1932

Abstract

As the Anthropocene advances, there are few parts of Earth that have not been impacted by human influence. Humans have had a long-sustained interaction with grassy ecosystems, but they are becoming severely impacted by direct and indirect impacts as the Anthropocene advances. Grassy ecosystems are easy to clear and cultivate, poorly protected, and poorly defined due to legacies of colonial narratives that can describe them as deforested, wastelands, or derived. Climate change, land conversion, and the erosion of the processes that have shaped grassy ecosystems for millennia have had cascading and cumulative impacts on grassy ecosystem extent and integrity. We examine how these changes are impacting grassy ecosystems, more specifically, those that fall into ecosystem uncertain space—a climate envelope where vegetation is not at equilibrium with climate and either grassy or forest ecosystems can occur. It is within this space that climate, CO, and disturbances (fire, herbivores) interact to determine the presence of grassy ecosystems. Changes to any of these components reduce the integrity of grassyecosystems. The loss of these ancient biodiverse ecosystems means loss of an array of ecosystem services fundamental to the lives of more than 1 billion people alongside Earth-system impacts of altered albedo, carbon, and hydrological cycles.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-environ-112420-015211
2022-10-17
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/energy/47/1/annurev-environ-112420-015211.html?itemId=/content/journals/10.1146/annurev-environ-112420-015211&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Ellis EC, Kaplan JO, Fuller DQ, Vavrus S, Goldewijk KK, Verburg PH. 2013. Used planet: a global history. PNAS 110:207978–85
    [Google Scholar]
  2. 2.
    Owen-Smith N. 2021. Only in Africa: The Ecology of Human Evolution Cambridge, UK: Cambridge Univ. Press
  3. 3.
    Steffen W, Crutzen PJ, McNeill JR 2016. The Anthropocene: Are humans now overwhelming the great forces of nature?. The Globalization and Environment Reader P Newell, T Roberts 27–34 Hoboken, NJ: Wiley
    [Google Scholar]
  4. 4.
    Bond WJ. 2019. Open Ecosystems: Ecology and Evolution Beyond the Forest Edge Oxford, UK: Oxford Univ. Press
  5. 5.
    Whittaker RH. 1975. Community and Ecosystems New York: Macmillan
  6. 6.
    Bond WJ 2005. Large parts of the world are brown or black: a different view on the ‘Green World’ hypothesis. J. Veg. Sci. 16:3261–66
    [Google Scholar]
  7. 7.
    Charles-Dominique T, Davies TJ, Hempson GP, Bezeng BS, Daru BH et al. 2016. Spiny plants, mammal browsers, and the origin of African savannas. PNAS 113:38E5572–79
    [Google Scholar]
  8. 8.
    Keeley JE, Pausas JG, Rundel PW, Bond WJ, Bradstock RA. 2011. Fire as an evolutionary pressure shaping plant traits. Trends Plant Sci. 16:8406–11
    [Google Scholar]
  9. 9.
    Lehmann CE, Anderson TM, Sankaran M, Higgins SI, Archibald S et al. 2014. Savanna vegetation-fire-climate relationships differ among continents. Science 343:6170548–52
    [Google Scholar]
  10. 10.
    Weigl PD, Knowles TW. 2014. Temperate mountain grasslands: a climate-herbivore hypothesis for origins and persistence. Biol. Rev. 89:2466–76
    [Google Scholar]
  11. 11.
    Lehmann CE, Griffith DM, Simpson KJ, Anderson TM, Archibald S et al. 2019. Functional diversification enabled grassy biomes to fill global climate space. bioRxiv 583625. https://doi.org/10.1101/583625
    [Crossref] [Google Scholar]
  12. 12.
    Still CJ, Pau S, Edwards EJ. 2014. Land surface skin temperature captures thermal environments of C3 and C4 grasses. Glob. Ecol. Biogeogr. 23:3286–96
    [Google Scholar]
  13. 13.
    Sandve SR, Fjellheim S. 2010. Did gene family expansions during the Eocene-Oligocene boundary climate cooling play a role in Pooideae adaptation to cool climates?. Mol. Ecol. 19:102075–88
    [Google Scholar]
  14. 14.
    Linder HP, Lehmann CE, Archibald S, Osborne CP, Richardson DM. 2018. Global grass (Poaceae) success underpinned by traits facilitating colonization, persistence and habitat transformation. Biol. Rev. 93:21125–44
    [Google Scholar]
  15. 15.
    Lewis SL, Maslin MA. 2015. Defining the Anthropocene. Nature 519:7542171–80
    [Google Scholar]
  16. 16.
    Cerling TE, Harris JM, MacFadden BJ, Leakey MG, Quade J et al. 1997. Global vegetation change through the Miocene/Pliocene boundary. Nature 389:6647153–58
    [Google Scholar]
  17. 17.
    Strömberg CA. 2011. Evolution of grasses and grassland ecosystems. Annu. Rev. Earth Planet. Sci. 39:517–44
    [Google Scholar]
  18. 18.
    Jacobs BF, Kingston JD, Jacobs LL. 1999. The origin of grass-dominated ecosystems. Ann. Mo. Bot. Garden 86:2590–643
    [Google Scholar]
  19. 19.
    Barbolini N, Woutersen A, Dupont-Nivet G, Silvestro D, Tardif D et al. 2020. Cenozoic evolution of the steppe-desert biome in Central Asia. Sci. Adv. 6:41eabb8227
    [Google Scholar]
  20. 20.
    Osborne CP, Beerling DJ. 2006. Nature's green revolution: the remarkable evolutionary rise of C4 plants. Philos. Trans. R. Soc. B. 361:1465173–94
    [Google Scholar]
  21. 21.
    Ehleringer JR, Cerling TE, Helliker BR. 1997. C4 photosynthesis, atmospheric CO2, and climate. Oecologia 112:3285–99
    [Google Scholar]
  22. 22.
    Davies TJ, Daru BH, Bezeng BS, Charles-Dominique T, Hempson GP et al. 2020. Savanna tree evolutionary ages inform the reconstruction of the paleoenvironment of our hominin ancestors. Sci. Rep. 10:12430
    [Google Scholar]
  23. 23.
    Bond WJ, Midgley GF. 2012. Carbon dioxide and the uneasy interactions of trees and savannah grasses. Philos. Trans. R. Soc. B. 367:1588601–12
    [Google Scholar]
  24. 24.
    Svenning J-C. 2002. A review of natural vegetation openness in north-western Europe. Biol. Conserv. 104:2133–48
    [Google Scholar]
  25. 25.
    Feurdean A, Ruprecht E, Molnár Z, Hutchinson SM, Hickler T. 2018. Biodiversity-rich European grasslands: ancient, forgotten ecosystems. Biol. Conserv. 228:224–32
    [Google Scholar]
  26. 26.
