1932

Abstract

The livestock and environment nexus has been the subject of considerable research in the past decade. With a more prosperous and urbanized population projected to grow significantly in the coming decades comes a gargantuan appetite for livestock products. There is growing concern about how to accommodate this increase in demand with a low environmental footprint and without eroding the economic, social, and cultural benefits that livestock provide. Most of the effort has focused on sustainably intensifying livestock systems. Two things have characterized the research on livestock and the environment in the past decade: the development of increasingly disaggregated and sophisticated methods for assessing different types of environmental impacts (climate, water, nutrient cycles, biodiversity, land degradation, deforestation, etc.) and a focus on examining the technical potential of many options for reducing the environmental footprint of livestock systems. However, the economic or sociocultural feasibility of these options is seldom considered. Now is the time to move this agenda from knowledge to action, toward realizable goals. This will require a better understanding of incentives and constraints for farmers to adopt new practices and the design of novel policies to support transformative changes in the livestock sector. It will also require novel forms of engagement, interaction, and consensus building among stakeholders with enormously diverse objectives. Additionally, we have come to realize that managing the demand trajectories of livestock products must be part of the solution space, and this is an increasingly important research area for simultaneously achieving positive health and environmental outcomes.

[Erratum, Closure]

An erratum has been published for this article:
Livestock and the Environment: What Have We Learned in the Past Decade?

Associated Article

There are media items related to this article:
Livestock's Lure and Liabilities
Loading

Article metrics loading...

/content/journals/10.1146/annurev-environ-031113-093503
2015-11-04
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/energy/40/1/annurev-environ-031113-093503.html?itemId=/content/journals/10.1146/annurev-environ-031113-093503&mimeType=html&fmt=ahah

Literature Cited

  1. Gerber PJ, Steinfeld H, Henderson B, Mottet A, Opio C. 1.  et al. 2013. Tackling Climate Change Through Livestock—A Global Assessment of Emissions and Mitigation Opportunities Rome, Italy: FAO
  2. De Haan C, Steinfeld H, Blackburn H. 2.  1997. Livestock and the Environment: Finding a Balance Rome, Italy: FAO
  3. Steinfeld H, Gerber P, Wassenaar T, Castel V, Rosales M, De Haan C. 3.  2006. Livestock's Long Shadow: Environmental Issues and Options. Rome, Italy: FAO
  4. Delgado C, Rosegrant M, Steinfeld H, Ehui S, Cour C. 4.  1999. Livestock to 2020: The Next Food Revolution. Food Agric. Environ. Discuss. Pap. 28, Intl. Food Policy Res. Inst.
  5. Garnett T, Appleby MC, Balmford A, Bateman IJ, Benton TG. 5.  et al. 2013. Sustainable intensification in agriculture: premises and policies. Science 341:33–34 [Google Scholar]
  6. Keating B, Herrero M, Carberry PS, Gardner J, Cole MB. 6.  2014. Food wedges: framing the global food demand and supply challenge towards 2050. Glob. Food Sec. 3:3–4125–32 [Google Scholar]
  7. Godfray HCJ, Beddington JR, Crute IR, Haddad L, Lawrence D. 7.  et al. 2010. Food security: the challenge of feeding 9 billion people. Science 327:5967812–18 [Google Scholar]
  8. Alexandratos N, Bruinsma J. 8.  2012. World Agriculture Towards 2030/2050: The 2012 Revision Rome, Italy: FAO
  9. 9. Intl. Asess. Agric. Sci. Technol. Dev 2010. Agriculture at a Crossroads: Global Report. Washington, DC: Island Press
  10. Herrero M, Havlík P, Valin H, Notenbaert A, Rufino MC. 10.  et al. 2013. Biomass use, production, feed efficiencies, and greenhouse gas emissions from global livestock systems. Proc. Natl. Acad. Sci. USA 110:5220888–93 [Google Scholar]
  11. Wirsenius S. 11.  2003. The biomass metabolism of the food system: a model-based survey of the global and regional turnover of food biomass. J. Ind. Ecol. 7:147–80 [Google Scholar]
  12. Bradford G. 12.  1999. Contributions of animal agriculture to meeting global human food demand. Livest. Prod. Sci. 59:2–395–112 [Google Scholar]
  13. Peralta JM, Reynolds J, Kerr CV. 13.  2013. Sustainability and animal agriculture. Encycl. Food Agric. Ethics 2013:1–8 [Google Scholar]
  14. Bouwman AF, Goldewijk KK, Van Der Hoek KW, Beusen HW, Van Vuuren DP. 14.  et al. 2013. Exploring global changes in nitrogen and phosphorus cycles in agriculture induced by livestock production over the 1900–2050 period. Proc. Natl. Acad. Sci. USA 110:5220882–87 [Google Scholar]
  15. Bouwman AF, Van der Hoek KW, Eickhout B, Soenario I. 15.  2005. Exploring changes in world ruminant production systems. Agric. Syst. 84:2121–53 [Google Scholar]
  16. Wirsenius S. 16.  2000. Human Use of Land and Organic Materials: Modeling the Turnover of Biomass in the Global Food System Gothenburg, Swed: Chalmers Univ. Technol.
