1932

Abstract

More food and energy allow for more people who then require more food and energy, and so it has gone for centuries. At the same time, economic progress leads to a different lifestyle with an increasing demand for energy and food, also accelerating food waste. Fueling this food-energy-population dynamic is an ever-increasing conversion of unreactive dinitrogen (N) to reactive N (Nr), which then results in a cascade of positive (food and energy for people) and negative (damage to people, climate, biodiversity, and environment) impacts as Nr is distributed throughout Earth systems. The most important step in reducing the environmental impacts of Nr is limiting its human-based creation. In this article, therefore, we focus on this most important first step: the conversion of N to Nr by human activities. Specifically, we examine Nr creation and use (they are different!) on a global and regional basis and Nr use on a global and regional per capita basis. In addition, we introduce the metric Nr Use Index (NUI), which can be used to track and project Nr use relative to a fixed point in time. We then assess the progress in Nr management over the past 20 years. Our article presents a case study of the Netherlands to show what one country, beset by Nr-relatedproblems that have led to an N crisis, did to address those problems and what worked and what didn't work. The article concludes with an assessment of what the future might hold with respect to Nr creation and use, including a review of other projections. We expect that NUI will increase especially in Asia, Latin America, and Africa. The other parts of the world are consolidating or even decreasing NUI. In Latin America and Asia, there is limited agricultural land, and by increasing NUI for food the risk of Nr pollution is very high. The Netherlands has shown not only what effects can be expected with increasing NUI but also what successful policies can be introduced to limit environmental losses. Our assessment shows that Nr creation needs to be limited to prevent local to global environmental impacts.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-environ-012420-045120
2021-10-18
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/energy/46/1/annurev-environ-012420-045120.html?itemId=/content/journals/10.1146/annurev-environ-012420-045120&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Galloway JN, Dentener FJ, Capone DG, Boyer EW, Howarth RW et al. 2004. Nitrogen cycles: past, present, and future. Biogeochemistry 70:153–226
    [Google Scholar]
  2. 2. 
    Erisman JW, Sutton MA, Galloway J, Klimont Z, Winiwarter W. 2008. How a century of ammonia synthesis changed the world. Nat. Geosci. 110:636–39
    [Google Scholar]
  3. 3. 
    Galloway JN, Cowling EB. 2021. Reflections on 200 years of nitrogen, 20 years later. Ambio 31:64–71
    [Google Scholar]
  4. 4. 
    Delwiche CC. 1970. The nitrogen cycle. Sci. Am. 2232:137–46
    [Google Scholar]
  5. 5. 
    Galloway JN, Winiwarter W, Leip A, Leach AM, Bleeker A et al. 2008. Global inputs of biological nitrogen fixation in agricultural systems. Plant Soil 311:1–18
    [Google Scholar]
  6. 6. 
    FAO (UN Food Agric. Organ.) 2020. FAOSTAT database. http://www.fao.org/faostat/en/#data/RFN
  7. 7. 
    Lassaletta L, Billen G, Grizzetti B, Anglade J, Garnier J. 2014. 50 year trends in nitrogen use efficiency of world cropping systems: the relationship between yield and nitrogen input to cropland. Environ. Res. Lett. 9:10105011
    [Google Scholar]
  8. 9. 
    Hoesly RM, Smith SJ. 2018. Informing energy consumption uncertainty: an analysis of energy data revisions. Environ. Res. Lett. 13:12124023
    [Google Scholar]
  9. 10. 
    Fowler D, Coyle M, Skiba U, Sutton M, Cape JN et al. 2013. The global nitrogen cycle in the 21st century. Phil. Trans. B 368: 1621.20130164
    [Google Scholar]
  10. 11. 
    Vitousek PM, Menge DNL, Reed SC, Cleveland CC. 2013. Biological nitrogen fixation: rates, patterns and ecological controls in terrestrial ecosystems. Phil. Trans. Roy. Soc. B 368: 1621.20130119
    [Google Scholar]
  11. 12. 
    Battye W, Aneja VP, Schlesinger WH. 2017. Is nitrogen the next carbon?. Earth's Future 5:894–904
    [Google Scholar]
  12. 13. 
    Scheer C, Fuchs K, Pelster DE, Butterbach-Bahl K. 2020. Estimating global terrestrial denitrification from measured N2O:(N2O+N2) product ratios. Curr. Opin. Environ. Sustain. 47:72–80
    [Google Scholar]
  13. 14. 
