1932

Abstract

Buoyant plumes form when glacial ice melts directly into the ocean or when subglacial meltwater is discharged to the ocean at depth. They play a key role in regulating heat transport from the ocean to the ice front, and in exporting glacial meltwater to the open ocean. This review summarizes current understanding of the dynamics of these plumes, focusing on theoretical developments and their predictions for submarine melt rates. These predictions are sensitive to ocean temperature, the magnitude and spatial distribution of subglacial discharge, the ambient stratification, and, in the case of sub–ice shelf plumes, the geometry of the ice shelf. However, current understanding relies heavily on parameterizations of melting and entrainment, for which there is little in the way of validation. New observational and experimental constraints are needed to elucidate the structure of the plumes and lend greater confidence to the models.

Keyword(s): climatecryosphereicemeltingoceanplumes
Loading

Article metrics loading...

/content/journals/10.1146/annurev-fluid-010719-060252
2020-01-05
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/fluid/52/1/annurev-fluid-010719-060252.html?itemId=/content/journals/10.1146/annurev-fluid-010719-060252&mimeType=html&fmt=ahah

Literature Cited

  1. Alley KE, Scambos TA, Siegfried MR, Fricker HA 2016. Impacts of warm water on Antarctic ice shelf stability through basal channel formation. Nat. Geosci. 9:290–93
    [Google Scholar]
  2. Baines PG 2005. Mixing regimes for the flow of dense fluid down slopes into stratified environments. J. Fluid Mech. 538:245–67
    [Google Scholar]
  3. Bartholomaus TC, Stearns LA, Sutherland DA, Shroyer EL, Nash JD et al. 2016. Contrasts in the response of adjacent fjords and glaciers to ice-sheet surface melt in West Greenland. Ann. Glaciol. 57:25–38
    [Google Scholar]
  4. Benn DI, Åström J, Zwinger T, Todd J, Nick FM et al. 2017. Melt-under-cutting and buoyancy-driven calving from tidewater glaciers: new insights from discrete element and continuum model simulations. J. Glaciol. 63:691–702
    [Google Scholar]
  5. Bonnebaigt R, Caulfield C, Linden P 2018. Detrainment of plumes from vertically distributed sources. Environ. Fluid Mech. 18:3–25
    [Google Scholar]
  6. Carroll D, Sutherland DA, Hudson B, Moon T, Catania GA et al. 2016. The impact of glacier geometry on meltwater plume structure and submarine melt in Greenland fjords. Geophys. Res. Lett. 43:9739–48
    [Google Scholar]
  7. Carroll D, Sutherland DA, Shroyer EL, Nash JD, Catania GA, Stearns LA 2017. Subglacial discharge-driven renewal of tidewater glacier fjords. J. Geophys. Res. Oceans 122:6611–29
    [Google Scholar]
  8. Cenedese C, Gatto VM 2016a. Impact of a localized source of subglacial discharge on the heat flux and submarine melting of a tidewater glacier: a laboratory study. J. Phys. Oceanogr. 46:3155–63
    [Google Scholar]
  9. Cenedese C, Gatto VM 2016b. Impact of two plumes’ interaction on submarine melting of tidewater glaciers: a laboratory study. J. Phys. Oceanogr. 46:361–67
    [Google Scholar]
  10. Cenedese C, Whitehead JA, Ascarelli T, Ohiwa M 2004. A dense current flowing down a sloping bottom in a rotating fluid. J. Phys. Oceanogr. 34:188–203
    [Google Scholar]
  11. Chandler D, Wadham J, Lis G, Cowton T, Sole A et al. 2013. Evolution of the subglacial drainage system beneath the Greenland Ice Sheet revealed by tracers. Nat. Geosci. 6:195–98
    [Google Scholar]
  12. Cooper P, Hunt GR 2010. The ventilated filling box containing a vertically distributed source of buoyancy. J. Fluid Mech. 646:39–58
    [Google Scholar]
  13. Corr HF, Jenkins A, Nicholls KW, Doake C 2002. Precise measurement of changes in ice-shelf thickness by phase-sensitive radar to determine basal melt rates. Geophys. Res. Lett. 29:73–173-4
    [Google Scholar]
  14. Cowton T, Slater D, Sole A, Goldberg D, Nienow P 2015. Modeling the impact of glacial runoff on fjord circulation and submarine melt rate using a new subgrid-scale parameterization for glacial plumes. J. Geophys. Res. Oceans 120:796–812
    [Google Scholar]
