google Scholar]
  104. 104. 
    Harvey BP, Moore PJ. 2017. Ocean warming and acidification prevent compensatory response in a predator to reduced prey quality. Mar. Ecol. Prog. Ser. 563:111–22
    [Google Scholar]
  105. 105. 
    Jellison BM, Gaylord B. 2019. Shifts in seawater chemistry disrupt trophic links within a simple shoreline food web. Oecologia 190:4955–67
    [Google Scholar]
  106. 106. 
    Bach LT, Alvarez-Fernandez S, Hornick T, Stuhr A, Riebesell U 2017. Simulated ocean acidification reveals winners and losers in coastal phytoplankton. PLOS ONE 12:11e0188198
    [Google Scholar]
  107. 107. 
    Taucher J, Haunost M, Boxhammer T, Bach LT, Algueró-Muñiz M, Riebesell U 2017. Influence of ocean acidification on plankton community structure during a winter-to-summer succession: an imaging approach indicates that copepods can benefit from elevated CO2 via indirect food web effects. PLOS ONE 12:2e0169737
    [Google Scholar]
  108. 108. 
    Boyd PW, Lennartz ST, Glover DM, Doney SC 2015. Biological ramifications of climate-change-mediated oceanic multi-stressors. Nat. Clim. Chang. 5:171–79
    [Google Scholar]
  109. 109. 
    Boxhammer T, Taucher J, Bach LT, Achterberg EP, Algueró-Muñiz M et al. 2018. Enhanced transfer of organic matter to higher trophic levels caused by ocean acidification and its implications for export production: a mass balance approach. PLOS ONE 13:5e0197502
    [Google Scholar]
  110. 110. 
    Sswat M, Stiasny MH, Taucher J, Algueró-Muñiz M, Bach LT et al. 2018. Food web changes under ocean acidification promote herring larvae survival. Nat. Ecol. Evol. 2:5836–40
    [Google Scholar]
  111. 111. 
    Rossoll D, Bermúdez R, Hauss H, Schulz KG, Riebesell U et al. 2012. Ocean acidification-induced food quality deterioration constrains trophic transfer. PLOS ONE 7:4e34737
    [Google Scholar]
  112. 112. 
    Riebesell U, Aberle-Malzahn N, Achterberg EP, Algueró-Muñiz M, Alvarez-Fernandez S et al. 2018. Toxic algal bloom induced by ocean acidification disrupts the pelagic food web. Nat. Clim. Chang. 8:121082–86
    [Google Scholar]
  113. 113. 
    Fu FX, Tatters AO, Hutchins DA 2012. Global change and the future of harmful algal blooms in the ocean. Mar. Ecol. Prog. Ser. 470:207–33
    [Google Scholar]
  114. 114. 
    De'ath G, Lough JM, Fabricius KE 2009. Declining coral calcification on the Great Barrier Reef. Science 323:5910116–19
    [Google Scholar]
  115. 115. 
    Albright R, Caldeira L, Hosfelt J, Kwiatkowski L, Maclaren JK et al. 2016. Reversal of ocean acidification enhances net coral reef calcification. Nature 531:7594362–65
    [Google Scholar]
  116. 116. 
    Silbiger NJ, Guadayol Ò, Thomas FIM, Donahue MJ 2016. A novel μCT analysis reveals different responses of bioerosion and secondary accretion to environmental variability. PLOS ONE 11:e0153058
    [Google Scholar]
  117. 117. 
    Mollica NR, Guo W, Cohen AL, Huang K-F, Foster GL et al. 2018. Ocean acidification affects coral growth by reducing skeletal density. PNAS 115:81754–59
    [Google Scholar]
  118. 118. 
    Enochs IC, Manzello DP, Kolodziej G, Noonan SHC, Valentino L, Fabricius KE 2016. Enhanced macroboring and depressed calcification drive net dissolution at high-CO2 coral reefs. Proc. R. Soc. B 283:184220161742
    [Google Scholar]
  119. 119. 
    Shamberger KEF, Cohen AL, Golbuu Y, McCorkle DC, Lentz SJ, Barkley HC 2014. Diverse coral communities in naturally acidified waters of a Western Pacific reef. Geophys. Res. Lett. 41:499–504
    [Google Scholar]
  120. 120. 