  17. De Vries M, de Boer IJM. 17.  2010. Comparing environmental impacts for livestock products: a review of life cycle assessments. Livest. Sci. 128:1–31–11 [Google Scholar]
  18. Van Zanten HHE, Mollenhorst H, Klootwijk CW, van Middelaar CE, de Boer IJM. 18.  2015. Global food security: land the efficiency of livestock systems. Int. J. Life Cycle Assess. In press. doi: 10.1007/s11367-015-0944-1
  19. Gerber PJ, Uwizeye A, Schulte RPO, Opio CI, de Boer IJM. 19.  2014. Nutrient use efficiency: a valuable approach to benchmark the sustainability of nutrient use in global livestock production?. Curr. Opin. Environ. Sustain. 9–10:122–30 [Google Scholar]
  20. Galloway JN, Aber JD, Erisman JANW, Sybil P, Howarth RW. 20.  et al. 2003. The nitrogen cascade. Bioscience 53:4341–56 [Google Scholar]
  21. Velthof GL, Oudendag D, Witzke HP, Asman WAH, Klimont Z, Oenema O. 21.  2009. Integrated assessment of nitrogen losses from agriculture in EU-27 using MITERRA-EUROPE. J. Environ. Qual. 38:402–17 [Google Scholar]
  22. Steinfeld H, Mooney HA, Schneider F, Neville LE. 22.  2010. Livestock in a Changing Landscape 1 Drivers, Consequences, and Responses Washington, DC: FAO
  23. Hoekstra AY. 23.  2009. Human appropriation of natural capital: a comparison of ecological footprint and water footprint analysis. Ecol. Econ. 68:71963–74 [Google Scholar]
  24. Falkenmark M. 24.  1995. Land-water linkages: a synopsis. Land and water integration and river basin management. FAO L. Water Bull. 1:15–16 [Google Scholar]
  25. Bayart J-B, Bulle C, Deschênes L, Margni M, Pfister S. 25.  et al. 2010. A framework for assessing off-stream freshwater use in LCA. Int. J. Life Cycle Assess. 15:5439–53 [Google Scholar]
  26. De Fraiture C, Wichelns D, Benedict Kemp E, Rockstrom J. 26.  2007. Scenarios on water for food and environment. Water for Food, Water for Life: A Comprehensive Assessment of Water Management in Agriculture D Molden 91–145 London: Earthscan [Google Scholar]
  27. De Boer IJM, Hoving IE, Vellinga TV, Van de Ven GWJ, Leffelaar PA, Gerber PJ. 27.  2012. Assessing environmental impacts associated with freshwater consumption along the life cycle of animal products: the case of Dutch milk production in Noord-Brabant. Int. J. Life Cycle Assess. 18:1193–203 [Google Scholar]
  28. Pfister S, Koehler A, Hellweg S. 28.  2009. Assessing the environmental impacts of freshwater consumption in LCA. Environ. Sci. Technol. 43:114098–104 [Google Scholar]
  29. Thornton PK, van de Steeg J, Notenbaert A, Herrero M. 29.  2009. The impacts of climate change on livestock and livestock systems in developing countries: a review of what we know and what we need to know. Agric. Syst. 101:3113–27 [Google Scholar]
  30. 30. IPCC 2014. Summary for policymakers. Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change CB Field, VR Barros, DJ Dokken, KJ Mach, MD Mastrandrea 1–32 Cambridge, UK: Cambridge Univ. [Google Scholar]
  31. Kurukulasuriya P, Rosenthal S. 31.  2003. Climate change and agriculture: a review of impacts and adaptations Work. Pap. 78739, Environ. Dep., World Bank
  32. Washington R, Harrison M, Conway D, Black E, Challinor A. 32.  et al. 2006. African climate change: taking the shorter route. Bull. Am. Meteorol. Soc. 87:May1355–66 [Google Scholar]