  15. Cuffey K, Paterson WSB 2010. The Physics of Glaciers Burlington, MA: Butterworth-Heinemann. 4th ed.
  16. Dallaston M, Hewitt I, Wells A 2015. Channelization of plumes beneath ice shelves. J. Fluid Mech. 785:109–34
    [Google Scholar]
  17. Dinniman MS, Asay-Davis XS, Galton-Fenzi BK, Holland PR, Jenkins A, Timmermann R 2016. Modeling ice shelf/ocean interaction in Antarctica: a review. Oceanography 29:144–53
    [Google Scholar]
  18. Dow CF, Lee WS, Greenbaum JS, Greene CA, Blankenship DD et al. 2018. Basal channels drive active surface hydrology and transverse ice shelf fracture. Sci. Adv. 4:eaao7212
    [Google Scholar]
  19. Drews R, Pattyn F, Hewitt I, Ng F, Berger S et al. 2017. Actively evolving subglacial conduits and eskers initiate ice shelf channels at an Antarctic grounding line. Nat. Commun. 8:15228
    [Google Scholar]
  20. Dutrieux P, Stewart C, Jenkins A, Nicholls KW, Corr HF et al. 2014. Basal terraces on melting ice shelves. Geophys. Res. Lett. 41:5506–13
    [Google Scholar]
  21. Dutrieux P, Vaughan DG, Corr HF, Jenkins A, Holland PR et al. 2013. Pine Island glacier ice shelf melt distributed at kilometre scales. Cryosphere 7:1543–55
    [Google Scholar]
  22. Ellison T, Turner J 1959. Turbulent entrainment in stratified flows. J. Fluid Mech. 6:423–48
    [Google Scholar]
  23. Ezhova E, Cenedese C, Brandt L 2018. Dynamics of three-dimensional turbulent wall plumes and implications for estimates of submarine glacier melting. J. Phys. Oceanogr. 48:1941–50
    [Google Scholar]
  24. Fountain AG, Walder JS 1998. Water flow through temperate glaciers. Rev. Geophys. 36:299–328
    [Google Scholar]
  25. Fricker HA, Scambos T, Bindschadler R, Padman L 2007. An active subglacial water system in West Antarctica mapped from space. Science 315:1544–48
    [Google Scholar]
  26. Fried MJ, Catania GA, Bartholomaus TC, Duncan D, Davis M et al. 2015. Distributed subglacial discharge drives significant submarine melt at a Greenland tidewater glacier. Geophys. Res. Lett. 42:9328–36
    [Google Scholar]
  27. Gade HG 1979. Melting of ice in sea water: a primitive model with application to the Antarctic ice shelf and icebergs. J. Phys. Oceanogr. 9:189–98
    [Google Scholar]
  28. Gayen B, Griffiths RW, Kerr RC 2016. Simulation of convection at a vertical ice face dissolving into saline water. J. Fluid Mech. 798:284–98
    [Google Scholar]
  29. Gladish CV, Holland DM, Holland P, Price SF 2012. Ice-shelf basal channels in a coupled ice/ocean model. J. Glaciol. 58:1227–44
    [Google Scholar]
  30. Gladish CV, Holland DM, Rosing-Asvid A, Behrens JW, Boje J 2015. Oceanic boundary conditions for Jakobshavn Glacier. Part I: variability and renewal of Ilulissat Icefjord waters, 2001–14. J. Phys. Oceanogr. 45:3–32
    [Google Scholar]
  31. Gladstone C, Woods AW 2014. Detrainment from a turbulent plume produced by a vertical line source of buoyancy in a confined, ventilated space. J. Fluid Mech. 742:35–49
    [Google Scholar]
  32. Hogg CA, Dalziel SB, Huppert HE, Imberger J 2017. Inclined gravity currents filling basins: the impact of peeling detrainment on transport and vertical structure. J. Fluid Mech. 820:400–23
    [Google Scholar]
  33. Holland DM, Jenkins A 1999. Modeling thermodynamic ice–ocean interactions at the base of an ice shelf. J. Phys. Oceanogr. 29:1787–800
    [Google Scholar]