    Connell SD, Kroeker KJ, Fabricius KE, Kline DI, Russell BD 2013. The other ocean acidification problem: CO2 as a resource among competitors for ecosystem dominance. Philos. Trans. R. Soc. Lond. B 368:162720120442
    [Google Scholar]
  121. 121. 
    Ober GT, Diaz-Pulido G, Thornber C 2016. Ocean acidification influences the biomass and diversity of reef-associated turf algal communities. Mar. Biol. 163:10204
    [Google Scholar]
  122. 122. 
    Doropoulos C, Ward S, Diaz-Pulido G, Hoegh-Guldberg O, Mumby PJ 2012. Ocean acidification reduces coral recruitment by disrupting intimate larval-algal settlement interactions. Ecol. Lett. 15:4338–46
    [Google Scholar]
  123. 123. 
    Crook ED, Kroeker KJ, Potts DC, Rebolledo-Vieyra M, Hernandez-Terrones LM, Paytan A 2016. Recruitment and succession in a tropical benthic community in response to in-situ ocean acidification. PLOS ONE 11:1e0146707
    [Google Scholar]
  124. 124. 
    Noonan SHC, Kluibenschedl A, Fabricius KE 2018. Ocean acidification alters early successional coral reef communities and their rates of community metabolism. PLOS ONE 13:5e0197130
    [Google Scholar]
  125. 125. 
    Inoue S, Kayanne H, Yamamoto S, Kurihara H 2013. Spatial community shift from hard to soft corals in acidified water. Nat. Clim. Chang. 3:7683–87
    [Google Scholar]
  126. 126. 
    Barkley HC, Cohen AL, Golbuu Y, Starczak VR, DeCarlo TM, Shamberger KEF 2015. Changes in coral reef communities across a natural gradient in seawater pH. Sci. Adv 1:5e1500328
    [Google Scholar]
  127. 127. 
    Sunday JM, Fabricius KE, Kroeker KJ, Anderson KM, Brown NE et al. 2016. Ocean acidification can mediate biodiversity shifts by changing biogenic habitat. Nat. Clim. Chang. 7:81–85
    [Google Scholar]
  128. 128. 
    Fabricius KE, De'ath G, Noonan S, Uthicke S 2014. Ecological effects of ocean acidification and habitat complexity on reef-associated macroinvertebrate communities. Proc. Biol. Sci. 281:177520132479
    [Google Scholar]
  129. 129. 
    Nagelkerken I, Russell BD, Gillanders BM, Connell SD 2015. Ocean acidification alters fish populations indirectly through habitat modification. Nat. Clim. Chang. 6:89–93
    [Google Scholar]
  130. 130. 
    Munday PL, Cheal AJ, Dixson DL, Rummer JL, Fabricius KE 2014. Behavioural impairment in reef fishes caused by ocean acidification at CO2 seeps. Nat. Clim. Chang. 4:6487–92
    [Google Scholar]
  131. 131. 
    Waldbusser GG, Steenson RA, Green MA 2011. Oyster shell dissolution rates in estuarine waters: effects of pH and shell legacy. J. Shellfish Res. 30:3659–69
    [Google Scholar]
  132. 132. 
    Waldbusser GG, Hales B, Langdon CJ, Haley BA, Schrader P et al. 2015. Ocean acidification has multiple modes of action on bivalve larvae. PLOS ONE 10:6e0128376
    [Google Scholar]
  133. 133. 
    Milazzo M, Rodolfo-Metalpa R, Chan VBS, Fine M, Alessi C et al. 2014. Ocean acidification impairs vermetid reef recruitment. Sci. Rep. 4:4189
    [Google Scholar]
  134. 134. 
    Legrand E, Riera P, Lutier M, Coudret J, Grall J, Martin S 2017. Species interactions can shift the response of a maerl bed community to ocean acidification and warming. Biogeosciences 14:235359–76
    [Google Scholar]
  135. 135. 