    Herridge D, Peoples M, Boddey R. 2008. Global inputs of biological nitrogen fixation in agricultural systems. Plant Soil 311:1–18
    [Google Scholar]
  14. 15. 
    Galloway JN, Levy H II, Kasibhatla PS. 1994. Year 2020: consequences of population growth and development on deposition of oxidized nitrogen. Ambio 23:120–23
    [Google Scholar]
  15. 16. 
    Vitousek PM, Howarth RW, Likens GE, Matson PA, Schindler D et al. 1997. Human alteration of the global nitrogen cycle: causes and consequences. Issue Ecol 1:1–17
    [Google Scholar]
  16. 17. 
    de Vries W, Kros J, Kroeze C, Seitzinger SP. 2013. Assessing planetary and regional nitrogen boundaries related to food security and adverse environmental impacts. Curr. Opin. Environ. Sust. 5:3–4392–402
    [Google Scholar]
  17. 18. 
    Steffen W, Richardson K, Rockström J, Cornell SE, Fetzer I et al. 2015. Planetary boundaries: guiding human development on a changing planet. Science 347:1259855
    [Google Scholar]
  18. 19. 
    Galloway JN, Aber JD, Erisman JW, Seitzinger SP, Howarth RW et al. 2003. The nitrogen cascade. BioScience 534:341–56
    [Google Scholar]
  19. 20. 
    Erisman JW, Galloway J, Seitzinger S, Bleeker A. 2013. Consequences of human modification of the global nitrogen cycle. Phil. Trans. Roy. Soc. B 368: 1621.20130116
    [Google Scholar]
  20. 21. 
    Wallis De Vries MF, Bobbink R 2017. Nitrogen deposition impacts and biodiversity in terrestrial ecosystems: mechanisms and perspectives. Biol. Conserv. 212:B387–89
    [Google Scholar]
  21. 22. 
    Guignard MS, Leitch AR, Acquisti C, Eizaguirre C, Elser JJ et al. 2017. Impacts of nitrogen and phosphorus: from genomes to natural ecosystems and agriculture. Front. Ecol. Evol. 5:70
    [Google Scholar]
  22. 23. 
    Katz BG. 2020. Nitrogen Overload: Environmental Degradation, Ramifications, and Economic Costs Washington, DC: AGU/Hoboken, NJ: Wiley Press
  23. 24. 
    Galloway JN, Winiwarter W, Leip A, Leach AM, Bleeker A, Erisman JW. 2014. Nitrogen footprints, past, present and future. Environ. Res. Lett. 9:11
    [Google Scholar]
  24. 25. 
    Van der Hoek K, Erisman JW, Smeulders S, Wisniewski JR 1999. Nitrogen, the Confer-N-s:Proceedings of the First International Conference, Noordwijkerhout, the Netherlands, Mar. 23–27, 1998 Oxford: Elsevier
  25. 26. 
    Sutton MA, Howard CM, Kanter DR, Lassaletta L, Móring A et al. 2021. The nitrogen decade: mobilizing global action on nitrogen to 2030 and beyond. One Earth 4:10–14
    [Google Scholar]
  26. 27. 
    Erisman JW. 2004. The Nanjing declaration on management of reactive nitrogen. BioSci 54:4286–87
    [Google Scholar]
  27. 28. 
    Davidson E. 2009. The contribution of manure and fertiliser nitrogen to atmospheric nitrous oxide since 1860. Nat. Geosci. 2:659–62
    [Google Scholar]
  28. 29. 
    Galloway JN, Townsend AR, Erisman JW, Bekunda M, Cai ZC et al. 2008. Transformation of the nitrogen cycle: recent trends, questions, and potential solutions. Science 320:889–92
    [Google Scholar]
  29. 30. 
    Hungate BA, Dukes JS, Shaw MR, Luo Y, Field CB. 2003. Nitrogen and climate change. Science 302:1512–13
    [Google Scholar]
  30. 31. 
    Sutton MA, Howard CM, Erisman JW, Billen G, Bleeker A et al. 2011. The European Nitrogen Assessment: Sources, Effects and Policy Perspectives Cambridge, UK: Cambridge Univ. Press
  31. 32. 