  33. Mendelsohn R, Dinar A. 33.  2012. Handbook on Climate Change and Agriculture. Cheltenham, UK: Edward Elgar Publ.
  34. Thornton PK, Herrero M. 34.  2014. Climate change adaptation in mixed crop-livestock systems in developing countries. Glob. Food Sec. 3:299–107 [Google Scholar]
  35. Dumont B, González-García E, Thomas M, Fortun-Lamothe L, Ducrot C. 35.  et al. 2014. Forty research issues for the redesign of animal production systems in the 21st century. Animal 29:1–12 [Google Scholar]
  36. Darnhofer I, Bellon S, Dedieu B, Milestad R. 36.  2010. Adaptiveness to enhance the sustainability of farming systems. A review. Agron. Sustain. Dev. 30:545–55 [Google Scholar]
  37. Rickards L, Howden SM. 37.  2012. Transformational adaptation: agriculture and climate change. Crop Pasture Sci. 63:March240–50 [Google Scholar]
  38. Kates RW, Travis WR, Wilbanks TJ. 38.  2012. Transformational adaptation when incremental adaptations to climate change are insufficient. Proc. Natl. Acad. Sci. USA 109:197156–61 [Google Scholar]
  39. Vermeulen SJ, Challinor AJ, Thornton PK, Campbell BM, Eriyagama N. 39.  et al. 2013. Addressing uncertainty in adaptation planning for agriculture. Proc. Natl. Acad. Sci. USA 110:218357–62 [Google Scholar]
  40. Claessens L, Antle JM, Stoorvogel JJ, Valdivia RO, Thornton PK, Herrero M. 40.  2012. A method for evaluating climate change adaptation strategies for small-scale farmers using survey, experimental and modeled data. Agric. Syst. 111:85–95 [Google Scholar]
  41. Herrero M, Thornton PK, Bernués A, Baltenweck I, Vervoort J. 41.  et al. 2014. Exploring future changes in smallholder farming systems by linking socio-economic scenarios with regional and household models. Glob. Environ. Change 24:1165–82 [Google Scholar]
  42. McIntire J, Bourzat D, Pingalii P. 42.  1992. Crop-Livestock Interaction in Sub-Saharan Africa Washington, DC: The World Bank
  43. Baltenweck I, Staal S, Ibrahim MNM, Herrero M, Holmann F, Jabbar M. 43.  2003. Crop-livestock intensification and interaction across three continents Proj. Rep. ILRI, CIAT, IITA, BAIF
  44. Searchinger TD, Estes L, Thornton PK, Beringer T, Notenbaert A. 44.  et al. 2015. High carbon and biodiversity costs from converting Africa's wet savannahs to cropland. Nat. Clim. Change 5:481–86 [Google Scholar]
  45. Havlík P, Valin H, Mosnier A, Obersteiner M, Baker JS. 45.  et al. 2013. Crop productivity and the global livestock sector: implications for land use change and greenhouse gas emissions. Am. J. Agric. Econ. 95:2442–48 [Google Scholar]
  46. Havlík P, Valin H, Herrero M, Obersteiner M, Schmid E. 46.  et al. 2014. Climate change mitigation through livestock system transitions. Proc. Natl. Acad. Sci. USA 111:103709–14 [Google Scholar]
  47. Herrero M, Thornton PK. 47.  2013. Livestock and global change: emerging issues for sustainable food systems. Proc. Natl. Acad. Sci. USA 110:20878–81 [Google Scholar]
  48. Leclère D, Havlík P, Fuss S, Schmid E, Mosnier A. 48.  et al. 2014. Climate change induced transformations of agricultural systems: insights from a global model. Environ. Res. Lett. 9:12124018 [Google Scholar]
  49. Weindl I, Lotze-Campen H, Popp A, Muller C, Havlik P. 49.  et al. 2015. Livestock in a changing climate: production system transitions as an adaptation strategy for agriculture. Environ. Res. Lett. 10:094021
  50. Thornton PK, Ericksen PJ, Herrero M, Challinor AJ. 50.  2014. Climate variability and vulnerability to climate change: a review. Glob. Chang. Biol. 20:3313–28 [Google Scholar]
