1932

Abstract

The cerebral cortex is at the core of brain functions that are thought to be particularly developed in the human species. Human cortex specificities stem from divergent features of corticogenesis, leading to increased cortical size and complexity. Underlying cellular mechanisms include prolonged patterns of neuronal generation and maturation, as well as the amplification of specific types of stem/progenitor cells. While the gene regulatory networks of corticogenesis appear to be largely conserved among all mammals including humans, they have evolved in primates, particularly in the human species, through the emergence of rapidly divergent transcriptional regulatory elements, as well as recently duplicated novel genes. These human-specific molecular features together control key cellular milestones of human corticogenesis and are often affected in neurodevelopmental disorders, thus linking human neural development, evolution, and diseases.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-genet-071719-020705
2021-11-23
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/genet/55/1/annurev-genet-071719-020705.html?itemId=/content/journals/10.1146/annurev-genet-071719-020705&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Agoglia RM, Sun D, Birey F, Yoon S, Miura Y et al. 2021. Primate cell fusion disentangles regulatory divergence in neurodevelopment. Nature 592:421–27
    [Google Scholar]
  2. 2. 
    Amiri A, Coppola G, Scuderi S, Wu F, Roychowdhury T et al. 2018. Transcriptome and epigenome landscape of human cortical development modeled in organoids. Science 362:6420eaat6720
    [Google Scholar]
  3. 3. 
    Andrews MG, Subramanian L, Kriegstein AR 2020. mTor signaling regulates the morphology and migration of outer radial glia in developing human cortex. eLife 9:e58737
    [Google Scholar]
  4. 4. 
    Arcila ML, Betizeau M, Cambronne XA, Guzman E, Doerflinger N et al. 2014. Novel primate miRNAs coevolved with ancient target genes in germinal zone-specific expression patterns. Neuron 81:61255–62
    [Google Scholar]
  5. 5. 
    Arlotta P, Paşca SP. 2019. Cell diversity in the human cerebral cortex: from the embryo to brain organoids. Curr. Opin. Neurobiol. 56:194–98
    [Google Scholar]
  6. 6. 
    Ataman B, Boulting GL, Harmin DA, Yang MG, Baker-Salisbury M et al. 2016. Evolution of Osteocrin as an activity-regulated factor in the primate brain. Nature 539:7628242–47
    [Google Scholar]
  7. 7. 
    Azevedo FAC, Carvalho LRB, Grinberg LT, Farfel JM, Ferretti REL et al. 2009. Equal numbers of neuronal and nonneuronal cells make the human brain an isometrically scaled-up primate brain. J. Comp. Neurol. 513:5532–41
    [Google Scholar]
  8. 8. 
    Baala L, Briault S, Etchevers HC, Laumonnier F, Natiq A et al. 2007. Homozygous silencing of T-box transcription factor EOMES leads to microcephaly with polymicrogyria and corpus callosum agenesis. Nat. Genet. 39:4454–56
    [Google Scholar]
  9. 9. 
    Bae B-I, Tietjen I, Atabay KD, Evrony GD, Johnson MB et al. 2014. Evolutionarily dynamic alternative splicing of GPR56 regulates regional cerebral cortical patterning. Science 343:764–68
    [Google Scholar]
  10. 10. 
    Bakken TE, Miller JA, Ding SL, Sunkin SM, Smith KA et al. 2016. A comprehensive transcriptional map of primate brain development. Nature 535:7612367–75
    [Google Scholar]
  11. 11. 
    Balaram P, Kaas JH. 2014. Towards a unified scheme of cortical lamination for primary visual cortex across primates: insights from NeuN and VGLUT2 immunoreactivity. Front. Neuroanat. 8:81
    [Google Scholar]
  12. 12. 
    Beaulieu-Laroche L, Toloza EHS, van der Goes M-S, Lafourcade M, Barnagian D et al. 2018. Enhanced dendritic compartmentalization in human cortical neurons. Cell 175:3643–51.e14
    [Google Scholar]
  13. 13. 