    Koch M, Bowes G, Ross C, Zhang X-H 2013. Climate change and ocean acidification effects on seagrasses and marine macroalgae. Glob. Change Biol. 19:1103–32
    [Google Scholar]
  136. 136. 
    Berg P, Delgard ML, Polsenaere P, McGlathery KJ, Doney SC, Berger AC 2019. Dynamics of benthic metabolism, O2, and pCO2 in a temperate seagrass meadow. Limnol. Oceanogr. 64:2586–604
    [Google Scholar]
  137. 137. 
    Campbell JE, Fourqurean JW. 2014. Ocean acidification outweighs nutrient effects in structuring seagrass epiphyte communities. J. Ecol. 102:3730–37
    [Google Scholar]
  138. 138. 
    Zimmerman RC, Hill VJ, Gallegos CL 2015. Predicting effects of ocean warming, acidification, and water quality on Chesapeake region eelgrass. Limnol. Oceanogr. 60:1781–804
    [Google Scholar]
  139. 139. 
    Cox TE, Díaz-Castañeda V, Martin S, Alliouane S, Mahacek P et al. 2017. Effects of in situ CO2 enrichment on epibiont settlement on artificial substrata within a Posidonia oceanica meadow. J. Exp. Mar. Bio. Ecol. 497:197–211
    [Google Scholar]
  140. 140. 
    Martínez-Crego B, Olivé I, Santos R 2014. CO2 and nutrient-driven changes across multiple levels of organization in Zostera noltii ecosystems. Biogeosciences 11:247237–49
    [Google Scholar]
  141. 141. 
    Burnell OW, Russell BD, Irving AD, Connell SD 2013. Eutrophication offsets increased sea urchin grazing on seagrass caused by ocean warming and acidification. Mar. Ecol. Prog. Ser. 485:37–46
    [Google Scholar]
  142. 142. 
    Eklöf JS, Havenhand JN, Alsterberg C, Gamfeldt L 2015. Community-level effects of rapid experimental warming and consumer loss outweigh effects of rapid ocean acidification. Oikos 124:81040–49
    [Google Scholar]
  143. 143. 
    Hughes BB, Lummis SC, Anderson SC, Kroeker KJ 2018. Unexpected resilience of a seagrass system exposed to global stressors. Glob. Chang. Biol. 24:1224–34
    [Google Scholar]
  144. 144. 
    Barton A, Waldbusser G, Feely R, Weisberg S, Newton J et al. 2015. Impacts of coastal acidification on the Pacific Northwest shellfish industry and adaptation strategies implemented in response. Oceanography 25:2146–59
    [Google Scholar]
  145. 145. 
    Gosling SN. 2013. The likelihood and potential impact of future change in the large-scale climate-earth system on ecosystem services. Environ. Sci. Policy 27:Suppl. 1S15–S31
    [Google Scholar]
  146. 146. 
    Scholes RJ. 2016. Climate change and ecosystem services. WIREs Clim. Change 7:4537–50
    [Google Scholar]
  147. 147. 
    Narita D, Rehdanz K, Tol RSJ 2012. Economic costs of ocean acidification: a look into the impacts on global shellfish production. Clim. Change 113:31049–63
    [Google Scholar]
  148. 148. 
    Cooley SR, Doney SC. 2009. Anticipating ocean acidification's economic consequences for commercial fisheries. Environ. Res. Lett. 4:2024007
    [Google Scholar]
  149. 149. 
    Cooley SR, Rheuban JE, Hart DR, Luu V, Glover DM et al. 2015. An integrated assessment model for helping the United States sea scallop (Placopecten magellanicus) fishery plan ahead for ocean acidification and warming. PLOS ONE 10:5e0124145
    [Google Scholar]
  150. 150. 
    Dupont S, Hall E, Calosi P, Lundve B 2014. First evidence of altered sensory quality in a shellfish exposed to decreased pH relevant to ocean acidification. J. Shellfish Res. 33:3857–61
    [Google Scholar]
  151. 151. 
    Lemasson AJ, Hall-Spencer JM, Kuri V, Knights AM 2019. Changes in the biochemical and nutrient composition of seafood due to ocean acidification and warming. Mar. Environ. Res. 143:82–92
    [Google Scholar]
  152. 152. 