  51. Wood S, Ericksen P, Stewart B, Thornton P, Anderson M. 51.  2010. Lessons learned from international assessments. Food Security and Global Environmental Change J Ingram, P Ericksen, D Liverman 46–62 London: Earthscan [Google Scholar]
  52. Van Wijk MT, Rufino MC, Enahoro D, Parsons D, Silvestri S. 52.  et al. 2014. Farm household models to analyse food security in a changing climate: a review. Glob. Food Sec. 3:77–84 [Google Scholar]
  53. Martin G, Magne MA. 53.  2015. Agricultural diversity to increase adaptive capacity and reduce vulnerability of livestock systems against weather variability—a farm-scale simulation study. Agric. Ecosyst. Environ. 199:301–11 [Google Scholar]
  54. Carberry PS, Hochman Z, McCown RL, Dalgliesh NP, Foale MA. 54.  et al. 2002. The FARMSCAPE approach to decision support: farmers', advisers', researchers' monitoring, simulation, communication and performance evaluation. Agric. Syst. 7 4:141–77 [Google Scholar]
  55. Fenner K, Canonica S, Wackett LP, Elsner M. 55.  2013. Evaluating pesticide degradation in the environment: blind spots and emerging opportunities. Science 341:6147752–58 [Google Scholar]
  56. Olivier JGJ, Van Aardenne JA, Dentener FJ, Pagliari V, Ganzeveld LN, Peters JAHW. 56.  2005. Recent trends in global greenhouse gas emissions: regional trends 1970–2000 and spatial distribution of key sources in 2000. Environ. Sci. 2:81–99 [Google Scholar]
  57. Baumert KA, Herzog T, Pershing J. 57.  2005. Navigating the Numbers: Greenhouse Gas Data and International Climate Policy Washington, DC: World Res. Inst.
  58. 58. US Environ. Protect. Agency (EPA) 2006. Global Anthropogenic Non-CO2 Greenhouse Gas Emissions: 1990–2020 Washington, DC: EPA
  59. O'Mara FP. 59.  2011. The significance of livestock as a contributor to global greenhouse gas emissions today and in the near future. Anim. Feed Sci. Technol. 166–1677–15
  60. Pitesky ME, Stackhouse KR, Mitloehner F. 60.  2009. Chapter 1. Clearing the air. Livestock's contribution to climate change. Adv. Agronomy 103:1–40 [Google Scholar]
  61. Goodland R, Anhang J. 61.  2009. Livestock and climate change. World Watch 22:10–19 [Google Scholar]
  62. Herrero M, Gerber P, Vellinga T, Garnett T, Leip A. 62.  et al. 2011. Livestock and greenhouse gas emissions: the importance of getting the numbers right. Anim. Feed Sci. Technol 166–167:779–82 [Google Scholar]
  63. Gerber P, Henderson B, Makkar H. 63.  2013. Mitigation of Greenhouse Gas Emissions in Livestock Production—A Review of Technical Options for Non-CO2 Emissions Washington, DC: FAO
  64. Martin C, Morgavi DP, Doreau M. 64.  2010. Methane mitigation in ruminants: from microbe to the farm scale. Animal 4:3351–65 [Google Scholar]
  65. Cottle DJ, Nolan JV, Wiedemann SG. 65.  2011. Ruminant enteric methane mitigation: a review. Anim. Prod. Sci. 51:491–514 [Google Scholar]
  66. Boadi D, Benchaar C, Chiquette J, Massé D. 66.  2004. Mitigation strategies to reduce enteric methane emissions from dairy cows: update review. Can. J. Anim. Sci. 84:319–35 [Google Scholar]
  67. Thornton PK, Herrero M. 67.  2010. Potential for reduced methane and carbon dioxide emissions from livestock and pasture management in the tropics. Proc. Natl. Acad. Sci. USA 107:4619667–72 [Google Scholar]
  68. Blümmel M, Anandan S, Prasad CS. 68.  2009. Potential and limitations of by-product based feeding systems to mitigate green house gases for improved livestock productivity Presented at Bienn. Anim. Nutr. Conf. Anim. Nutr. Soc. Ind. Divers. Anim. Nutr. Res. Chang. Scen., 13th, Bangalore, Ind.