  34. Holland DM, Jenkins A 2001. Adaptation of an isopycnic coordinate ocean model for the study of circulation beneath ice shelves. Mon. Weather Rev. 129:1905–27
    [Google Scholar]
  35. Holland DM, Thomas RH, De Young B, Ribergaard MH, Lyberth B 2008. Acceleration of Jakobshavn Isbræ triggered by warm subsurface ocean waters. Nat. Geosci. 1:659–64
    [Google Scholar]
  36. Holland PR, Feltham DL 2006. The effects of rotation and ice shelf topography on frazil-laden ice shelf water plumes. J. Phys. Oceanogr. 36:2312–27
    [Google Scholar]
  37. Holland PR, Feltham DL, Jenkins A 2007. Ice Shelf Water plume flow beneath Filchner-Ronne Ice Shelf, Antarctica. J. Geophys. Res. Oceans 112:C05044
    [Google Scholar]
  38. Huppert HE, Turner JS 1980. Ice blocks melting into a salinity gradient. J. Fluid Mech. 100:367–84
    [Google Scholar]
  39. Jackson RH, Shroyer EL, Nash JD, Sutherland DA, Carroll D et al. 2017. Near-glacier surveying of a subglacial discharge plume: implications for plume parameterizations. Geophys. Res. Lett. 44:6886–94
    [Google Scholar]
  40. Jackson RH, Straneo F, Sutherland DA 2014. Externally forced fluctuations in ocean temperature at Greenland glaciers in non-summer months. Nat. Geosci. 7:503–8
    [Google Scholar]
  41. Jacobs S, Helmer H, Doake C, Jenkins A, Frolich R 1992. Melting of ice shelves and the mass balance of Antarctica. J. Glaciol. 38:375–87
    [Google Scholar]
  42. Jenkins A 1991. A one-dimensional model of ice shelf-ocean interaction. J. Geophys. Res. 96:20671–77
    [Google Scholar]
  43. Jenkins A 2011. Convection driven melting near the grounding lines of ice shelves and tidewater glaciers. J. Phys. Oceanogr. 41:2279–94
    [Google Scholar]
  44. Jenkins A 2016. A simple model of the ice shelf–ocean boundary layer and current. J. Phys. Oceanogr. 46:1785–803
    [Google Scholar]
  45. Jenkins A, Bombosch A 1995. Modeling the effects of frazil ice crystals on the dynamics and thermodynamics of ice shelf water plumes. J. Geophys. Res. Oceans 100:6967–81
    [Google Scholar]
  46. Jenkins A, Dutrieux P, Jacobs SS, McPhail SD, Perrett JR et al. 2010. Observations beneath Pine Island Glacier in West Antarctica and implications for its retreat. Nat. Geosci. 3:468–72
    [Google Scholar]
  47. Jenkins A, Dutrieux P, Jacobs SS, Steig EJ, Gudmundsson GH et al. 2016. Decadal ocean forcing and Antarctic ice sheet response: lessons from the Amundsen Sea. Oceanography 29:106–17
    [Google Scholar]
  48. Jenkins A, Nicholls K, Corr H 2010. Observation and parameterization of ablation at the base of Ronne Ice Shelf. J. Phys. Oceanogr. 40:2298–312
    [Google Scholar]
  49. Josberger EG, Martin S 1981. A laboratory and theoretical study of the boundary layer adjacent to a vertical melting ice wall in salt water. J. Fluid Mech. 111:439–73
    [Google Scholar]
  50. Joughin I, Alley R, Holland D 2012. Ice-sheet response to oceanic forcing. Science 338:1172–78
    [Google Scholar]
  51. Jungclaus JH, Backhaus JO 1994. Application of a transient reduced gravity plume model to the Denmark Strait Overflow. J. Geophys. Res. Oceans 99:12375–96
    [Google Scholar]
  52. Kerr RC, McConnochie CD 2015. Dissolution of a vertical solid surface by turbulent compositional convection. J. Fluid Mech. 765:211–28
    [Google Scholar]
  53. Kimura S, Holland PR, Jenkins A, Piggott M 2014. The effect of meltwater plumes on the melting of a vertical glacier face. J. Phys. Oceanogr. 44:3099–117
    [Google Scholar]