    Ashur MM, Johnston NK, Dixson DL 2017. Impacts of ocean acidification on sensory function in marine organisms. Integr. Comp. Biol. 57:163–80
    [Google Scholar]
  153. 153. 
    Mangi SC, Lee J, Pinnegar JK, Law RJ, Tyllianakis E, Birchenough SNR 2018. The economic impacts of ocean acidification on shellfish fisheries and aquaculture in the United Kingdom. Environ. Sci. Policy 86:95–105
    [Google Scholar]
  154. 154. 
    Narita D, Rehdanz K. 2017. Economic impact of ocean acidification on shellfish production in Europe. J. Environ. Plan. Manag. 60:3500–18
    [Google Scholar]
  155. 155. 
    Fernandes JA, Papathanasopoulou E, Hattam C, Queirós AM, Cheung WWWL et al. 2017. Estimating the ecological, economic and social impacts of ocean acidification and warming on UK fisheries. Fish Fisheries 18:3389–411
    [Google Scholar]
  156. 156. 
    Moore C. 2015. Welfare estimates of avoided ocean acidification in the U.S. mollusk market. J. Agric. Resour. Econ. 40:150–62
    [Google Scholar]
  157. 157. 
    Rheuban JE, Doney SC, Cooley SR, Hart DR 2018. Projected impacts of future climate change, ocean acidification, and management on the US Atlantic sea scallop (Placopecten magellanicus) fishery. PLOS ONE 13:9e0203536
    [Google Scholar]
  158. 158. 
    Punt AE, Foy RJ, Dalton MG, Long WC, Swiney KM 2016. Effects of long-term exposure to ocean acidification conditions on future southern Tanner crab (Chionoecetes bairdi) fisheries management. ICES J. Mar. Sci. 73:3849–64
    [Google Scholar]
  159. 159. 
    Lam VWY, Cheung WWL, Sumaila UR 2016. Marine capture fisheries in the Arctic: winners or losers under climate change and ocean acidification. Fish Fisheries 17:2335–57
    [Google Scholar]
  160. 160. 
    Marshall KN, Kaplan IC, Hodgson EE, Hermann A, Busch DS et al. 2017. Risks of ocean acidification in the California Current food web and fisheries: ecosystem model projections. Glob. Chang. Biol. 23:41525–39
    [Google Scholar]
  161. 161. 
    Hodgson EE, Kaplan IC, Marshall KN, Leonard J, Essington TE et al. 2018. Consequences of spatially variable ocean acidification in the California Current: Lower pH drives strongest declines in benthic species in southern regions while greatest economic impacts occur in northern regions. Ecol. Model. 383:10106–17
    [Google Scholar]
  162. 162. 
    Olsen E, Kaplan IC, Ainsworth C, Fay G, Gaichas S et al. 2018. Ocean futures under ocean acidification, marine protection, and changing fishing pressures explored using a worldwide suite of ecosystem models. Front. Mar. Sci. 5:64End-to-end ecosystem modeling examining ocean acidification in context of marine ecosystem-based management.
    [Google Scholar]
  163. 163. 
    Seijo JC, Villanueva-Poot R, Charles A 2016. Bioeconomics of ocean acidification effects on fisheries targeting calcifier species: a decision theory approach. Fish. Res. 176:1–14
    [Google Scholar]
  164. 164. 
    Talloni-Álvarez NE, Sumaila UR, Le Billon P, Cheung WWL 2019. Climate change impact on Canada's Pacific marine ecosystem: the current state of knowledge. Mar. Policy 104:163–76
    [Google Scholar]
  165. 165. 
    Mathis JT, Cooley SR, Lucey N, Colt S, Ekstrom J et al. 2015. Ocean acidification risk assessment for Alaska's fishery sector. Prog. Oceanogr. 136:71–91
    [Google Scholar]
  166. 166. 
    Ekstrom JA, Suatoni L, Cooley SR, Pendleton LH, Waldbusser GG et al. 2015. Vulnerability and adaptation of US shellfisheries to ocean acidification. Nat. Clim. Chang. 5:207–14
    [Google Scholar]
  167. 167. 