    Benavides-Piccione R, Ballesteros-Yáñez I, DeFelipe J, Yuste R 2002. Cortical area and species differences in dendritic spine morphology. J. Neurocytol. 31:337–46
    [Google Scholar]
  14. 14. 
    Benito-Kwiecinski S, Giandomenico S, Sutcliffe M, Riis E, Freire-Pritchett P et al. 2021. An early cell shape transition drives evolutionary expansion of the human forebrain. Cell 184:2084–102.e19
    [Google Scholar]
  15. 15. 
    Berto S, Mendizabal I, Usui N, Toriumi K, Chatterjee P et al. 2019. Accelerated evolution of oligodendrocytes in the human brain. PNAS 116:4824334–42
    [Google Scholar]
  16. 16. 
    Betizeau M, Cortay V, Patti D, Pfister S, Gautier E et al. 2013. Precursor diversity and complexity of lineage relationships in the outer subventricular zone of the primate. Neuron 80:2442–57
    [Google Scholar]
  17. 17. 
    Bianchi S, Stimpson CD, Bauernfeind AL, Schapiro SJ, Baze WB et al. 2013. Dendritic morphology of pyramidal neurons in the chimpanzee neocortex: regional specializations and comparison to humans. Cereb. Cortex. 23:102429–36
    [Google Scholar]
  18. 18. 
    Bianchi S, Stimpson CD, Duka T, Larsen MD, Janssen WGM et al. 2013. Synaptogenesis and development of pyramidal neuron dendritic morphology in the chimpanzee neocortex resembles humans. PNAS 110:Suppl. 210395–401
    [Google Scholar]
  19. 19. 
    Bonnefont J, Vanderhaeghen P. 2021. Neuronal fate acquisition and specification: time for a change. Curr. Opin. Neurobiol. 66:195–204
    [Google Scholar]
  20. 20. 
    Boyd JL, Skove SL, Rouanet JP, Pilaz LJ, Bepler T et al. 2015. Human-chimpanzee differences in a FZD8 enhancer alter cell-cycle dynamics in the developing neocortex. Curr. Biol 25:6772–79
    [Google Scholar]
  21. 21. 
    Brunetti-Pierri N, Berg JS, Scaglia F, Belmont J, Bacino CA et al. 2008. Recurrent reciprocal 1q21.1 deletions and duplications associated with microcephaly or macrocephaly and developmental and behavioral abnormalities. Nat. Genet. 40:1466–71
    [Google Scholar]
  22. 22. 
    Buckner RL. 2013. The cerebellum and cognitive function: 25 years of insight from anatomy and neuroimaging. 80807–15
  23. 23. 
    Buckner RL, Krienen FM. 2013. The evolution of distributed association networks in the human brain. Trends Cogn. Sci. 17:12648–65
    [Google Scholar]
  24. 24. 
    Bufill E, Agustí J, Blesa R, Agusti J, Blesa R 2011. Human neoteny revisited: the case of synaptic plasticity. Am. J. Hum. Biol. 23:6729–39
    [Google Scholar]
  25. 25. 
    Calarco JA, Xing Y, Cáceres M, Calarco JP, Xiao X et al. 2007. Global analysis of alternative splicing differences between humans and chimpanzees. Genes Dev 21:222963–75
    [Google Scholar]
  26. 26. 
    Capra JA, Erwin GD, McKinsey G, Rubenstein JLR, Pollard KS. 2013. Many human accelerated regions are developmental enhancers. Philos. Trans. R. Soc. B 368:163220130025
    [Google Scholar]
  27. 27. 
    Cárdenas A, Villalba A, de Juan Romero C, Picó E, Kyrousi C et al. 2018. Evolution of cortical neurogenesis in amniotes controlled by Robo signaling levels. Cell 174:590–606.e21
    [Google Scholar]
  28. 28. 
    Cardoso-Moreira M, Halbert J, Valloton D, Velten B, Chen C et al. 2019. Gene expression across mammalian organ development. Nature 571:7766505–9
    [Google Scholar]
  29. 29. 