  54. Lazeroms WM, Jenkins A, Gudmundsson GH, Van De Wal RS 2018. Modelling present-day basal melt rates for Antarctic ice shelves using a parametrization of buoyant meltwater plumes. Cryosphere 12:49–70
    [Google Scholar]
  55. LeBrocq A, Ross N, Griggs J, Bingham R, Corr H et al. 2013. Evidence from ice shelves for channelized meltwater flow beneath the Antarctic Ice Sheet. Nat. Geosci. 6:945–48
    [Google Scholar]
  56. Lewis E, Perkin R 1986. Ice pumps and their rates. J. Geophys. Res. Oceans 91:11756–62
    [Google Scholar]
  57. Little CM, Gnanadesikan A, Oppenheimer M 2009. How ice shelf morphology controls basal melting. J. Geophys. Res. Oceans 114:C12007
    [Google Scholar]
  58. Losch M 2008. Modeling ice shelf cavities in a z coordinate ocean general circulation model. J. Geophys. Res. Oceans 113:C08043
    [Google Scholar]
  59. MacAyeal DR 1985. Evolution of tidally triggered meltwater plumes below ice shelves. Oceanol. Antarct. Cont. Shelf 43:133–43
    [Google Scholar]
  60. Magorrian SJ, Wells AJ 2016. Turbulent plumes from a glacier terminus melting in a stratified ocean. J. Geophys. Res. Oceans 121:4670–96
    [Google Scholar]
  61. Makinson K, Holland PR, Jenkins A, Nicholls KW, Holland DM 2011. Influence of tides on melting and freezing beneath Filchner–Ronne Ice Shelf, Antarctica. Geophys. Res. Lett. 38:L06601
    [Google Scholar]
  62. Mankoff KD, Jacobs SS, Tulaczyk SM, Stammerjohn SE 2012. The role of Pine Island Glacier ice shelf basal channels in deep-water upwelling, polynyas and ocean circulation in Pine Island Bay, Antarctica. Ann. Glaciol. 53:123–28
    [Google Scholar]
  63. Mankoff KD, Straneo F, Cenedese C, Das SB, Richards CG, Singh H 2016. Structure and dynamics of a subglacial discharge plume in a Greenlandic fjord. J. Geophys. Res. Oceans 121:8670–88
    [Google Scholar]
  64. McConnochie CD, Kerr RC 2016a. The effect of a salinity gradient on the dissolution of a vertical ice face. J. Fluid Mech. 791:589–607
    [Google Scholar]
  65. McConnochie CD, Kerr RC 2016b. The turbulent wall plume from a vertically distributed source of buoyancy. J. Fluid Mech. 787:237–53
    [Google Scholar]
  66. McConnochie CD, Kerr RC 2017a. Enhanced ablation of a vertical ice wall due to an external freshwater plume. J. Fluid Mech. 810:429–47
    [Google Scholar]
  67. McConnochie CD, Kerr RC 2017b. Testing a common ice-ocean parameterization with laboratory experiments. J. Geophys. Res. Oceans 122:5905–15
    [Google Scholar]
  68. McPhee M 2008. Air-Ice-Ocean Interaction: Turbulent Ocean Boundary Layer Exchange Processes New York: Springer-Verlag
  69. McPhee MG, Morison JH, Nilsen F 2008. Revisiting heat and salt exchange at the ice-ocean interface: Ocean flux and modeling considerations. J. Geophys. Res. Oceans 113:C06014
    [Google Scholar]
  70. Meiburg E, Kneller B 2010. Turbidity currents and their deposits. Annu. Rev. Fluid Mech. 42:135–56
    [Google Scholar]
  71. Millgate T, Holland PR, Jenkins A, Johnson HL 2013. The effect of basal channels on oceanic ice-shelf melting. J. Geophys. Res. Oceans 118:6951–64
    [Google Scholar]
  72. Mondal M, Gayen B, Griffiths RW, Kerr RC 2019. Ablation of sloping ice faces into polar seawater. J. Fluid Mech. 863:545–71
    [Google Scholar]
  73. Morton B, Taylor G, Turner J 1956. Turbulent gravitational convection from maintained and instantaneous sources. Proc. R. Soc. Lond. A 234:1–23
    [Google Scholar]