  69. Alcock DJ, Hegarty RS. 69.  2011. Potential effects of animal management and genetic improvement on enteric methane emissions, emissions intensity and productivity of sheep enterprises at Cowra, Australia. Anim. Feed Sci. Technol. 166–67:749–60 [Google Scholar]
  70. Ripple WJ, Smith P, Haberl H, Montzka SA, McAlpine C, Boucher DH. 70.  2013. Ruminants, climate change and climate policy. Nat. Clim. Change 4:12–5 [Google Scholar]
  71. Smith P, Martino D, Cai Z, Gwary D, Janzen H. 71.  et al. 2008. Greenhouse gas mitigation in agriculture. Philos. Trans. R. Soc. Lond. B. 363:1492789–813 [Google Scholar]
  72. Chadwick DR. 72.  2005. Emissions of ammonia, nitrous oxide and methane from cattle manure heaps: effect of compaction and covering. Atmos. Environ. 392005:787–99 [Google Scholar]
  73. Chadwick D, Sommer S, Thorman R, Fangueiro D, Cardenas L. 73.  et al. 2011. Manure management: implications for greenhouse gas emissions. Anim. Feed Sci. Technol. 166–67:514–31 [Google Scholar]
  74. Thomsen IK, Pedersen AR, Nyord T, Petersen SO. 74.  2010. Effects of slurry pre-treatment and application technique on short-term N2O emissions as determined by a new non-linear approach. Agric. Ecosyst. Environ. 136:227–35 [Google Scholar]
  75. Clemens J, Trimborn M, Weiland P, Amon B. 75.  2006. Mitigation of greenhouse gas emissions by anaerobic digestion of cattle slurry. Agric. Ecosyst. Environ. 112:171–77 [Google Scholar]
  76. Van Groenigen JW, Velthof GL, Oenema O, Van Groenigen KJ, Van Kessel C. 76.  2010. Towards an agronomic assessment of N2O emissions: a case study for arable crops. Eur. J. Soil Sci. 61:6903–13 [Google Scholar]
  77. Smith KA, Conen F. 77.  2004. Impacts of land management on fluxes of trace greenhouse gases. Soil Use Manag. 20:255–63 [Google Scholar]
  78. Snyder CS, Bruulsema TW, Jensen TL, Fixen PE. 78.  2009. Review of greenhouse gas emissions from crop production systems and fertilizer management effects. Agric. Ecosyst. Environ. 133:3–4247–66 [Google Scholar]
  79. Clough TJ, Ray JL, Buckthought LE, Calder J, Baird D. 79.  et al. 2009. The mitigation potential of hippuric acid on N2O emissions from urine patches: an in situ determination of its effect. Soil Biol. Biochem. 41:102222–29 [Google Scholar]
  80. Henderson B, Gerber P, Hilinski T, Falcucci A, Ojima D. 80.  et al. 2015. Greenhouse gas mitigation potential of the world's grazing lands: modelling soil carbon and nitrogen fluxes of mitigation practices. Agric. Ecosyst. Environ. 207:91–100 [Google Scholar]
  81. Smith P, Haberl H, Popp A, Erb K, Lauk C. 81.  et al. 2013. How much land-based greenhouse gas mitigation can be achieved without compromising food security and environmental goals?. Global Change Biol. 19:2285–302 [Google Scholar]
  82. 82. Foresight 2011. The future of food and farming: challenges and choices for global sustainability Proj. Rep., Gov. Off. Sci.