    Hilmi N, Allemand D, Cinar M, Cooley S, Hall-Spencer JM et al. 2014. Exposure of Mediterranean countries to ocean acidification. Water 6:61719–44
    [Google Scholar]
  168. 168. 
    Hoegh-Guldberg O, Poloczanska ES, Skirving W, Dove S 2017. Coral reef ecosystems under climate change and ocean acidification. Front. Mar. Sci. 4:158
    [Google Scholar]
  169. 169. 
    Cesar H, Burke L, Pet-Soede L 2003. The economics of worldwide coral reef degradation Tech. Rep., Cesar Environ. Econ. Consult Arnhem, Neth.:
  170. 170. 
    Costanza R, d'Arge R, de Groot R, Farber S, Grasso M et al. 1997. The value of the world's ecosystem services and natural capital. Nature 387:6630253–60
    [Google Scholar]
  171. 171. 
    Pendleton LH, Thébaud O, Mongruel RC, Levrel H 2016. Has the value of global marine and coastal ecosystem services changed. Mar. Policy 64:156–58
    [Google Scholar]
  172. 172. 
    Yates KK, Zawada DG, Smiley NA, Tiling-Range G 2017. Divergence of seafloor elevation and sea level rise in coral reef ecosystems. Biogeosciences 14:61739–72
    [Google Scholar]
  173. 173. 
    Beck MW, Losada IJ, Menéndez P, Reguero BG, Díaz-Simal P, Fernández F 2018. The global flood protection savings provided by coral reefs. Nat. Commun. 9:12186
    [Google Scholar]
  174. 174. 
    Brander LM, Rehdanz K, Tol RSJ, Van Beukering PJH 2012. The economic impact of ocean acidification on coral reefs. Clim. Change Econ. 3:1–29
    [Google Scholar]
  175. 175. 
    Pendleton L, Hoegh-Guldberg O, Albright R, Kaup A, Marshall P et al. 2019. The Great Barrier Reef: vulnerabilities and solutions in the face of ocean acidification. Reg. Stud. Mar. Sci. 31:100729
    [Google Scholar]
  176. 176. 
    Lemasson AJ, Fletcher S, Hall-Spencer JM, Knights AM 2017. Linking the biological impacts of ocean acidification on oysters to changes in ecosystem services: a review. J. Exp. Mar. Bio. Ecol. 492:49–62
    [Google Scholar]
  177. 177. 
    Milazzo M, Fine M, La Marca EC, Alessi C, Chemello R 2017. Drawing the line at neglected marine ecosystems: ecology of vermetid reefs in a changing ocean. Marine Animal Forests 8 S Rossi, L Bramanti, A Gori, C Orejas 345–67 Cham, Switz: Springer Int. Publ.
    [Google Scholar]
  178. 178. 
    Grabowski JH, Brumbaugh RD, Conrad RF, Keeler AG, Opaluch JJ et al. 2012. Economic valuation of ecosystem services provided by oyster reefs. Bioscience 62:10900–9
    [Google Scholar]
  179. 179. 
    California Ocean Protection Council 2018. State of California Ocean Acidification Action Plan California Ocean Protection Council Sacramento, CA:
  180. 180. 
    Hurd CL. 2015. Slow-flow habitats as refugia for coastal calcifiers from ocean acidification. J. Phycol. 51:4599–605
    [Google Scholar]
  181. 181. 
    Macreadie PI, Jarvis J, Trevathan-Tackett SM, Bellgrove A 2017. Seagrasses and macroalgae: importance, vulnerability and impacts. Climate Change Impacts on Fisheries and Aquaculture 52 BF Phillips, M Pérez-Ramírez 729–70 Chichester, UK: Wiley
    [Google Scholar]
  182. 182. 
    Morris RL, Graham TDJ, Kelvin J, Ghisalberti M, Swearer SE 2020. Kelp beds as coastal protection: wave attenuation of Ecklonia radiata in a shallow coastal bay. Ann. Bot. 125:2235–46
    [Google Scholar]
  183. 183. 