    Keeley JE, Rundel PW. 2005. Fire and the Miocene expansion of C4 grasslands. Ecol. Lett. 8:7683–90
    [Google Scholar]
  27. 27.
    Lehmann CE, Archibald SA, Hoffmann WA, Bond WJ. 2011. Deciphering the distribution of the savanna biome. New Phytol. 191:1197–209
    [Google Scholar]
  28. 28.
    Scheiter S, Higgins SI, Osborne CP, Bradshaw C, Lunt D et al. 2012. Fire and fire-adapted vegetation promoted C4 expansion in the late Miocene. New Phytol. 195:3653–66
    [Google Scholar]
  29. 29.
    Hoetzel S, Dupont L, Schefuß E, Rommerskirchen F, Wefer G. 2013. The role of fire in Miocene to Pliocene C4 grassland and ecosystem evolution. Nat. Geosci. 6:121027–30
    [Google Scholar]
  30. 30.
    Feakins SJ, Liddy HM, Tauxe L, Galy V, Feng X et al. 2020. Miocene C4 grassland expansion as recorded by the Indus Fan. Paleoceanogr. Paleoclimatol. 35:6e2020PA003856
    [Google Scholar]
  31. 31.
    Karp AT, Behrensmeyer AK, Freeman KH. 2018. Grassland fire ecology has roots in the late Miocene. PNAS 115:4812130–35
    [Google Scholar]
  32. 32.
    Han Y, Liu H, Zhou L, Hao Q, Cheng Y. 2020. Postglacial evolution of forest and grassland in southeastern Gobi (Northern China). Quat. Sci. Rev. 248:106611
    [Google Scholar]
  33. 33.
    Feurdean A, Vasiliev I. 2019. The contribution of fire to the late Miocene spread of grasslands in eastern Eurasia (Black Sea region). Sci. Rep. 9:6750
    [Google Scholar]
  34. 34.
    Daniau A-L, Goñi MFS, Martinez P, Urrego DH, Bout-Roumazeilles V et al. 2013. Orbital-scale climate forcing of grassland burning in southern Africa. PNAS 110:135069–73
    [Google Scholar]
  35. 35.
    Daniau A-L, Bartlein PJ, Harrison SP, Prentice IC, Brewer S et al. 2012. Predictability of biomass burning in response to climate changes. Global Biogeochem. Cycles 26:4GB4007
    [Google Scholar]
  36. 36.
    Miao Y, Wu F, Warny S, Fang X, Lu H et al. 2019. Miocene fire intensification linked to continuous aridification on the Tibetan Plateau. Geology 47:4303–7
    [Google Scholar]
  37. 37.
    Kaya F, Bibi F, Žliobaitė I, Eronen JT, Hui T, Fortelius M. 2018. The rise and fall of the Old World savannah fauna and the origins of the African savannah biome. Nat. Ecol. Evol. 2:2241–46
    [Google Scholar]
  38. 38.
    Dunn RE, Strömberg CA, Madden RH, Kohn MJ, Carlini AA. 2015. Linked canopy, climate, and faunal change in the Cenozoic of Patagonia. Science 347:6219258–61
    [Google Scholar]
  39. 39.
    Sato H, Kelley DI, Mayor SJ, Martin Calvo M, Cowling SA, Prentice IC 2021. Dry corridors opened by fire and low CO2 in Amazonian rainforest during the Last Glacial Maximum. Nat. Geosci. 14:8578–85
    [Google Scholar]
  40. 40.
    Pooley S. 2021. Fire in African landscapes. Oxford Research Encyclopedia of African History KM de Luna. Oxford, UK: Oxford Univ. Press https://doi.org/10.1093/acrefore/9780190277734.013.984
    [Crossref] [Google Scholar]
  41. 41.
    Bowman D. 2003. Australian landscape burning: a continental and evolutionary perspective. Fire in Ecosystems of South-West Western Australia: Impacts and Management I Abbott, N Burrows 107–18. Leiden, Neth.: Backhuys Publ.
    [Google Scholar]
  42. 42.
    Pyne SJ. 2019. Fire: A Brief History Seattle: Univ. Washington Press
  43. 43.
    Smith FA, Doughty CE, Malhi Y, Svenning J-C, Terborgh J. 2016. Megafauna in the Earth system. Ecography 39:299–108
    [Google Scholar]
  44. 44.
    Koch PL, Barnosky AD. 2006. Late Quaternary extinctions: state of the debate. Annu. Rev. Ecol. Evol. Syst. 37:215–50
    [Google Scholar]
  45. 45.
    Burney DA, Flannery TF. 2005. Fifty millennia of catastrophic extinctions after human contact. Trends Ecol. Evol. 20:7395–401
    [Google Scholar]
  46. 46.
    Sandom C, Faurby S, Sandel B, Svenning J-C. 2014. Global late Quaternary megafauna extinctions linked to humans, not climate change. Proc. R. Soc. B. 281:178720133254
    [Google Scholar]
  47. 47.
    Bakker ES, Gill JL, Johnson CN, Vera FW, Sandom CJ et al. 2016. Combining paleo-data and modern exclosure experiments to assess the impact of megafauna extinctions on woody vegetation. PNAS 113:4847–55
    [Google Scholar]
  48. 48.
    Sandom CJ, Ejrnæs R, Hansen MD, Svenning J-C. 2014. High herbivore density associated with vegetation diversity in interglacial ecosystems. PNAS 111:114162–67
    [Google Scholar]
  49. 49.
    Owen-Smith RN. 1988. Megaherbivores: The Influence of Very Large Body Size on Ecology Cambridge, UK: Cambridge Univ. Press
  50. 50.
    Karp AT, Faith JT, Marlon JR, Staver AC 2021. Global response of fire activity to late Quaternary grazer extinctions. Science 374:65711145–48
    [Google Scholar]
  51. 51.
    Marlon JR, Kelly R, Daniau A-L, Vannière B, Power MJ et al. 2016. Reconstructions of biomass burning from sediment-charcoal records to improve data-model comparisons. Biogeosciences 13:113225–44
    [Google Scholar]
  52. 52.
    Feurdean A, Vannière B, Finsinger W, Warren D, Connor SC et al. 2020. Fire hazard modulation by long-term dynamics in land cover and dominant forest type in eastern and central Europe. Biogeosciences 17:51213–30
    [Google Scholar]
  53. 53.
    Outram A. 2015. Pastoralism. Camb. World Hist 2:161–85
    [Google Scholar]
  54. 54.
    Dong S. 2016. Overview: pastoralism in the world. Building Resilience of Human-Natural Systems of Pastoralism in the Developing World S Dong, K-AS Kassam, JF Tourrand, RB Boone 1–37 Cham, Switz.: Springer
    [Google Scholar]
  55. 55.