    Liu X, Zhang Y, Han W, Tang A, Shen J et al. 2013. Enhanced nitrogen deposition over China. Nature 494:459–62
    [Google Scholar]
  32. 33. 
    Zhang X, Davidson EA, Mauzerall DL, Searchinger TD, Dumas P, Shen Y. 2015. Managing nitrogen for sustainable development. Nature 528:51–59
    [Google Scholar]
  33. 34. 
    Kanter DR, Winiwarter W, Bodirsky BL, Bouwman L, Boyer E et al. 2020. A framework for nitrogen futures in the shared socioeconomic pathways. Glob. Environ. Change 61:102029
    [Google Scholar]
  34. 35. 
    Erisman JW. 2021. Set ambitious goals for agriculture to meet environmental targets. One Earth 4:115–16
    [Google Scholar]
  35. 36. 
    Rockström J, Steffen W, Noone K, Å Persson, Chapin FS III et al. 2009. A safe operating space for humanity. Nature 461:472–75
    [Google Scholar]
  36. 37. 
    Sutton MA, Bleeker A, Howard CM, Erisman JW, Abrol YP et al. 2013. Our nutrient world. The challenge to produce more food and energy with less pollution: Global overview on nutrient management. UK Cent. Ecol. Hydrol. Rep., Glob. Partnersh. Nutr. Manag., Int. Nitrogen Initiat. https://www.unep.org/resources/report/our-nutrient-world-challenge-produce-more-food-and-energy-less-pollution
  37. 38. 
    Butterbach-Bahl K, Nemitz E, Zaehle S, Billen G, Boeckx P et al. 2011. Nitrogen as a threat to the European greenhouse gas balance. The European Nitrogen Assessment: Sources, Effects and Policy Perspectives MA Sutton, CM Howard, JW Erisman, G Billen, A Bleeker et al.434–62 Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  38. 39. 
    Erisman JW, Galloway J, Seitzinger S, Bleeker A, Butterbach-Bahl K. 2011. Reactive nitrogen in the environment and its effect on climate change. Curr. Opin. Environ. Sustain. 3:5281–90
    [Google Scholar]
  39. 40. 
    Arrigo KR. 2005. Marine microorganisms and global nutrient cycles. Nature 437:349–55
    [Google Scholar]
  40. 41. 
    Ryabenko E 2013. Stable isotope methods for the study of the nitrogen cycle. Topics in Oceanography E Zambianchi 49–88 Rijeka: Croat.: InTech
    [Google Scholar]
  41. 42. 
    Ravishankara AR, Daniel JS, Portmann RW. 2009. Nitrous oxide (N2O): the dominant ozone-depleting substance emitted in the 21st century. Science 326:5949123–25
    [Google Scholar]
  42. 43. 
    Schlesinger WH, Bernhardt E. 2013. Biogeochemistry: An Analysis of Global Change Waltham, MA: Elsevier. , 3rd ed..
  43. 44. 
    Fowler D, Steadman CE, Coyle M, Stevenson D. 2015. Effects of global change during the 21st century on the nitrogen cycle. Atmos. Chem. Phys. 15:13849–93
    [Google Scholar]
  44. 45. 
    Billen G, Lassaletta L, Garnier J. 2015. A vast range of opportunities for feeding the world in 2050: trade-off between diet, N contamination and international trade. Environ. Res. Lett. 10:025001
    [Google Scholar]
  45. 46. 
    Tomich TP, Brodt SB, Dahlgren RA, Snow KM 2016. The California Nitrogen Assessment: Challenges and Solutions for People, Agriculture, and the Environment Oakland, CA: Univ. Calif. Press
  46. 47. 
    Gu B, Ge Y, Ren Y, Xu B, Luo W et al. 2012. Atmospheric reactive nitrogen in China: sources, recent trends, and damage costs. Environ. Sci. Tech. 46:179420–27
    [Google Scholar]
  47. 48. 
    Abrol YP, Adhya TK, Aneja VP, Raghuram N, Pathak H et al. 2017. The Indian Nitrogen Assessment: Source of Reactive Nitrogen Environmental and Climate Effects Management Options and Policies Oxford: Elsevier
  48. 49. 
    Bodirsky BL, Po A, Weindl I, Dietrich JP, Rolinski S et al. 2012. N2O emissions from the global agricultural nitrogen cycle—current state and future scenarios. Biogeosciences 9:4169–97
    [Google Scholar]
  49. 50. 