    Gao K, Beardall J, Häder D-P, Hall-Spencer JM, Gao G, Hutchins DA 2019. Effects of ocean acidification on marine photosynthetic organisms under the concurrent influences of warming, UV radiation, and deoxygenation. Front. Mar. Sci. 6:322
    [Google Scholar]
  184. 184. 
    Garrard SL, Beaumont NJ. 2014. The effect of ocean acidification on carbon storage and sequestration in seagrass beds; a global and UK context. Mar. Pollut. Bull. 86:1–2138–46
    [Google Scholar]
  185. 185. 
    Kapsenberg L, Cyronak T. 2019. Ocean acidification refugia in variable environments. Glob. Chang. Biol. 25:103201–14
    [Google Scholar]
  186. 186. 
    Herr D, Galland GR. 2009. The Ocean and Climate Change: Tools and Guidelines for Action Gland, Switz: Int. Union Conserv. Nature
  187. 187. 
    Howard J, McLeod E, Thomas S, Eastwood E, Fox M et al. 2017. The potential to integrate blue carbon into MPA design and management. Aquat. Conserv. 27:100–15
    [Google Scholar]
  188. 188. 
    Pacella SR, Brown CA, Waldbusser GG, Labiosa RG, Hales B 2018. Seagrass habitat metabolism increases short-term extremes and long-term offset of CO2 under future ocean acidification. PNAS 115:153870–75
    [Google Scholar]
  189. 189. 
    Sippo JZ, Maher DT, Tait DR, Holloway C, Santos IR 2016. Are mangroves drivers or buffers of coastal acidification? Insights from alkalinity and dissolved inorganic carbon export estimates across a latitudinal transect: mangroves buffer coastal acidification. Glob. Biogeochem. Cycles 30:5753–66
    [Google Scholar]
  190. 190. 
    Sabine CL. 2018. Good news and bad news of blue carbon. PNAS 115:153745–46
    [Google Scholar]
  191. 191. 
    Luisetti T, Turner RK, Andrews JE, Jickells TD, Kröger S et al. 2019. Quantifying and valuing carbon flows and stores in coastal and shelf ecosystems in the UK. Ecosyst. Serv. 35:67–76
    [Google Scholar]
  192. 192. 
    Beaumont NJ, Jones L, Garbutt A, Hansom JD, Toberman M 2014. The value of carbon sequestration and storage in coastal habitats. Estuar. Coast. Shelf Sci. 137:32–40
    [Google Scholar]
  193. 193. 
    Lavery PS, Mateo M-Á, Serrano O, Rozaimi M 2013. Variability in the carbon storage of seagrass habitats and its implications for global estimates of blue carbon ecosystem service. PLOS ONE 8:9e73748
    [Google Scholar]
  194. 194. 
    Pendleton L, Donato DC, Murray BC, Crooks S, Jenkins WA et al. 2012. Estimating global “blue carbon” emissions from conversion and degradation of vegetated coastal ecosystems. PLOS ONE 7:9e43542
    [Google Scholar]
  195. 195. 
    Hall-Spencer JM, Harvey BP. 2019. Ocean acidification impacts on coastal ecosystem services due to habitat degradation. Emerging Top. Life Sci. 3:2197–206
    [Google Scholar]
  196. 196. 
    Barry JP, Widdicombe S, Hall-Spencer JM 2011. Effects of ocean acidification on marine biodiversity and ecosystem function. Ocean Acidification J-P Gattuso, L Hansson 192–209 Oxford, UK: Oxford Univ. Press
    [Google Scholar]
  197. 197. 
    Broszeit S, Hattam C, Beaumont N 2016. Bioremediation of waste under ocean acidification: reviewing the role of Mytilus edulis. Mar. Pollut. Bull 103:1–25–14
    [Google Scholar]
  198. 198. 
    Gascuel D, Cheung WWL. 2019. Marine biodiversity and ecosystem services: the large gloomy shadow of climate change. Predicting Future Oceans AM Cisneros-Montemayor, WWL Cheung, Y Ota 79–85 Amsterdam: Elsevier
    [Google Scholar]
  199. 199. 