    Ellis EC. 2021. Land use and ecological change: a 12,000-year history. Annu. Rev. Environ. Resour. 46:1–33
    [Google Scholar]
  56. 56.
    Vera FWM. 2000. Grazing Ecology and Forest History Wallingford, UK: CABI
  57. 57.
    Dengler J, Janišová M, Török P, Wellstein C. 2014. Biodiversity of Palaearctic grasslands: a synthesis. Agric. Ecosyst. Environ. 182:1–14
    [Google Scholar]
  58. 58.
    Giesecke T, Wolters S, van Leeuwen JF, van der Knaap PW, Leydet M, Brewer S. 2019. Postglacial change of the floristic diversity gradient in Europe. Nat. Commun. 10:5422
    [Google Scholar]
  59. 59.
    Mucina L. 2019. Biome: evolution of a crucial ecological and biogeographical concept. New Phytol. 222:197–114
    [Google Scholar]
  60. 60.
    Veldman JW. 2016. Clarifying the confusion: old-growth savannahs and tropical ecosystem degradation. Philos. Trans. R. Soc. B. 371:170320150306
    [Google Scholar]
  61. 61.
    Birks HJB. 2005. Mind the gap: How open were European primeval forests?. Trends Ecol. Evol. 20:4154–56
    [Google Scholar]
  62. 62.
    Ellenberg HH. 1988. Vegetation Ecology of Central Europe Cambridge, UK: Cambridge Univ. Press
  63. 63.
    Pärtel M, Bruun HH, Sammul M. 2005. Biodiversity in temperate European grasslands: origin and conservation. Grassl. Sci. Eur. 10:1–14
    [Google Scholar]
  64. 64.
    Benjaminsen TA, Hiernaux P. 2019. From desiccation to global climate change: a history of the desertification narrative in the West African Sahel, 1900–2018. Glob. Environ. 12:1206–36
    [Google Scholar]
  65. 65.
    Davis DK, Robbins P. 2018. Ecologies of the colonial present: pathological forestry from the taux de boisement to civilized plantations. Environ. Plann. E. 1:4447–69
    [Google Scholar]
  66. 66.
    Fairhead J, Leach M. 1996. Misreading the African Landscape: Society and Ecology in a Forest-Savanna Mosaic Cambridge, UK: Cambridge Univ. Press
  67. 67.
    Bond WJ, Silander JA Jr., Ranaivonasy J, Ratsirarson J. 2008. The antiquity of Madagascar's grasslands and the rise of C4 grassy biomes. J. Biogeogr. 35:101743–58
    [Google Scholar]
  68. 68.
    Joshi AA, Sankaran M, Ratnam J. 2018. ‘Foresting’ the grassland: historical management legacies in forest-grassland mosaics in southern India, and lessons for the conservation of tropical grassy biomes. Biol. Conserv. 224:144–52
    [Google Scholar]
  69. 69.
    Bakker ES, Olff H, Vandenberghe C, De Maeyer K, Smit R et al. 2004. Ecological anachronisms in the recruitment of temperate light-demanding tree species in wooded pastures. J. Appl. Ecol. 41:3571–82
    [Google Scholar]
  70. 70.
    Archibald S, Lehmann CE, Gómez-Dans JL, Bradstock RA. 2013. Defining pyromes and global syndromes of fire regimes. PNAS 110:166442–47
    [Google Scholar]
  71. 71.
    Sage RF. 2017. A portrait of the C4 photosynthetic family on the 50th anniversary of its discovery: species number, evolutionary lineages, and Hall of Fame. J. Exp. Bot. 68:2e11–28
    [Google Scholar]
  72. 72.
    Pausas JG, Bond WJ. 2020. On the three major recycling pathways in terrestrial ecosystems. Trends Ecol. Evol. 35:9767–75
    [Google Scholar]
  73. 73.
    Collatz GJ, Berry JA, Clark JS. 1998. Effects of climate and atmospheric CO2 partial pressure on the global distribution of C4 grasses: present, past, and future. Oecologia 114:4441–54
    [Google Scholar]
  74. 74.
    Polley HW, Mayeux HS, Johnson HB, Tischler CR. 1997. Atmospheric CO2, soil water, and shrub/grass ratios on rangelands. J. Range Manag. 50:3278–84
    [Google Scholar]
  75. 75.
    Morgan JA, Pataki DE, Körner C, Clark H, Del Grosso SJ et al. 2004. Water relations in grassland and desert ecosystems exposed to elevated atmospheric CO2. Oecologia 140:11–25
    [Google Scholar]
  76. 76.
    Osborne CP. 2008. Atmosphere, ecology and evolution: What drove the Miocene expansion of C4 grasslands?. J. Ecol. 96:135–45
    [Google Scholar]
  77. 77.
    Bond WJ, Midgley GF, Woodward FI. 2003. The importance of low atmospheric CO2 and fire in promoting the spread of grasslands and savannas. Glob. Change Biol. 9:7973–82
    [Google Scholar]
  78. 78.
    Buitenwerf R, Bond WJ, Stevens N, Trollope WSW. 2012. Increased tree densities in South African savannas: >50 years of data suggests CO2 as a driver. Glob. Change Biol. 18:2675–84
    [Google Scholar]
  79. 79.
    Devine AP, McDonald RA, Quaife T, Maclean IM. 2017. Determinants of woody encroachment and cover in African savannas. Oecologia 183:4939–51
    [Google Scholar]
  80. 80.
    Prentice IC, Harrison SP. 2009. Ecosystem effects of CO2 concentration: evidence from past climates. Climate Past 5:3297–307
    [Google Scholar]
  81. 81.
    Higgins SI, Scheiter S. 2012. Atmospheric CO2 forces abrupt vegetation shifts locally, but not globally. Nature 488:7410209–12
    [Google Scholar]
  82. 82.
    Archibald S, Lehmann CE, Belcher CM, Bond WJ, Bradstock RA et al. 2018. Biological and geophysical feedbacks with fire in the Earth system. Environ. Res. Lett. 13:3033003
    [Google Scholar]
  83. 83.
    Ramo R, Roteta E, Bistinas I, Van Wees D, Bastarrika A et al. 2021. African burned area and fire carbon emissions are strongly impacted by small fires undetected by coarse resolution satellite data. PNAS 118:9e2011160118
    [Google Scholar]
  84. 84.
    Andela N, Morton DC, Giglio L, Chen Y, van der Werf GR et al. 2017. A human-driven decline in global burned area. Science 356:63451356–62
    [Google Scholar]
  85. 85.
    Archibald S, Hempson GP. 2016. Competing consumers: contrasting the patterns and impacts of fire and mammalian herbivory in Africa. Philos. Trans. R. Soc. B. 371:170320150309
    [Google Scholar]
  86. 86.