  83. Foley JA, Ramankutty N, Brauman KA, Cassidy ES, Gerber JS. 83.  et al. 2011. Solutions for a cultivated planet. Nature 478:7369337–42 [Google Scholar]
  84. Mueller ND, Gerber JS, Johnston M, Ray DK, Ramankutty N, Foley JA. 84.  2012. Closing yield gaps through nutrient and water management. Nature 490:7419254–57 [Google Scholar]
  85. Hertel TW, Ramankutty N, Baldos ULC. 85.  2014. Global market integration increases likelihood that a future African Green Revolution could increase crop land use and CO2 emissions. Proc. Natl. Acad. Sci. USA 111:3813799–804 [Google Scholar]
  86. Stehfest E, Bouwman L, Vuuren DP, Elzen MGJ, Eickhout B, Kabat P. 86.  2009. Climate benefits of changing diet. Clim. Change 95:1–283–102 [Google Scholar]
  87. Willett WC. 87.  2001. Eat, Drink, and Be Healthy: The Harvard Medical School Guide to Healthy Eating New York: Free Press
  88. Solano C, Bernués A, Rojas F, Joaquín N, Fernandez W, Herrero M. 88.  2000. Relationships between management intensity and structural and social variables in dairy and dual-purpose systems in Santa Cruz, Bolivia. Agric. Syst. 65:3159–77 [Google Scholar]
  89. Cohn AS, Mosnier A, Havlík P, Valin H, Herrero M. 89.  et al. 2014. Cattle ranching intensification in Brazil can reduce global greenhouse gas emissions by sparing land from deforestation. Proc. Natl. Acad. Sci. USA 111:7236–41 [Google Scholar]
  90. Tukker A, Bausch-Goldbohm S, Verheijden M, Koning A, de, Kleijn R. 90.  et al. 2009. Environmental impacts of diet changes in the EU. Rep. 23783 EN, Inst. Prospect. Technol. Stud. Eur. Comm.
  91. Westhoek H, Lesschen JP, Rood T, Wagner S, De Marco A. 91.  et al. 2014. Food choices, health and environment: effects of cutting Europe's meat and dairy intake. Glob. Environ. Change 26:1196–205 [Google Scholar]
  92. Berners-Lee M, Hoolohan C, Cammack H, Hewitt CN. 92.  2012. The relative greenhouse gas impacts of realistic dietary choices. Energy Policy 43:184–90 [Google Scholar]
  93. Popp A, Lotze-Campen H, Bodirsky B. 93.  2010. Food consumption, diet shifts and associated non-CO2 greenhouse gases from agricultural production. Glob. Environ. Change 20:3451–62 [Google Scholar]
  94. Hedenus F, Wirsenius S, Johansson DJA. 94.  2014. The importance of reduced meat and dairy consumption for meeting stringent climate change targets. Clim. Change 124:79–91 [Google Scholar]
  95. Green R, Milner J, Dangour AD, Haines A, Chalabi Z. 95.  et al. 2015. The potential to reduce greenhouse gas emissions in the UK through healthy and realistic dietary change. Clim. Change 129:253–65 [Google Scholar]
  96. Thow AM, Downs S, Jan S. 96.  2014. A systematic review of the effectiveness of food taxes and subsidies to improve diets: understanding the recent evidence. Nutr. Rev. 72:9551–65 [Google Scholar]
  97. 97. World Health Organization (WHO) 2015. Using Price Policies to Promote Healthier Diets Copenhagen, Den: WHO
  98. Wirsenius S, Hedenus F, Mohlin K. 98.  2011. Greenhouse gas taxes on animal food products: rationale, tax scheme and climate mitigation effects. Clim. Change 108:159–84 [Google Scholar]
  99. Edjabou LD, Smed S. 99.  2013. The effect of using consumption taxes on foods to promote climate friendly diets—the case of Denmark. Food Policy 39:84–96 [Google Scholar]
  100. Herrero M, Thornton PK, Gerber P, Reid RS. 100.  2009. Livestock, livelihoods and the environment: understanding the trade-offs. Curr. Opin. Environ. Sustain 1:111–20 [Google Scholar]
  101. Mekonnen MM, Hoekstra AY. 101.  2012. A global assessment of the water footprint of farm animal products. Ecosystems 15:401–15 [Google Scholar]
  102. Cederberg C, Sonesson U, Henriksson M, Sund V, Davis J. 102.  2009. Greenhouse Gas Emissions from Swedish Production of Meat, Milk and Eggs 1990 and 2005 Gothenburg: SIK
  103. Flysjö A, Henriksson M, Cederberg C, Ledgard S, Englund J-E. 103.  2011. The impact of various parameters on the carbon footprint of milk production in New Zealand and Sweden. Agric. Syst. 104:6459–69 [Google Scholar]
  104. Bryngelsson D, Wirsenius S, Hedenus F, Sonesson U. 104.  2015. How small can the climate impact of food be made through changes in diets and technology?. Food Policy. In press
  105. Sasu-Boakye Y, Cederberg C, Wirsenius S. 105.  2014. Localising livestock protein feed production and the impact on land use and greenhouse gas emissions. Animal 8:1339–48 [Google Scholar]
/content/journals/10.1146/annurev-environ-031113-093503
Loading
/content/journals/10.1146/annurev-environ-031113-093503
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error