    Caviness VS Jr., Takahashi T, Nowakowski RS. 1995. Numbers, time and neocortical neuronogenesis: a general developmental and evolutionary model. Trends Neurosci 18:9379–83
    [Google Scholar]
  30. 30. 
    Charrier C, Joshi K, Coutinho-Budd J, Kim JE, Lambert N et al. 2012. Inhibition of SRGAP2 function by its human-specific paralogs induces neoteny during spine maturation. Cell 149:4923–35
    [Google Scholar]
  31. 31. 
    Charvet CJ, Šimić G, Kostović I, Knezović V, Vukšić M et al. 2017. Coevolution in the timing of GABAergic and pyramidal neuron maturation in primates. Proc. R. Soc. B 284:186120171169
    [Google Scholar]
  32. 32. 
    Chenn A, Walsh CA. 2002. Regulation of cerebral cortical size by control of cell cycle exit in neural precursors. Science 297:5580365–69
    [Google Scholar]
  33. 33. 
    Davidson EH, Erwin DH 2006. Gene regulatory networks and the evolution of animal body plans. Science 311:796–800
    [Google Scholar]
  34. 34. 
    de la Torre-Ubieta L, Stein JL, Won H, Opland CK, Liang D et al. 2018. The dynamic landscape of open chromatin during human cortical neurogenesis. Cell 172:1–2289–304.e18
    [Google Scholar]
  35. 35. 
    DeFelipe J. 2011. The evolution of the brain, the human nature of cortical circuits, and intellectual creativity. Front. Neuroanat. 5:29
    [Google Scholar]
  36. 36. 
    DeFelipe J, Alonso-Nanclares L, Arellano JI. 2002. Microstructure of the neocortex: comparative aspects. J. Neurocytol. 31:299–316
    [Google Scholar]
  37. 37. 
    Dehay C, Kennedy H. 2007. Cell-cycle control and cortical development. Nat. Rev. Neurosci. 8:6438–50
    [Google Scholar]
  38. 38. 
    del Toro D, Ruff T, Cederfjäll E, Villalba A, Seyit-Bremer G et al. 2017. Regulation of cerebral cortex folding by controlling neuronal migration via FLRT adhesion molecules. Cell 169:4621–35.e16
    [Google Scholar]
  39. 39. 
    Delgado AC, Maldonado-Soto AR, Silva-Vargas V, Mizrak D, von Känel T et al. 2021. Release of stem cells from quiescence reveals gliogenic domains in the adult mouse brain. Science 372:65471205–9
    [Google Scholar]
  40. 40. 
    Dennis MY, Eichler EE. 2016. Human adaptation and evolution by segmental duplication. Curr. Opin. Genet. Dev. 41:44–52
    [Google Scholar]
  41. 41. 
    Dennis MY, Harshman L, Nelson BJ, Penn O, Cantsilieris S et al. 2017. The evolution and population diversity of human-specific segmental duplications. Nat. Ecol. Evol. 1:30069
    [Google Scholar]
  42. 42. 
    Desikan RS, Barkovich AJ. 2016. Malformations of cortical development. Ann. Neurol. 80:797–810
    [Google Scholar]
  43. 43. 
    Doan RN, Bae B-I, Cubelos B, Chang C, Hossain AA et al. 2016. Mutations in human accelerated regions disrupt cognition and social behavior. Cell 167:2341–54.e12
    [Google Scholar]
  44. 44. 
    Doan RN, Shin T, Walsh CA 2018. Evolutionary changes in transcriptional regulation: insights into human behavior and neurological conditions. Annu. Rev. Neurosci. 41:185–206
    [Google Scholar]
  45. 45. 
    Džaja D, Hladnik A, Bičanić I, Baković M, Petanjek Z. 2014. Neocortical calretinin neurons in primates: increase in proportion and microcircuitry structure. Front. Neuroanat. 8:103
    [Google Scholar]
  46. 46. 
    Elston GN, Benavides-Piccione R, DeFelipe J. 2001. The pyramidal cell in cognition: a comparative study in human and monkey. J. Neurosci. 21:17RC163
    [Google Scholar]
  47. 47. 