    Hempson GP, Archibald S, Bond WJ. 2017. The consequences of replacing wildlife with livestock in Africa. Sci. Rep. 7:17196
    [Google Scholar]
  87. 87.
    Dara A, Baumann M, Freitag M, Hölzel N, Hostert P et al. 2020. Annual Landsat time series reveal post-Soviet changes in grazing pressure. Remote Sens. Environ. 239:111667
    [Google Scholar]
  88. 88.
    Dara A, Baumann M, Hölzel N, Hostert P, Kamp J et al. 2020. Post-Soviet land-use change affected fire regimes on the Eurasian steppes. Ecosystems 23:5943–56
    [Google Scholar]
  89. 89.
    Archibald S. 2016. Managing the human component of fire regimes: lessons from Africa. Philos. Trans. R. Soc. B. 371:169620150346
    [Google Scholar]
  90. 90.
    Sankaran M. 2019. Droughts and the ecological future of tropical savanna vegetation. J. Ecol. 107:41531–49
    [Google Scholar]
  91. 91.
    Beckett H. 2018. Firestorms in a mesic savanna-forest mosaic PhD Thesis Univ. Cape Town., S. Afr.
  92. 92.
    McCune JL, Pellatt MG, Vellend M. 2013. Multidisciplinary synthesis of long-term human-ecosystem interactions: a perspective from the Garry oak ecosystem of British Columbia. Biol. Conserv. 166:293–300
    [Google Scholar]
  93. 93.
    Pellatt MG, Gedalof Z. 2014. Environmental change in Garry oak (Quercus garryana) ecosystems: the evolution of an eco-cultural landscape. Biodivers. Conserv. 23:82053–67
    [Google Scholar]
  94. 94.
    Hoffmann WA, Geiger EL, Gotsch SG, Rossatto DR, Silva LC et al. 2012. Ecological thresholds at the savanna-forest boundary: how plant traits, resources and fire govern the distribution of tropical biomes. Ecol. Lett. 15:7759–68
    [Google Scholar]
  95. 95.
    Hoffmann WA, Jaconis SY, Mckinley KL, Geiger EL, Gotsch SG, Franco AC. 2012. Fuels or microclimate? Understanding the drivers of fire feedbacks at savanna–forest boundaries. Austral Ecol. 37:6634–43
    [Google Scholar]
  96. 96.
    Solofondranohatra CL, Vorontsova MS, Hackel J, Besnard G, Cable S et al. 2018. Grass functional traits differentiate forest and savanna in the Madagascar central highlands. Front. Ecol. Evol. 6:184
    [Google Scholar]
  97. 97.
    Pilon NA, Durigan G, Rickenback J, Pennington RT, Dexter KG et al. 2021. Shade alters savanna grass layer structure and function along a gradient of canopy cover. J. Veg. Sci. 32:1e12959
    [Google Scholar]
  98. 98.
    Cardoso AW, Oliveras I, Abernethy KA, Jeffery KJ, Glover S et al. 2021. A distinct ecotonal tree community exists at central African forest-savanna transitions. J. Ecol. 109:31170–83
    [Google Scholar]
  99. 99.
    Dirzo R, Young HS, Galetti M, Ceballos G, Isaac NJ, Collen B 2014. Defaunation in the Anthropocene. Science 345:6195401–6
    [Google Scholar]
  100. 100.
    Ripple WJ, Newsome TM, Wolf C, Dirzo R, Everatt KT et al. 2015. Collapse of the world's largest herbivores. Sci. Adv. 1:4e1400103
    [Google Scholar]
  101. 101.
    Taylor MS. 2011. Buffalo hunt: international trade and the virtual extinction of the North American bison. Am. Econ. Rev. 101:73162–95
    [Google Scholar]
  102. 102.
    O'Connor TG, Puttick JR, Hoffman MT. 2014. Bush encroachment in southern Africa: changes and causes. Afr. J. Range Forage Sci. 31:267–88
    [Google Scholar]
  103. 103.
    Matthiessen P, Douthwaite B. 1985. The impact of tsetse fly control campaigns on African wildlife. Oryx 19:4202–9
    [Google Scholar]
  104. 104.
    Karanth KK, Nichols JD, Karanth KU, Hines JE, Christensen NL Jr 2010. The shrinking ark: patterns of large mammal extinctions in India. Proc. R. Soc. B. 277:16901971–79
    [Google Scholar]
  105. 105.
    Harris G, Thirgood S, Hopcraft JGC, Cromsigt JP, Berger J. 2009. Global decline in aggregated migrations of large terrestrial mammals. Endangered Species Res 7:155–76
    [Google Scholar]
  106. 106.
    Staver AC, Abraham JO, Hempson GP, Karp AT, Faith JT. 2021. The past, present, and future of herbivore impacts on savanna vegetation. J. Ecol. 109:82804–22
    [Google Scholar]
  107. 107.
    Linnell JD, Cretois B, Nilsen EB, Rolandsen CM, Solberg EJ et al. 2020. The challenges and opportunities of coexisting with wild ungulates in the human-dominated landscapes of Europe's Anthropocene. Biol. Conserv. 244:108500
    [Google Scholar]
  108. 108.
    Pérez-Barbería FJ, Gordon IJ, Nores C. 2001. Evolutionary transitions among feeding styles and habitats in ungulates. Evol. Ecol. Res. 3:2221–30
    [Google Scholar]
  109. 109.
    Malhi Y, Doughty CE, Galetti M, Smith FA, Svenning J-C, Terborgh JW. 2016. Megafauna and ecosystem function from the Pleistocene to the Anthropocene. PNAS 113:4838–46
    [Google Scholar]
  110. 110.
    Archibald S, Twine W, Mthabini C, Stevens N. 2021. Browsing is a strong filter for savanna tree seedlings in their first growing season. J. Ecol. 109:103685–98
    [Google Scholar]
  111. 111.
    Russell FL, Fowler NL. 2004. Effects of white-tailed deer on the population dynamics of acorns, seedlings and small saplings of Quercus buckleyi. Plant Ecol 173:159–72
    [Google Scholar]
  112. 112.
    Smith FA, Hammond JI, Balk MA, Elliott SM, Lyons SK et al. 2016. Exploring the influence of ancient and historic megaherbivore extirpations on the global methane budget. PNAS 113:4874–79
    [Google Scholar]
  113. 113.
    Varga A, Molnár Z, Biró M, Demeter L, Gellény K et al. 2016. Changing year-round habitat use of extensively grazing cattle, sheep and pigs in East-Central Europe between 1940 and 2014: consequences for conservation and policy. Agric. Ecosyst. Environ. 234:142–53
    [Google Scholar]
  114. 114.
    Lasanta T, Arnáez J, Pascual N, Ruiz-Flaño P, Errea MP, Lana-Renault N. 2017. Space-time process and drivers of land abandonment in Europe. Catena 149:810–23
    [Google Scholar]
  115. 115.