    Koenigstein S, Ruth M, Gößling-Reisemann S 2016. Stakeholder-informed ecosystem modeling of ocean warming and acidification impacts in the Barents Sea region. Front. Mar. Sci. 3:93
    [Google Scholar]
  200. 200. 
    Rodrigues LC, van den Bergh JCJM, Ghermandi A 2013. Socio-economic impacts of ocean acidification in the Mediterranean Sea. Mar. Policy 38:447–56
    [Google Scholar]
  201. 201. 
    Ruckelshaus M, Doney SC, Galindo HM, Barry JP, Chan F et al. 2013. Securing ocean benefits for society in the face of climate change. Mar. Policy 40:154–59
    [Google Scholar]
  202. 202. 
    Urquhart J, Acott T. 2014. A sense of place in cultural ecosystem services: the case of Cornish fishing communities. Soc. Nat. Resour. 27:13–19
    [Google Scholar]
  203. 203. 
    Pörtner H-O, Karl DM, Boyd PW, Cheung W, Lluch-Cota SE et al. 2014. Ocean systems. Climate Change 2014: Impacts, Adaptation, and Vulnerability. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change VR Barros, CB Field, DJ Dokken, MD Mastrandrea, KJ Mach et al.411–84 Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  204. 204. 
    Arctic Monitoring, Assessment Programme (AMAP) 2018. AMAP Assessment 2018: Arctic Ocean Acidification Tromsø, Norway: AMAP
  205. 205. 
    Garcia Rodrigues J, Conides AJ, Rivero Rodriguez S, Raicevich S, Pita P et al. 2017. Marine and coastal cultural ecosystem services: knowledge gaps and research priorities. One Ecosyst. 2:e12290
    [Google Scholar]
  206. 206. 
    Klain SC, Chan KMA. 2012. Navigating coastal values: participatory mapping of ecosystem services for spatial planning. Ecol. Econ. 82:104–13
    [Google Scholar]
  207. 207. 
    Billé R, Kelly R, Biastoch A, Harrould-Kolieb E, Herr D et al. 2013. Taking action against ocean acidification: a review of management and policy options. Environ. Manag. 52:4761–79
    [Google Scholar]
  208. 208. 
    Cooley SR, Ono CR, Melcer S, Roberson J 2016. Community-level actions that can address ocean acidification. Front. Mar. Sci. 2:128
    [Google Scholar]
  209. 209. 
    Gattuso J-P, Magnan A, Billé R, Cheung WWL, Howes EL et al. 2015. Contrasting futures for ocean and society from different anthropogenic CO2 emissions scenarios. Science 349:6243aac4722
    [Google Scholar]
  210. 210. 
    Magnan AK, Billé R, Cooley SR, Kelly R, Pörtner HO et al. 2015. Intertwined ocean and climate: implications for international climate negotiations. Policy Brief 04/15, Inst. Sustain. Dev. Int. Relat Paris:
  211. 211. 
    Strong AL, Kroeker KJ, Teneva LT, Mease LA, Kelly RP 2014. Ocean acidification 2.0: managing our changing coastal ocean chemistry. Bioscience 64:7581–92
    [Google Scholar]
  212. 212. 
    Harrould-Kolieb ER, Herr D. 2012. Ocean acidification and climate change: synergies and challenges of addressing both under the UNFCCC. Clim. Policy 12:3378–89
    [Google Scholar]
  213. 213. 
    Potts T. 2018. Climate change, ocean acidification and the marine environment. International Marine Environmental Law and Policy D Hassan, S Karim 87–100 London: Taylor & Francis
    [Google Scholar]
  214. 214. 
    Pratchett MS, Hoey AS, Wilson SK 2014. Reef degradation and the loss of critical ecosystem goods and services provided by coral reef fishes. Curr. Opin. Environ. Sustain. 7:37–43
    [Google Scholar]
  215. 215. 
    Kelly RP, Foley MM, Fisher WS, Feely RA, Halpern BS et al. 2011. Mitigating local causes of ocean acidification with existing laws. Science 332:1036–37
    [Google Scholar]
  216. 216. 
    Kelly RP, Caldwell MR. 2013. Ten ways states can combat ocean acidification (and why they should). Harvard Environ. Law Rev. 37:57–103
    [Google Scholar]
  217. 217. 