    Smil V. 2001. Enriching the Earth: Fritz Haber, Carl Bosch, and the Transformation of World Food Production Cambridge, MA/London: MIT Press
  50. 51. 
    Reis S, Bekunda M, Howard CM, Karanja N, Winiwarter et al. 2016. Synthesis and review: tackling the nitrogen management challenge: from global to local scales. Environ. Res. Lett. 11:120205
    [Google Scholar]
  51. 52. 
    OECD (Organ. Econ. Co-op. Dev.) 2018. Human Acceleration of the Nitrogen Cycle: Managing Risks and Uncertainty Paris: OECD Publ.
  52. 53. 
    Houlton BZ, Almaraz M, Aneja V, Austin AT, Bai E et al. 2019. A world of cobenefits: solving the global nitrogen challenge. Earth's Future 7:865–72
    [Google Scholar]
  53. 54. 
    UN Dept. Econ. Soc. Aff. Database 2019. Revision of World Population Prospects http://population.un.org/wpp/
  54. 55. 
    EPA (US Environ. Prot. Agency) 2011. Reactive nitrogen in the United States: an analysis of inputs, flows, consequences and management options Rep. EPA-SAB-11-013 Sci. Adv. Board, EPA Washington, DC:
  55. 56. 
    UN Environ. Progr 2014. Global Partnership in Nutrient Management (GPNM) Nairobi, Kenya: https://www.unep.org/resources/report/global-partnership-nutrient-management-gpnm
  56. 57. 
    Erisman JW, de Vries W, Kros H, Oenema O, Van Der Eerden L et al. 2001. An outlook for a national integrated nitrogen policy. Environ. Sci. Pol. 4:2–387–95
    [Google Scholar]
  57. 58. 
    Erisman JW, Domburg N, de Vries W, Kros H, de Haan B, Sanders K. 2005. The Dutch N-cascade in the European perspective. Sci. China Ser. C 48:827–42
    [Google Scholar]
  58. 59. 
    Dalgaard T, Hansen B, Hasler B, Hertel O., Hutchings N et al. 2014. Policies for agricultural nitrogen management—trends, challenges and prospects for improved efficiency in Denmark. Environ. Res. Lett. 9:115002
    [Google Scholar]
  59. 60. 
    Van Grinsven HJM, Tiktak A, Rougoor CW. 2016. Evaluation of the Dutch implementation of the nitrates directive, the water framework directive and the national emission ceilings directive. NJAS - Wageningen J. Life Sci. 78:69–84
    [Google Scholar]
  60. 61. 
    De Heer M, Roozen F, Maas R. 2017. The integrated approach to nitrogen in the Netherlands: a preliminary review from a societal scientific juridical and practical perspective. J. Nat. Conserv. 35:101–11
    [Google Scholar]
  61. 62. 
    Huismans JFM, Vermeulen GD, Hol JMG, Goedhart PW. 2018. A model for estimating seasonal trends of ammonia emission from cattle manure applied to grassland in the Netherlands. Atmosph. Environ. 173:231–38
    [Google Scholar]
  62. 63. 
    Erisman JW, Draaijers GPJ. 1995. Studies in Environmental Research, Vol. 63: Atmospheric Deposition in Relation to Acidification and Eutrophication. Amsterdam: Elsevier Sci.
    [Google Scholar]
  63. 64. 
    van Zanten MC, Wichink Kruit RJ, Hoogerbrugge R, Van der Swaluw E, van Pul WAJ 2017. Trends in ammonia measurements in the Netherlands over the period 1993–2014. Atmosph. Environ. 148:352–60
    [Google Scholar]
  64. 65. 
    Wichink Kruit RJ, Aben J, de Vries W, Sauter F, van der Swaluw E et al. 2017. Modelling trends in ammonia in the Netherlands over the period 1990–2014. Atmosph. Environ. 154:20–30
    [Google Scholar]
  65. 66. 
    Monteny GJ, Erisman JW. 1998. Ammonia emission from dairy cow buildings: a review of measurement techniques, influencing factors and possibilities for reduction. Neth. J. Agric. Sci. 46:225–47
    [Google Scholar]
  66. 67. 