    Archer SR, Andersen EM, Predick KI, Schwinning S, Steidl RJ, Woods SR. 2017. Woody plant encroachment: causes and consequences. Rangeland Systems D Briske 25–84 Cham, Switz: Springer
    [Google Scholar]
  116. 116.
    Stevens N, Erasmus BFN, Archibald S, Bond WJ. 2016. Woody encroachment over 70 years in South African savannahs: overgrazing, global change or extinction aftershock?. Philos. Trans. R. Soc. B. 371:170320150437
    [Google Scholar]
  117. 117.
    Voysey MD, Archibald S, Bond WJ, Donaldson JE, Staver AC, Greve M 2021. The role of browsers in maintaining the openness of savanna grazing lawns. J. Ecol. 109:2913–26
    [Google Scholar]
  118. 118.
    Jackson RB, Saunois M, Bousquet P, Canadell JG, Poulter B et al. 2020. Increasing anthropogenic methane emissions arise equally from agricultural and fossil fuel sources. Environ. Res. Lett. 15:7071002
    [Google Scholar]
  119. 119.
    Warren R, Price J, Graham E, Forstenhaeusler N, VanDerWal J. 2018. The projected effect on insects, vertebrates, and plants of limiting global warming to 1.5°C rather than 2°C. Science 360:6390791–95
    [Google Scholar]
  120. 120.
    Pausas JG, Bond WJ. 2021. Alternative biome states challenge the modelling of species’ niche shifts under climate change. J. Ecol. 109:123962–71
    [Google Scholar]
  121. 121.
    Stevens N, Archibald SA, Bond WJ. 2018. Transplant experiments point to fire regime as limiting savanna tree distribution. Front. Ecol. Evol. 6:137
    [Google Scholar]
  122. 122.
    Birks HJB, Willis KJ. 2008. Alpines, trees, and refugia in Europe. Plant Ecol. Divers. 1:2147–60
    [Google Scholar]
  123. 123.
    Pauli H, Gottfried M, Dullinger S, Abdaladze O, Akhalkatsi M et al. 2012. Recent plant diversity changes on Europe's mountain summits. Science 336:6079353–55
    [Google Scholar]
  124. 124.
    Wang N, Quesada B, Xia L, Butterbach-Bahl K, Goodale CL, Kiese R. 2019. Effects of climate warming on carbon fluxes in grasslands—a global meta-analysis. Glob. Change Biol. 25:51839–51
    [Google Scholar]
  125. 125.
    Wu Z, Dijkstra P, Koch GW, Peñuelas J, Hungate BA. 2011. Responses of terrestrial ecosystems to temperature and precipitation change: a meta-analysis of experimental manipulation. Glob. Change Biol. 17:2927–42
    [Google Scholar]
  126. 126.
    Reyes-Fox M, Steltzer H, Trlica MJ, McMaster GS, Andales AA et al. 2014. Elevated CO2 further lengthens growing season under warming conditions. Nature 510:7504259–62
    [Google Scholar]
  127. 127.
    Roy J, Picon-Cochard C, Augusti A, Benot M-L, Thiery L et al. 2016. Elevated CO2 maintains grassland net carbon uptake under a future heat and drought extreme. PNAS 113:226224–29
    [Google Scholar]
  128. 128.
    Sage RF, Kubien DS. 2003. Quo vadis C4? An ecophysiological perspective on global change and the future of C4 plants. Photosynth. Res. 77:2209–25
    [Google Scholar]
  129. 129.
    Lin D, Xia J, Wan S 2010. Climate warming and biomass accumulation of terrestrial plants: a meta-analysis. New Phytol. 188:1187–98
    [Google Scholar]
  130. 130.
    D'Odorico P, He Y, Collins S, De Wekker SF, Engel V, Fuentes JD. 2013. Vegetation-microclimate feedbacks in woodland-grassland ecotones. Glob. Ecol. Biogeogr. 22:4364–79
    [Google Scholar]
  131. 131.
    Way DA, Oren R. 2010. Differential responses to changes in growth temperature between trees from different functional groups and biomes: a review and synthesis of data. Tree Physiol. 30:6669–88
    [Google Scholar]
  132. 132.
    Venter ZS, Cramer MD, Hawkins H-J. 2018. Drivers of woody plant encroachment over Africa. Nat. Commun. 9:2272
    [Google Scholar]
  133. 133.
    Stevens N, Seal CE, Archibald S, Bond W 2014. Increasing temperatures can improve seedling establishment in arid-adapted savanna trees. Oecologia 175:31029–40
    [Google Scholar]
  134. 134.
    Finckh M, Wendefeuer J, Meller P. Frost-driven lower treelines in Angola and their implications for tropical forest-grassland mosaics. J. Veg. Sci. 32:5e13084
    [Google Scholar]
  135. 135.
    Holdo RM. 2005. Stem mortality following fire in Kalahari sand vegetation: effects of frost, prior damage, and tree neighbourhoods. Plant Ecol 180:177–86
    [Google Scholar]
  136. 136.
    Whitecross MA, Archibald S, Witkowski ETF 2012. Do freeze events create a demographic bottleneck for Colophospermum mopane?. S. Afr. J. Bot. 83:9–18
    [Google Scholar]
  137. 137.
    Lambers H, Chapin FS, Pons TL. 2008. Plant Physiological Ecology, Vol. 2 Cham, Switz.: Springer
  138. 138.
    Midgley GF, Aranibar JN, Mantlana KB, Macko S. 2004. Photosynthetic and gas exchange characteristics of dominant woody plants on a moisture gradient in an African savanna. Glob. Change Biol. 10:3309–17
    [Google Scholar]
  139. 139.
    Allen CD, Breshears DD, McDowell NG. 2015. On underestimation of global vulnerability to tree mortality and forest die-off from hotter drought in the Anthropocene. Ecosphere 6:81–55
    [Google Scholar]
  140. 140.
    Fensham RJ, Holman JE. 1999. Temporal and spatial patterns in drought-related tree dieback in Australian savanna. J. Appl. Ecol. 36:61035–50
    [Google Scholar]
  141. 141.
    Swemmer AM. 2020. Locally high, but regionally low: the impact of the 2014–2016 drought on the trees of semi-arid savannas, South Africa. Afr. J. Range Forage Sci. 37:131–42
    [Google Scholar]
  142. 142.
    Parr CL, Lehmann CE, Bond WJ, Hoffmann WA, Andersen AN. 2014. Tropical grassy biomes: misunderstood, neglected, and under threat. Trends Ecol. Evol. 29:4205–13
    [Google Scholar]
  143. 143.
    Ramankutty N, Foley JA. 1999. Estimating historical changes in global land cover: croplands from 1700 to 1992. Global Biogeochem. Cycles 13:4997–1027
    [Google Scholar]
  144. 144.