    Alleway HK, Gillies CL, Bishop MJ, Gentry RR, Theuerkauf SJ, Jones R 2019. The ecosystem services of marine aquaculture: valuing benefits to people and nature. Bioscience 69:159–68
    [Google Scholar]
  218. 218. 
    Doyle B. 2018. Tsleil-Waututh Nation: restoring shellfish harvest opportunities in Burrard Inlet, Canada Paper presented at the 2018 Salish Sea Ecosystem Conference Seattle, WA:April 4–6
  219. 219. 
    Green MA, Waldbusser GG, Reilly SL, Emerson K, O'Donnell S 2009. Death by dissolution: sediment saturation state as a mortality factor for juvenile bivalves. Limnol. Oceanogr. 54:41037–47
    [Google Scholar]
  220. 220. 
    Waldbusser GG, Powell EN, Mann R 2013. Ecosystem effects of shell aggregations and cycling in coastal waters: an example of Chesapeake Bay oyster reefs. Ecology 94:4895–903
    [Google Scholar]
  221. 221. 
    Nat. Acad. Sci. Eng. Med 2019. A Research Review of Interventions to Increase the Persistence and Resilience of Coral Reefs Washington, DC: Nat. Acad. Press
  222. 222. 
    Kroeker KJ, Carr MH, Raimondi PT, Caselle JE, Washburn L et al. 2019. Planning for change: assessing the potential role of marine protected areas and fisheries management approaches for resilience management in a changing ocean. Oceanography 32:3116–125
    [Google Scholar]
  223. 223. 
    Ritzman J, Brodbeck A, Brostrom S, McGrew S, Dreyer S et al. 2018. Economic and sociocultural impacts of fisheries closures in two fishing-dependent communities following the massive 2015 U.S. West Coast harmful algal bloom. Harmful Algae 80:35–45
    [Google Scholar]
  224. 224. 
    Munang R, Thiaw I, Alverson K, Liu J, Han Z 2013. The role of ecosystem services in climate change adaptation and disaster risk reduction. Curr. Opin. Environ. Sustain. 5:147–52
    [Google Scholar]
  225. 225. 
    Carriger JF, Yee SH, Fisher WS 2019. An introduction to Bayesian networks as assessment and decision support tools for managing coral reef ecosystem services. Ocean Coast. Manag. 177:188–99
    [Google Scholar]
  226. 226. 
    Silver JM, Arkema KK, Griffin RM, Lashley B, Lemay M et al. 2019. Advancing coastal risk reduction science and implementation by accounting for climate, ecosystems, and people. Front. Mar. Sci. 6:556
    [Google Scholar]
  227. 227. 
    Riebesell U, Gattuso J-P. 2015. Lessons learned from ocean acidification research. Nat. Clim. Chang. 5:12–14
    [Google Scholar]
  228. 228. 
    Gattuso J-P, Brewer PG, Hoegh-Guldberg O, Kleypas JA, Pörtner H-O, Schmidt DN 2014. Cross-chapter box on ocean acidification. Climate Change 2014: Impacts, Adaptation, and Vulnerability. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change VR Barros, CB Field, DJ Dokken, MD Mastrandrea, KJ Mach et al.129–31 Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  229. 229. 
    Bednaršek N, Feely RA, Tolimieri N, Hermann AJ, Siedlecki SA 2017. Exposure history determines pteropod vulnerability to ocean acidification along the US West Coast. Sci. Rep 7:4526
    [Google Scholar]
  230. 230. 
    Bednaršek N, Ohman MD 2015. Changes in pteropod distributions and shell dissolution across a frontal system in the California Current System. Mar. Ecol. Prog. Ser 523:93103
    [Google Scholar]
  231. 231. 
    Feely RA, Alin SR, Carter B, Bednaršek N, Hales B 2016. Chemical and biological impacts of ocean acidification along the west coast of North America. Estuar. Coast. Shelf Sci 183A:26070
    [Google Scholar]
/content/journals/10.1146/annurev-environ-012320-083019
Loading
/content/journals/10.1146/annurev-environ-012320-083019
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error