    Erwin GD, Oksenberg N, Truty RM, Kostka D, Murphy KK et al. 2014. Integrating diverse datasets improves develomental enhancer prediction. PLOS Comput. Biol. 10:6e1003677
    [Google Scholar]
  48. 48. 
    Esk C, Lindenhofe D, Haendeler S, Wester RA, Pflug F et al. 2020. A human tissue screen identifies a regulator of ER secretion as a brain-size determinant. Science 370:6519935–41
    [Google Scholar]
  49. 49. 
    Espuny-Camacho I, Michelsen KA, Gall D, Linaro D, Hasche A et al. 2013. Pyramidal neurons derived from human pluripotent stem cells integrate efficiently into mouse brain circuits in vivo. Neuron 77:3440–56
    [Google Scholar]
  50. 50. 
    Eze UC, Bhaduri A, Haeussler M, Nowakowski TJ, Kriegstein AR. 2020. Single-cell atlas of early human brain development highlights heterogeneity of human neuroepithelial cells and early radial glia. Nat. Neurosci. 24:584–94
    [Google Scholar]
  51. 51. 
    Fan X, Dong J, Zhong S, Wei Y, Wu Q et al. 2018. Spatial transcriptomic survey of human embryonic cerebral cortex by single-cell RNA-seq analysis. Cell Res 28:7730–45
    [Google Scholar]
  52. 52. 
    Fan X, Fu Y, Zhou X, Sun L, Yang M et al. 2020. Single-cell transcriptome analysis reveals cell lineage specification in temporal-spatial patterns in human cortical development. Sci. Adv. 6:34eaaz2978
    [Google Scholar]
  53. 53. 
    Fiddes IT, Lodewijk GA, Mooring M, Bosworth CM, Ewing AD et al. 2018. Human-specific NOTCH2NL genes affect notch signaling and cortical neurogenesis. Cell 173:1356–69.e22
    [Google Scholar]
  54. 54. 
    Field AR, Jacobs FMJ, Fiddes IT, Phillips APR, Reyes-Ortiz AM et al. 2019. Structurally conserved primate LncRNAs are transiently expressed during human cortical differentiation and influence cell-type-specific genes. Stem Cell Rep 12:2245–57
    [Google Scholar]
  55. 55. 
    Fietz SA, Kelava I, Vogt J, Wilsch-Bräuninger M, Stenzel D et al. 2010. OSVZ progenitors of human and ferret neocortex are epithelial-like and expand by integrin signaling. Nat. Neurosci. 13:6690–99
    [Google Scholar]
  56. 56. 
    Fietz SA, Lachmann R, Brandl H, Kircher M, Samusik N et al. 2012. Transcriptomes of germinal zones of human and mouse fetal neocortex suggest a role of extracellular matrix in progenitor self-renewal. PNAS 109:2911836–41
    [Google Scholar]
  57. 57. 
    Florio M, Albert M, Taverna E, Namba T, Brandl H et al. 2015. Human-specific gene ARHGAP11B promotes basal progenitor amplification and neocortex expansion. Science 347:62291465–70
    [Google Scholar]
  58. 58. 
    Florio M, Heide M, Pinson A, Brandl H, Albert M et al. 2018. Evolution and cell-type specificity of human-specific genes preferentially expressed in progenitors of fetal neocortex. eLife 7:e32332
    [Google Scholar]
  59. 59. 
    Foerster P, Daclin M, Asm S, Faucourt M, Boletta A et al. 2017. mTORC1 signaling and primary cilia are required for brain ventricle morphogenesis. Development 144:2201–10
    [Google Scholar]
  60. 60. 
    Forrest MP, Parnell E, Penzes P 2018. Dendritic structural plasticity and neuropsychiatric disease. Nat. Rev. Neurosci. 19:4215–34
    [Google Scholar]
  61. 61. 
    Fortna A, Kim Y, MacLaren E, Marshall K, Hahn G et al. 2004. Lineage-specific gene duplication and loss in human and great ape evolution. PLOS Biol 2:7e207
    [Google Scholar]
  62. 62. 