    Seppelt R, Manceur AM, Liu J, Fenichel EP, Klotz S 2019. Synchronized peak rate years of global resources use imply critical trade-offs in appropriation of natural resources and ecosystem services. Atlas of Ecosystem Services M Schröter, A Bonn, S Koltz, R Seppelt, C Baessler 301–7 Cham, Switz.: Springer
    [Google Scholar]
  145. 145.
    Samson FB, Knopf FL, Ostlie WR. 2004. Great Plains ecosystems: past, present, and future. Wildlife Soc. Bull. 32:16–15
    [Google Scholar]
  146. 146.
    White RP, Murray S, Rohweder M, Prince SD, Thompson KM. 2000. Grassland ecosystems Rep. World Res. Inst Washington, DC:
  147. 147.
    Henwood WD. 2010. Toward a strategy for the conservation and protection of the world's temperate grasslands. Great Plains Res. 20:121–34
    [Google Scholar]
  148. 148.
    Wesche K, Ambarlı D, Kamp J, Török P, Treiber J, Dengler J. 2016. The Palaearctic steppe biome: a new synthesis. Biodivers. Conserv. 25:122197–2231
    [Google Scholar]
  149. 149.
    Moon D. 2013. The Plough that Broke the Steppes: Agriculture and Environment on Russia's Grasslands, 1700–1914 Oxford, UK: Oxford Univ. Press
  150. 150.
    Smelansky IE, Tishkov AA. 2012. The steppe biome in Russia: ecosystem services, conservation status, and actual challenges. Eurasian Steppes. Ecological Problems and Livelihoods in a Changing World MJA Werger, M van Staalduinen 45–101 Cham, Switz.: Springer
    [Google Scholar]
  151. 151.
    Tian H, Banger K, Bo T, Dadhwal VK 2014. History of land use in India during 1880–2010: large-scale land transformations reconstructed from satellite data and historical archives. Glob. Planet. Change 121:78–88
    [Google Scholar]
  152. 152.
    Ratnam J, Tomlinson KW, Rasquinha DN, Sankaran M. 2016. Savannahs of Asia: antiquity, biogeography, and an uncertain future. Philos. Trans. R. Soc. B. 371:170320150305
    [Google Scholar]
  153. 153.
    Eigenbrod F, Beckmann M, Dunnett S, Graham L, Holland RA et al. 2020. Identifying agricultural frontiers for modeling global cropland expansion. One Earth 3:4504–14
    [Google Scholar]
  154. 154.
    Potapov P, Turubanova S, Hansen MC, Tyukavina A, Zalles V et al. 2021. Global maps of cropland extent and change show accelerated cropland expansion in the twenty-first century. Nat. Food 3:19–28
    [Google Scholar]
  155. 155.
    Beuchle R, Grecchi RC, Shimabukuro YE, Seliger R, Eva HD et al. 2015. Land cover changes in the Brazilian Cerrado and Caatinga biomes from 1990 to 2010 based on a systematic remote sensing sampling approach. Appl. Geogr. 58:116–27
    [Google Scholar]
  156. 156.
    Klink CA, Machado RB. 2005. Conservation of the Brazilian Cerrado. Conserv. Biol. 19:3707–13
    [Google Scholar]
  157. 157.
    Strassburg BB, Brooks T, Feltran-Barbieri R, Iribarrem A, Crouzeilles R et al. 2017. Moment of truth for the Cerrado hotspot. Nat. Ecol. Evol. 1:40099
    [Google Scholar]
  158. 158.
    Shoyama K, Braimoh AK, Avtar R, Saito O. 2018. Land transition and intensity analysis of cropland expansion in Northern Ghana. Environ. Manag. 62:5892–905
    [Google Scholar]
  159. 159.
    Veldman JW, Buisson E, Durigan G, Fernandes GW, Le Stradic S et al. 2015. Toward an old-growth concept for grasslands, savannas, and woodlands. Front. Ecol. Environ. 13:3154–62
    [Google Scholar]
  160. 160.
    Buisson E, Fidelis A, Overbeck GE, Schmidt IB, Durigan G et al. 2021. A research agenda for the restoration of tropical and subtropical grasslands and savannas. Restor. Ecol. 29:e13292
    [Google Scholar]
  161. 161.
    Kastner T, Matej S, Forrest M, Gingrich S, Haberl H et al. 2021. Land use intensification increasingly drives the spatiotemporal patterns of the global human appropriation of net primary production in the last century. Glob. Change Biol. 28:1307–22
    [Google Scholar]
  162. 162.
    Yuan ZY, Jiao F, Li YH, Kallenbach RL. 2016. Anthropogenic disturbances are key to maintaining the biodiversity of grasslands. Sci. Rep. 6:22132
    [Google Scholar]
  163. 163.
    Laurance WF, Sayer J, Cassman KG. 2014. Agricultural expansion and its impacts on tropical nature. Trends Ecol. Evol. 29:2107–16
    [Google Scholar]
  164. 164.
    Liu J, You L, Amini M, Obersteiner M, Herrero M et al. 2010. A high-resolution assessment on global nitrogen flows in cropland. PNAS 107:178035–40
    [Google Scholar]
  165. 165.
    Isbell F, Reich PB, Tilman D, Hobbie SE, Polasky S, Binder S. 2013. Nutrient enrichment, biodiversity loss, and consequent declines in ecosystem productivity. PNAS 110:2911911–16
    [Google Scholar]
  166. 166.
    Beckmann M, Gerstner K, Akin-Fajiye M, Ceauşu S, Kambach S et al. 2019. Conventional land-use intensification reduces species richness and increases production: a global meta-analysis. Glob. Change Biol. 25:61941–56
    [Google Scholar]
  167. 167.
    Scholtz R, Twidwell D. 2022. The last continuous grasslands on Earth: identification and conservation importance. Conserv. Sci. Pract. 4:e626
    [Google Scholar]
  168. 168.
    Jacobson AP, Riggio J, Tait AM, Baillie JE. 2019. Global areas of low human impact (‘Low Impact Areas’) and fragmentation of the natural world. Sci. Rep. 9:14179
    [Google Scholar]
  169. 169.
    Besnard AG, Secondi J. 2014. Hedgerows diminish the value of meadows for grassland birds: potential conflicts for agri-environment schemes. Agric. Ecosyst. Environ. 189:21–27
    [Google Scholar]
  170. 170.
    Reino L, Beja P, Osborne PE, Morgado R, Fabião A, Rotenberry JT. 2009. Distance to edges, edge contrast and landscape fragmentation: interactions affecting farmland birds around forest plantations. Biol. Conserv. 142:4824–38
    [Google Scholar]
  171. 171.