    Webb J, Pain B, Bittman S, Morgan J 2010. The impacts of manure allocation methods on emissions of ammonia, nitrous oxide and on crop response—a review. Agric. Ecosyst. Environ. 137:39–46
    [Google Scholar]
  67. 68. 
    Backus GBC. 2017. Manure management: an overview and assessment of policy instruments in the Netherlands Report prepared for the World Bank Washington:, DC. https://documents1.worldbank.org/curated/en/183511516772627716/pdf/122924-WP-P153343-PUBLIC-Dutch-manure-policy-working-paper.pdf
  68. 69. 
    Stokstad E. 2019. Nitrogen crisis from jam-packed livestock operations has ‘paralyzed’ Dutch economy. Science Dec. 4
    [Google Scholar]
  69. 70. 
    Oenema O, van Liere L, Plette S, Prins T, van Zeijts H et al. 2004. Environmental effects of manure policy options in The Netherlands. . Water Sci. Technol. 49:3101–8
    [Google Scholar]
  70. 71. 
    The Environmental Data Compendium 2020. Compendium for the living environment: Nitrogen Deposition 1990–2018 The Hague, Neth: https://www.clo.nl/en/indicators/en0189-nitrogen-deposition
  71. 72. 
    Velthof GL, van Bruggen C, Groenestein CM, de Haan BJ, Hoogeveen MW et al. 2012. A model for inventory of ammonia emissions from agriculture in the Netherlands. Atmosph. Environ. 46:248–55
    [Google Scholar]
  72. 73. 
    Van den Burg AB, Berendse F, Van Dobben HF, Kros J, Bobbink R et al. 2021. Stikstof en natuurherstel Onderzoek naar een ecologisch noodzakelijke reductiedoelstelling van stikstof (Nitrogen and Nature Recovery Research into an Ecologically Necessary Reduction Target for Nitrogen) Nijmegen, Neth: B-Ware Res. Cent.
  73. 74. 
    The Environmental Data Compendium 2019. Compendium for the living environment: exceedance of critical loads for nitrogen deposition on nature, 1995–2016. The Hague, Neth: https://www.clo.nl/en/indicators/en2045-overfertilization-in-the-national-ecological-network
  74. 75. 
    Netherlands Raad van State (Council of State) 2019. Stikstof: PAS-uit-spra-ken 29 mei 2019 (Nitrogen: PAS rulings May 29, 2019). Netherlands Raad van State https://www.raadvanstate.nl/stikstof/
    [Google Scholar]
  75. 76. 
    Remkes JW, van Dijk JJ, Dijkgraaf E, Freriks A, Gerbrandy GJ et al. 2020. Niet alles kan overall (Not everything can be done everywhere) Rep., Wageningen Univ. Res. Adviescollege Stikstofproblematiek, Amersfoort, Neth.
  76. 77. 
    Paul H. 2021. Stikstofruimte voor de toekomst Langetermijnverkenning stikstofproblematiek: doel integraliteit en regie (Nitrogen room for the future long-term exploration of the nitrogen problem: aim integration and direction) ABDTOPConsult Rep., Algemene Bestuursdienst The Hague, Neth: http:/www.abdtopconsult.nl
  77. 78. 
    Frouws J. 1993. Mest en macht Een politiek-sociologische studie naar belangenbehartiging en beleidsvorming inzake de mestproblematiek in Nederland vanaf 1970 Studies van Landbouw en Platteland (Manure and power A political-sociological study into the promotion of interests and policy-making concerning the manure problem in the Netherlands from 1970 onwards). PhD thesis Vakgroep Rurale Sociol. Wageningen Univ., Neth:.
    [Google Scholar]
  78. 79. 
    Van der Ploeg JD. 2020. Farmers’ upheaval, climate crisis and populism. J. Peas. Stud. 47:3589–605
    [Google Scholar]
  79. 80. 
    Van Grinsven H, Bleeker A. 2017. Evaluation of the Manure and Fertilisers Act 2016: synthesis report PBL Neth. Environ. Assess. Agency Rep. 2779 The Hague, Neth: https://www.pbl.nl/en/publications/evaluation-manure-and-fertilisers-act-2016-synthesis-report
  80. 81. 
    OECD (Organ. Econ. Co-op. Dev.) 2015. Innovation, Agricultural Productivity and Sustainability in the Netherlands Paris: OECD Publ.
  81. 82. 