  74. Mugford R, Dowdeswell J 2011. Modeling glacial meltwater plume dynamics and sedimentation in high-latitude fjords. J. Geophys. Res. Earth Surf. 116:F01023
    [Google Scholar]
  75. Nicholls K, Makinson K, Johnson M 1997. New oceanographic data from beneath Ronne ice shelf, Antarctica. Geophys. Res. Lett. 24:167–70
    [Google Scholar]
  76. O'Leary M, Christoffersen P 2013. Calving on tidewater glaciers amplified by submarine frontal melting. Cryosphere 7:119–28
    [Google Scholar]
  77. Parker G, Fukushima Y, Pantin HM 1986. Self-accelerating turbidity currents. J. Fluid Mech. 171:145–81
    [Google Scholar]
  78. Payne A, Holland P, Shepherd A, Rutt I, Jenkins A, Joughin I 2007.Numerical modeling of ocean-ice interactions under Pine Island Bay's ice shelf. J. Geophys. Res. Oceans 112:C10019
  79. Pedersen FB 1980. Dense bottom currents in rotating ocean. J. Hydraul. Div. 106:1291–308
    [Google Scholar]
  80. Pollard D, DeConto R 2012. Description of a hybrid ice sheet-shelf model, and application to Antarctica. Geosci. Model Dev. 5:1273–95
    [Google Scholar]
  81. Powell RD 1990. Glacimarine processes at grounding-line fans and their growth to ice-contact deltas. Geol. Soc. Lond. Spec. Publ. 53:53–73
    [Google Scholar]
  82. Pritchard H, Ligtenberg S, Fricker H, Vaughan D, Van den Broeke M, Padman L 2012. Antarctic ice-sheet loss driven by basal melting of ice shelves. Nature 484:502–6
    [Google Scholar]
  83. Rees Jones D, Wells A 2018. Frazil-ice growth rate and dynamics in mixed layers and sub-ice-shelf plumes. Cryosphere 12:25–38
    [Google Scholar]
  84. Rignot E, Fenty I, Xu Y, Cai C, Kemp C 2015. Undercutting of marine-terminating glaciers in West Greenland. Geophys. Res. Lett. 42:5909–17
    [Google Scholar]
  85. Rignot E, Steffen K 2008. Channelized bottom melting and stability of floating ice shelves. Geophys. Res. Lett. 35:L02503
    [Google Scholar]
  86. Salcedo-Castro J, Bourgault D, Bentley SJ, deYoung B 2013. Non-hydrostatic modeling of cohesive sediment transport associated with a subglacial buoyant jet in glacial fjords: a process-oriented approach. Ocean Model. 63:30–39
    [Google Scholar]
  87. Schild KM, Hawley RL, Morriss BF 2016. Subglacial hydrology at Rink Isbræ, West Greenland inferred from sediment plume appearance. Ann. Glaciol. 57:118–27
    [Google Scholar]
  88. Sciascia R, Straneo F, Cenedese C, Heimbach P 2013. Seasonal variability of submarine melt rate and circulation in an East Greenland fjord. J. Geophys. Res. Oceans 118:2492–506
    [Google Scholar]
  89. Sergienko O 2013. Basal channels on ice shelves. J. Geophys. Res. Earth Surf. 118:1342–55
    [Google Scholar]
  90. Slater DA, Goldberg DN, Nienow PW, Cowton TR 2016. Scalings for submarine melting at tidewater glaciers from buoyant plume theory. J. Phys. Oceanogr. 46:1839–55
    [Google Scholar]
  91. Slater DA, Nienow P, Cowton T, Goldberg D, Sole A 2015. Effect of near-terminus subglacial hydrology on tidewater glacier submarine melt rates. Geophys. Res. Lett. 42:2861–68
    [Google Scholar]
  92. Slater DA, Nienow P, Goldberg D, Cowton T, Sole A 2017a. A model for tidewater glacier undercutting by submarine melting. Geophys. Res. Lett. 44:2360–68
    [Google Scholar]
  93. Slater DA, Nienow P, Sole A, Cowton T, Mottram R et al. 2017b. Spatially distributed runoff at the grounding line of a large Greenlandic tidewater glacier inferred from plume modelling. J. Glaciol. 63:309–23