    Archibald S, Roy DP, van Wilgen BW, Scholes RJ. 2009. What limits fire? An examination of drivers of burnt area in Southern Africa. Glob. Change Biol. 15:3613–30
    [Google Scholar]
  172. 172.
    Hayward MW, Somers MJ. 2012. An introduction to fencing for conservation. Fencing for Conservation: Restriction of Evolutionary Potential or a Riposte to Threatening Processes? MW Hayward, MJ Somers 1–6 Cham, Switz.: Springer
    [Google Scholar]
  173. 173.
    Gadd ME. 2012. Barriers, the beef industry and unnatural selection: a review of the impact of veterinary fencing on mammals in Southern Africa. Fencing for Conservation: Restriction of Evolutionary Potential or a Riposte to Threatening Processes? MW Hayward, MJ Somers 153–86 Cham, Switz.: Springer
    [Google Scholar]
  174. 174.
    Fahrig L, Arroyo-Rodríguez V, Bennett JR, Boucher-Lalonde V, Cazetta E et al. 2019. Is habitat fragmentation bad for biodiversity?. Biol. Conserv. 230:179–86
    [Google Scholar]
  175. 175.
    Yan Y, Jarvie S, Zhang Q, Zhang S, Han P et al. 2021. Small patches are hotspots for biodiversity conservation in fragmented landscapes. Ecol. Indic. 130:108086
    [Google Scholar]
  176. 176.
    Tokarczyk N. 2017. Forest encroachment on temperate mountain meadows: scale, drivers, and current research directions. Geogr. Pol. 90:4463–80
    [Google Scholar]
  177. 177.
    Baudry J. 1991. Ecological consequences of grazing extensification and land abandonment: role of interactions between environment, society and techniques. Options Mediterr. A. 1991:1513–19
    [Google Scholar]
  178. 178.
    Queiroz C, Beilin R, Folke C, Lindborg R. 2014. Farmland abandonment: threat or opportunity for biodiversity conservation? A global review. Front. Ecol. Environ 12:5288–96
    [Google Scholar]
  179. 179.
    Eur. Comm. Dir.-Gen. Environ., Tsiripidis I, Piernik A, Janssen J, Molina J et al. 2017. European Red List of Habitats. Part 2, Terrestrial and Freshwater Habitats Luxemb.: EU Publ. Off.
  180. 180.
    Huang J, Yu H, Guan X, Wang G, Guo R. 2016. Accelerated dryland expansion under climate change. Nat. Clim. Change 6:2166–71
    [Google Scholar]
  181. 181.
    Mirzabaev A, Wu J, Evans J, Garcia-Oliva F, Hussein IAG et al. 2019. Desertification. In Climate Change and Land: An IPCC Special Report on Climate Change, Desertification, Land Degradation, Sustainable Land Management, Food Security, and Greenhouse Gas Fluxes in Terrestrial Ecosystems, ed. PR Shukla, J Skeg, E Calvo Buendia, V Masson-Delmotte, H-O Pörtner et al.249–343 Geneva: IPCC
    [Google Scholar]
  182. 182.
    Liu X, Feng S, Liu H, Ji J 2021. Patterns and determinants of woody encroachment in the eastern Eurasian steppe. Land Degrad. Dev. 32:133536–49
    [Google Scholar]
  183. 183.
    Stevens N, Lehmann CE, Murphy BP, Durigan G. 2017. Savanna woody encroachment is widespread across three continents. Glob. Change Biol. 23:1235–44
    [Google Scholar]
  184. 184.
    Keenan RJ. 2015. Climate change impacts and adaptation in forest management: a review. Annal. Forest Sci. 72:2145–67
    [Google Scholar]
  185. 185.
    Ondei S, Prior LD, Vigilante T, Bowman DM. 2017. Fire and cattle disturbance affects vegetation structure and rain forest expansion into savanna in the Australian monsoon tropics. J. Biogeogr. 44:102331–42
    [Google Scholar]
  186. 186.
    Song X-P, Hansen MC, Stehman SV, Potapov PV, Tyukavina A et al. 2018. Global land change from 1982 to 2016. Nature 560:7720639–43
    [Google Scholar]
  187. 187.
    Parr CL, Gray EF, Bond WJ. 2012. Cascading biodiversity and functional consequences of a global change-induced biome switch. Divers. Distrib. 18:5493–503
    [Google Scholar]
  188. 188.
    Andersen EM, Steidl RJ. 2019. Woody plant encroachment restructures bird communities in semiarid grasslands. Biol. Conserv. 240:108276
    [Google Scholar]
  189. 189.
    Jackson RB, Jobbágy EG, Avissar R, Roy SB, Barrett DJ et al. 2005. Trading water for carbon with biological carbon sequestration. Science 310:57561944–47
    [Google Scholar]
  190. 190.
    Scholes RJ. 2003. Convex relationships in ecosystems containing mixtures of trees and grass. Environ. Resour. Econ. 26:4559–74
    [Google Scholar]
  191. 191.
    Bond WJ, Stevens N, Midgley GF, Lehmann CE. 2019. The trouble with trees: afforestation plans for Africa. Trends Ecol. Evol. 34:11963–65
    [Google Scholar]
  192. 192.
    Zhang W, Brandt M, Tong X, Tian Q, Fensholt R. 2018. Impacts of the seasonal distribution of rainfall on vegetation productivity across the Sahel. Biogeosciences 15:1319–30
    [Google Scholar]
  193. 193.
    du Toit JC, Ramaswiela T, Pauw MJ, O'Connor TG. 2018. Interactions of grazing and rainfall on vegetation at Grootfontein in the eastern Karoo. Afr. J. Range Forage Sci. 35:3–4267–76
    [Google Scholar]
  194. 194.
    Kerns BK, Tortorelli C, Day MA, Nietupski T, Barros AM et al. 2020. Invasive grasses: A new perfect storm for forested ecosystems?. Forest Ecol. Manag. 463:117985
    [Google Scholar]
  195. 195.
    Axmanová I, Kalusová V, Danihelka J, Dengler J, Pergl J et al. 2021. Neophyte invasions in European grasslands. J. Veg. Sci. 32:2e12994
    [Google Scholar]
  196. 196.
    Moncrieff GR, Scheiter S, Langan L, Trabucco A, Higgins SI. 2016. The future distribution of the savannah biome: model-based and biogeographic contingency. Philos. Trans. R. Soc. B. 371:170320150311
    [Google Scholar]
  197. 197.
    Scheiter S, Kumar D, Corlett RT, Gaillard C, Langan L et al. 2020. Climate change promotes transitions to tall evergreen vegetation in tropical Asia. Glob. Change Biol. 26:95106–24
    [Google Scholar]
  198. 198.