    Berkhout P. 2019. Food Economic Report 2018 of the Netherlands, Summary The Hague, Neth.: Wageningen Econ. Res.
  82. 83. 
    Ricardo Energy & Environment 2020. Review of the Netherlands’ National Air Pollution Control Programme Eur. Comm. Rep., Ricardo Energy & Environment Oxfordshire, UK:
  83. 84. 
    Malthus TR. 1798. An Essay on the Principle of Population: Or, a View of Its Past and Present Effects on Human Happiness, with an Inquiry into Our Prospects Respecting the Future Removal or Mitigation of the Evils Which It Occasions. London: J. Johnson
  84. 85. 
    Dentener F, Drevet J, Lamarque JF, Bey I, Eickhout B et al. 2006. Nitrogen and sulfur deposition on regional and global scales: a multimodel evaluation. Glob. Biogeochem. Cylces 20:GB4003
    [Google Scholar]
  85. 86. 
    Lamarque J-F, Kiehl JT, Brasseur GP, Butler T, Cameron-Smith P et al. 2005. Assessing future nitrogen deposition and carbon cycle feedback using a multi-model approach: analysis of nitrogen deposition. J. Geophys. Res. Atmos. 110:D19303
    [Google Scholar]
  86. 87. 
    Lamarque J-F, Dentener F, McConnell J, Ro C-U, Shaw M et al. 2013. Multi-model mean nitrogen and sulfur deposition from the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP): evaluation of historical and projected future changes. Atmosph. Chem. Phys 13:7997–8018
    [Google Scholar]
  87. 88. 
    Kanakidou M, Myriokefalitakis S, Daskalakis N, Fanourgakis G, Nenes A et al. 2016. Past, present, and future atmospheric nitrogen deposition. J. Atmosph. Sci. 735:2039–47
    [Google Scholar]
  88. 89. 
    Engardt M, Simpson D, Schwikowski M, Granat L. 2017. Deposition of sulphur and nitrogen in Europe 1900–2050. Model calculations and comparison to historical observations. Tellus B: Chem. Phys. Meteor. 69:11328945
    [Google Scholar]
  89. 90. 
    Amann M, Kiesewetter G, Schö W, Klimont Z, Winiwarter W et al. 2020. Reducing global air pollution: the scope for further policy interventions. Phil. Trans. R. Soc. A 378:20190331
    [Google Scholar]
  90. 91. 
    Van Vuuren DP, Bouwman LF, Smith SJ, Dentener F. 2011. Global projections for anthropogenic reactive nitrogen emissions to the atmosphere: an assessment of scenarios in the scientific literature. Curr. Opin. Environ. Sustain. 3:359–69
    [Google Scholar]
  91. 92. 
    Lassaletta L, Billen G, Garnier J, Bouwman L, Velazquez E et al. 2016. Nitrogen use in the global food system: past trends and future trajectories of agronomic performance, pollution, trade, and dietary demand. Environ. Res. Lett. 11:9095007
    [Google Scholar]
  92. 93. 
    Bodirsky BL, Po A, Lotze-Campen H, Dietrich JP, Rolinski S et al. 2014. Reactive nitrogen requirements to feed the world in 2050 and potential to mitigate nitrogen pollution. Nat. Commun. 5:3858
    [Google Scholar]
  93. 94. 
    Billen G, Garnier J. 2021. Nitrogen biogeochemistry of water-agro-food systems: the example of the Seine land-to-sea continuum. Biogeochemistry 154:307–21
    [Google Scholar]
  94. 95. 
    Willet W, Rockström J, Loken B, Springmann M, Lang T et al. 2019. Food in the Anthropocene: the EAT-Lancet Commission on healthy diets from sustainable food systems. Lancet Comm. 393:10170447–92
    [Google Scholar]
  95. 96. 
    Westhoek H, Lesschen JP, Leip A, Rood T, Wagner S et al. 2015. Nitrogen on the Table: The Influence of Food Choices on Nitrogen Emissions, Greenhouse Gas Emissions and Land Use in Europe: ENA Special Report on Nitrogen and Food Edinburgh, UK: CEH
  96. 97. 
    Rosegrant MW, Koo J, Cenacchi N, Ringler C, Robertson R et al. 2014. Food security in a world of natural resource scarcity—the role of agricultural technologies Rep., Int. Food Policy Res. Inst. Washington, DC: http://dx.doi.org/10.2499/9780896298477
    [Crossref]
  97. 98. 