    Fossati M, Pizzarelli R, Schmidt ER, Kupferman JV, Stroebel D et al. 2016. SRGAP2 and its human-specific paralog co-regulate the development of excitatory and inhibitory synapses. Neuron 91:2356–69
    [Google Scholar]
  63. 63. 
    Fujita I, Shitamukai A, Kusumoto F, Mase S, Suetsugu T et al. 2020. Endfoot regeneration restricts radial glial state and prevents translocation into the outer subventricular zone in early mammalian brain development. Nat. Cell Biol. 22:126–37
    [Google Scholar]
  64. 64. 
    Funato K, Smith RC, Saito Y, Tabar V. 2021. Dissecting the impact of regional identity and the oncogenic role of human-specific NOTCH2NL in an hESC model of H3.3G34R-mutant glioma. Cell Stem Cell 28:894–905.e7
    [Google Scholar]
  65. 65. 
    Gaiano N, Fishell G. 2002. The role of Notch in promoting glial and neural stem cell fates. Annu. Rev. Neurosci. 25:471–90
    [Google Scholar]
  66. 66. 
    Gaspard N, Bouschet T, Hourez R, Dimidschstein J, Naeije G et al. 2008. An intrinsic mechanism of corticogenesis from embryonic stem cells. Nature 455:7211351–57
    [Google Scholar]
  67. 67. 
    Geirsdottir L, David E, Keren-Shaul H, Weiner A, Bohlen SC et al. 2019. Cross-species single-cell analysis reveals divergence of the primate microglia program. Cell 179:71609–22.e16
    [Google Scholar]
  68. 68. 
    Gould SJ. 1992. Ontogeny and phylogeny—revisited and reunited. Bioessays 14:275–79
    [Google Scholar]
  69. 69. 
    Govindan S, Jabaudon D. 2017. Coupling progenitor and neuronal diversity in the developing neocortex. FEBS Letters 591:3960–77
    [Google Scholar]
  70. 70. 
    Guerrier S, Coutinho-Budd J, Sassa T, Gresset A, Jordan NV et al. 2009. The F-BAR domain of srGAP2 induces membrane protrusions required for neuronal migration and morphogenesis. Cell 138:5990–1004
    [Google Scholar]
  71. 71. 
    Guo S, Bao S 2010. srGAP2 arginine methylation regulates cell migration and cell spreading through promoting dimerization. J. Biol. Chem. 285:4535133–41
    [Google Scholar]
  72. 72. 
    Hansen DV, Lui JH, Flandin P, Yoshikawa K, Rubenstein JL et al. 2013. Non-epithelial stem cells and cortical interneuron production in the human ganglionic eminences. Nat. Neurosci. 16:111576–87
    [Google Scholar]
  73. 73. 
    Hansen DV, Lui JH, Parker PRL, Kriegstein AR 2010. Neurogenic radial glia in the outer subventricular zone of human neocortex. Nature 464:7288554–61
    [Google Scholar]
  74. 74. 
    Heide M, Haffner C, Murayama A, Kurotaki Y, Shinohara H et al. 2020. Human-specific ARHGAP11B increases size and folding of primate neocortex in the fetal marmoset. Science 369:6503546–50
    [Google Scholar]
  75. 75. 
    Herculano-Houzel S. 2009. The human brain in numbers: a linearly scaled-up primate brain. Front. Hum. Neurosci. 3:31
    [Google Scholar]
  76. 76. 
    Hodge RD, Bakken TE, Miller JA, Smith KA, Barkan ER et al. 2019. Conserved cell types with divergent features in human versus mouse cortex. Nature 573:61–68
    [Google Scholar]
  77. 77. 
    Hou Q-Q, Xiao Q, Sun X-Y, Ju X-C, Luo Z-G 2021. TBC1D3 promotes neural progenitor proliferation by suppressing the histone methyltransferase G9a. Sci. Adv. 7:3eaba8053
    [Google Scholar]
  78. 78. 