    [Google Scholar]
  94. Smedsrud LH, Jenkins A 2004. Frazil ice formation in an ice shelf water plume. J. Geophys. Res. Oceans 109:C03025
    [Google Scholar]
  95. Sparks R, Carey S, Sigurdsson H 1991. Sedimentation from gravity currents generated by turbulent plumes. Sedimentology 38:839–56
    [Google Scholar]
  96. Stearns LA, Smith BE, Hamilton GS 2008. Increased flow speed on a large East Antarctic outlet glacier caused by subglacial floods. Nat. Geosci. 1:827–31
    [Google Scholar]
  97. Stevens LA, Straneo F, Das SB, Plueddemann AJ, Kukulya AL, Morlighem M 2016. Linking glacially modified waters to catchment-scale subglacial discharge using autonomous underwater vehicle observations. Cryosphere 10:417–32
    [Google Scholar]
  98. Stiperski I, Kavčič I, Grisogono B, Durran DR 2007. Including Coriolis effects in the Prandtl model for katabatic flow. Q. J. R. Meteorol. Soc. 133:101–6
    [Google Scholar]
  99. Straneo F, Cenedese C 2015. The dynamics of Greenland's glacial fjords and their role in climate. Annu. Rev. Mar. Sci. 7:89–112
    [Google Scholar]
  100. Straneo F, Heimbach P 2013. North Atlantic warming and the retreat of Greenland's outlet glaciers. Nature 504:36–43
    [Google Scholar]
  101. Straneo F, Sutherland DA, Holland D, Gladish C, Hamilton GS et al. 2012. Characteristics of ocean waters reaching Greenland's glaciers. Ann. Glaciol. 53:202–10
    [Google Scholar]
  102. Sutherland BR, Barrett KJ, Gingras MK 2015. Clay settling in fresh and salt water. Environ. Fluid Mech. 15:147–60
    [Google Scholar]
  103. Turner JS 1979. Buoyancy Effects in Fluids Cambridge, UK: Cambridge Univ. Press
  104. Turner JS 1986. Turbulent entrainment: the development of the entrainment assumption, and its application to geophysical flows. J. Fluid Mech. 173:431–71
    [Google Scholar]
  105. Van den Broeke M, Van Lipzig N 2003. Factors controlling the near-surface wind field in Antarctica. Mon. Weather Rev. 131:733–43
    [Google Scholar]
  106. Vaughan DG, Corr HF, Bindschadler RA, Dutrieux P, Gudmundsson GH et al. 2012. Subglacial melt channels and fracture in the floating part of Pine Island Glacier, Antarctica. J. Geophys. Res. Earth Surf. 117:F03012
    [Google Scholar]
  107. Wang J, Ikeda M, Saucier FJ 2003. A theoretical, two-layer, reduced-gravity model for descending dense water flow on continental shelves/slopes. J. Geophys. Res. Oceans 108:3161
    [Google Scholar]
  108. Wells A, Worster MG 2008. A geophysical-scale model of vertical natural convection boundary layers. J. Fluid Mech. 609:111–37
    [Google Scholar]
  109. Woods AW 1992. Melting and dissolving. J. Fluid Mech. 239:429–48
    [Google Scholar]
  110. Woods AW 2010. Turbulent plumes in nature. Annu. Rev. Fluid Mech. 42:391–412
    [Google Scholar]
  111. Xu Y, Rignot E, Fenty I, Menemenlis D, Flexas MM 2013. Subaqueous melting of Store Glacier, West Greenland from three-dimensional, high-resolution numerical modeling and ocean observations. Geophys. Res. Lett. 40:4648–53
    [Google Scholar]
  112. Xu Y, Rignot E, Menemenlis D, Koppes M 2012. Numerical experiments on subaqueous melting of Greenland tidewater glaciers in response to ocean warming and enhanced subglacial discharge. Ann. Glaciol. 53:229–34
    [Google Scholar]
/content/journals/10.1146/annurev-fluid-010719-060252
Loading
/content/journals/10.1146/annurev-fluid-010719-060252
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error