    Winiwarter W, Erisman JW, Galloway JN, Klimont Z. 2013. Estimating environmentally relevant fixed nitrogen demand in the 21st century. Clim. Change 120:889–901
    [Google Scholar]
  98. 99. 
    Bouwman L, Goldewijk KK, Van der Hoek KW, Beusen AHW, Van Vuuren DP et al. 2011. Exploring global changes in nitrogen and phosphorus cycles in agriculture induced by livestock production over the 1900–2050 period. PNAS 109:166348–53
    [Google Scholar]
  99. 100. 
    Ciais P, Sabine C, Bala G, Bo L, Brovkin V et al. 2013. Carbon and other biogeochemical cycles. Climate Change 2013: The Physical Science Basis Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change TF Stocker, D Qin, GK Plattner, M Tignor, SK Allen et al.pp. 465570 Cambridge, UK/New York: Cambridge Univ. Press
    [Google Scholar]
  100. 101. 
    Davidson EA, Kanter D. 2014. Inventories and scenarios of nitrous oxide emissions. Environ. Res. Lett. 9:105012
    [Google Scholar]
  101. 102. 
    Erisman JW, Bleeker A, Galloway J, Sutton MS. 2007. Reduced nitrogen in ecology and the environment. Environ. Poll. 150:1140–49
    [Google Scholar]
  102. 103. 
    Lotze-Campen H, Po A, Beringer T, Muller C, Bondeau A et al. 2010. Scenarios of global bioenergy production: the trade-offs between agricultural expansion, intensification and trade. Ecol. Model 221:2188–96
    [Google Scholar]
  103. 104. 
    Galloway JNG, Leach AM, Erisman JW, Bleeker A. 2017. Nitrogen: the historical progression from ignorance to knowledge, with a view to future solutions. Soil Res 55:6417–24
    [Google Scholar]
  104. 105. 
    Alexandratos N, Bruinsma J. 2012. World agriculture towards 2030/2050: the 2012 revision ESA Work. Pap. 12–03 Food Agric. Organ UN, Rome: http://www.fao.org/3/ap106e/ap106e.pdf
  105. 106. 
    Integer Research, LMC 2013. Global Fertilizer Demand: The Long-Term Outlook Rep. Integer Res. LMC, London:
  106. 107. 
    Heffer P, Prud Homme M 2016. Global nitrogen fertilser demand and supply: trend, current level and outlook. Proceedings of the 2016 International Nitrogen Initiative Conference, “Solutions to improve nitrogen use efficiency for the world, Dec. 4–8 Melbourne, Aust: https://www.ini2016.com
    [Google Scholar]
  107. 108. 
    Tenkorang F, Lowenberg-DeBoer J. 2009. Forecasting long-term global fertilizer demand. Nutr. Cycl. Agroecosyst. 83:233–47
    [Google Scholar]
  108. 109. 
    Mogollon JM, Lassaletta L, Beusen AHW, van Grinsven HJM, Westhoek H, Bouwman AF. 2018. Assessing future reactive nitrogen inputs into global croplands based on the shared socioeconomic pathways. Environ. Res. Lett. 13:044008
    [Google Scholar]
  109. 110. 
    Vollset SE, Goren E, Yuan CW, Cao J, Smith AE et al. 2020. Fertility, mortality, migration and population scenarios for 195 countries and territories from 2017 to 2100: a forecasting analysis for the Global Burden of Disease Study. Lancet 396:1285–306
    [Google Scholar]
  110. 111. 
    Van Grinsven HJM, Holland M, Jacobsen BH, Klimont Z, Sutton MA, Willems WJ. 2013. Costs and benefits for Europe and implications for mitigation. Environ. Sci. Tech. 47:3571–79
    [Google Scholar]
  111. 112. 
    Van Grinsven HJM, Erisman JW, de Vries W, Westhoek H. 2015. Potential of extensification of European agriculture for a more sustainable food system; the case for nitrogen and livestock. Environ. Res. Lett. 10:04500
    [Google Scholar]
  112. 113. 
    The Fertilizer Institute 2020. 4 Nutrient Stewardship https://nutrientstewardship.org/
/content/journals/10.1146/annurev-environ-012420-045120
Loading
/content/journals/10.1146/annurev-environ-012420-045120
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error