    Sitch S, Huntingford C, Gedney N, Levy PE, Lomas M et al. 2008. Evaluation of the terrestrial carbon cycle, future plant geography and climate-carbon cycle feedbacks using five Dynamic Global Vegetation Models (DGVMs). Glob. Change Biol. 14:92015–39
    [Google Scholar]
  199. 199.
    Bastin J-F, Finegold Y, Garcia C, Mollicone D, Rezende M et al. 2019. The global tree restoration potential. Science 365:644876–79
    [Google Scholar]
  200. 200.
    Veldman JW, Overbeck GE, Negreiros D, Mahy G, Le Stradic S et al. 2015. Tyranny of trees in grassy biomes. Science 347:6221484–85
    [Google Scholar]
  201. 201.
    Erdős L, Ambarlı D, Anenkhonov OA, Bátori Z, Cserhalmi D et al. 2018. The edge of two worlds: a new review and synthesis on Eurasian forest-steppes. Appl. Veg. Sci. 21:3345–62
    [Google Scholar]
  202. 202.
    Heilmayr R, Echeverría C, Lambin EF. 2020. Impacts of Chilean forest subsidies on forest cover, carbon and biodiversity. Nat. Sustain. 3:9701–9
    [Google Scholar]
  203. 203.
    Retallack GJ. 2013. Global cooling by grassland soils of the geological past and near future. Annu. Rev. Earth Planet. Sci. 41:69–86
    [Google Scholar]
  204. 204.
    Scharlemann JP, Tanner EV, Hiederer R, Kapos V. 2014. Global soil carbon: understanding and managing the largest terrestrial carbon pool. Carbon Manag 5:181–91
    [Google Scholar]
  205. 205.
    Schellnhuber HJ. 1998. The accounting of biological sinks and sources under the Kyoto protocol: a step forwards or backwards for global environmental protection?.
  206. 206.
    Qi Y, Wei W, Chen C, Chen L 2019. Plant root-shoot biomass allocation over diverse biomes: a global synthesis. Glob. Ecol. Conserv. 18:e00606
    [Google Scholar]
  207. 207.
    Grace J, Jose JS, Meir P, Miranda HS, Montes RA 2006. Productivity and carbon fluxes of tropical savannas. J. Biogeogr. 33:3387–400
    [Google Scholar]
  208. 208.
    Hermoso V, Regos A, Morán-Ordóñez A, Duane A, Brotons L 2021. Tree planting: a double-edged sword to fight climate change in an era of megafires. Glob. Change Biol. 27:133001–3
    [Google Scholar]
  209. 209.
    Chang J, Ciais P, Gasser T, Smith P, Herrero M et al. 2021. Climate warming from managed grasslands cancels the cooling effect of carbon sinks in sparsely grazed and natural grasslands. Nat. Commun. 12:1118
    [Google Scholar]
  210. 210.
    Bonan GB. 2008. Forests and climate change: forcings, feedbacks, and the climate benefits of forests. Science 320:58821444–49
    [Google Scholar]
  211. 211.
    Bright RM, Zhao K, Jackson RB, Cherubini F. 2015. Quantifying surface albedo and other direct biogeophysical climate forcings of forestry activities. Glob. Change Biol. 21:93246–66
    [Google Scholar]
  212. 212.
    Cerasoli S, Yin J, Porporato A. 2021. Cloud cooling effects of afforestation and reforestation at midlatitudes. PNAS 118:33e2026241118
    [Google Scholar]
  213. 213.
    Fedele G, Donatti CI, Bornacelly I, Hole DG. 2021. Nature-dependent people: mapping human direct use of nature for basic needs across the tropics. Glob. Environ. Change 71:102368
    [Google Scholar]
  214. 214.
    Zhao Y, Liu Z, Wu J. 2020. Grassland ecosystem services: a systematic review of research advances and future directions. Landscape Ecol. 35:793–814
    [Google Scholar]
  215. 215.
    Anadón JD, Sala OE, Turner BL, Bennett EM. 2014. Effect of woody-plant encroachment on livestock production in North and South America. PNAS 111:3512948–53
    [Google Scholar]
  216. 216.
    Bengtsson J, Bullock JM, Egoh B, Everson C, Everson T et al. 2019. Grasslands—more important for ecosystem services than you might think. Ecosphere 10:2e02582
    [Google Scholar]
  217. 217.
    Ryan CM, Pritchard R, McNicol I, Owen M, Fisher JA, Lehmann C. 2016 Ecosystem services from southern African woodlands and their future under global change. Philos. Trans. R. Soc. B. 371:170320150312
    [Google Scholar]
  218. 218.
    Smit IP, Prins HH. 2015. Predicting the effects of woody encroachment on mammal communities, grazing biomass and fire frequency in African savannas. PLOS ONE 10:9e0137857
    [Google Scholar]
  219. 219.
    Gray EF, Bond WJ. 2013. Will woody plant encroachment impact the visitor experience and economy of conservation areas?. Koedoe: Afr. Prot. Area Conserv. Sci. 55:11–9
    [Google Scholar]
  220. 220.
    Luvuno L, Biggs R, Stevens N, Esler K. 2022. Perceived impacts of woody encroachment on ecosystem services in Hluhluwe, South Africa. Ecol. Soc. 27:14
    [Google Scholar]
  221. 221.
    Urgenson L, Schmidt AH, Combs J, Harrell S, Hinckley T et al. 2014. Traditional livelihoods, conservation and meadow ecology in Jiuzhaigou National Park, Sichuan, China. Hum. Ecol. 42:3481–91
    [Google Scholar]
  222. 222.
    Pennington RT, Lehmann CE, Rowland LM. 2018. Tropical savannas and dry forests. Curr. Biol. 28:9R541–45
    [Google Scholar]
  223. 223.
    Olson DM, Dinerstein E, Wikramanayake ED, Burgess ND, Powell GV et al. 2001. Terrestrial ecoregions of the world: a new map of life on Earth: a new global map of terrestrial ecoregions provides an innovative tool for conserving biodiversity. Bioscience 51:11933–38
    [Google Scholar]
  224. 224.
    Dengler J, Biurrun I, Boch S, Dembicz I, Török P 2020. Grasslands of the Palaearctic biogeographic realm: Introduction and synthesis. Encyclopedia of the World's Biomes J Dengler, P Török Amsterdam: Elsevier https://doi.org/10.1016/B978-0-12-409548-9.12432-7
    [Crossref] [Google Scholar]
  225. 225.
    Buisson E, Le Stradic S, Silveira FA, Durigan G, Overbeck GE et al. 2019. Resilience and restoration of tropical and subtropical grasslands, savannas, and grassy woodlands. Biol. Rev. 94:2590–609
    [Google Scholar]
/content/journals/10.1146/annurev-environ-112420-015211
Loading
/content/journals/10.1146/annurev-environ-112420-015211
Loading

Data & Media loading...

Supplemental Material

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error