    Hu WF, Chahrour MH, Walsh CA. 2014. The diverse genetic landscape of neurodevelopmental disorders. Annu. Rev. Genom. Hum. Genet. 15:195–213
    [Google Scholar]
  79. 79. 
    Huang W, Bhaduri A, Velmeshev D, Wang S, Wang L et al. 2020. Origins and proliferative states of human oligodendrocyte precursor cells. Cell 182:3594–608.e11
    [Google Scholar]
  80. 80. 
    Hutsler JJ, Lee DG, Porter KK 2005. Comparative analysis of cortical layering and supragranular layer enlargement in rodent carnivore and primate species. Brain Res 1052:171–81
    [Google Scholar]
  81. 81. 
    Huttenlocher PR. 1979. Synaptic density in human frontal cortex—developmental changes and effects of aging. Brain Res 163:195–205
    [Google Scholar]
  82. 82. 
    Iwata R, Casimir P, Vanderhaeghen P 2020. Mitochondrial dynamics in postmitotic cells regulate neurogenesis. Science 369:6505858–62
    [Google Scholar]
  83. 83. 
    Iwata R, Vanderhaeghen P. 2020. Tempus fugit: how time flies during development. Science 369:65101431–32
    [Google Scholar]
  84. 84. 
    Iwata R, Vanderhaeghen P. 2021. Regulatory roles of mitochondria and metabolism in neurogenesis. Curr. Opin. Neurobiol. 69:231–40
    [Google Scholar]
  85. 85. 
    Johnson MB, Kawasawa YI, Mason CE, Krsnik Ž, Coppola G et al. 2009. Functional and evolutionary insights into human brain development through global transcriptome analysis. Neuron 62:4494–509
    [Google Scholar]
  86. 86. 
    Johnson MB, Sun X, Kodani A, Borges-Monroy R, Girskis KM et al. 2018. Aspm knockout ferret reveals an evolutionary mechanism governing cerebral cortical size letter. Nature 556:7701370–75
    [Google Scholar]
  87. 87. 
    Ju X-C, Hou Q-Q, Sheng A-L, Wu K-Y, Zhou Y et al. 2016. The hominoid-specific gene TBC1D3 promotes generation of basal neural progenitors and induces cortical folding in mice. eLife 5:e18197
    [Google Scholar]
  88. 88. 
    Kaessmann H. 2010. Origins, evolution, and phenotypic impact of new genes. Genome Res. 20:1313–26
    [Google Scholar]
  89. 89. 
    Kageyama R, Ohtsuka T, Shimojo H, Imayoshi I. 2008. Dynamic Notch signaling in neural progenitor cells and a revised view of lateral inhibition. Nat. Neurosci. 11:111247–51
    [Google Scholar]
  90. 90. 
    Kaindl AM, Passemard S, Kumar P, Kraemer N, Issa L et al. 2010. Many roads lead to primary autosomal recessive microcephaly. Prog. Neurobiol. 90:3363–83
    [Google Scholar]
  91. 91. 
    Kalebic N, Gilardi C, Albert M, Namba T, Long KR et al. 2018. Human-specific ARHGAP11B induces hallmarks of neocortical expansion in developing ferret neocortex. eLife 7:e41241
    [Google Scholar]
  92. 92. 
    Kang HJ, Kawasawa YI, Cheng F, Zhu Y, Xu X et al. 2011. Spatio-temporal transcriptome of the human brain. Nature 478:7370483–89
    [Google Scholar]
  93. 93. 
    Kanton S, Boyle MJ, He Z, Santel M, Weigert A et al. 2019. Organoid single-cell genomic atlas uncovers human-specific features of brain development. Nature 574:418–22
    [Google Scholar]
  94. 94. 
    Khrameeva E, Kurochkin I, Han D, Guijarro P, Kanton S et al. 2020. Single-cell-resolution transcriptome map of human, chimpanzee, bonobo, and macaque brains. Genome Res 30:5776–89
    [Google Scholar]
  95. 95. 
    King M-C, Wilson AC. 1975. Evolution at two levels in humans and chimpanzees. Science 188:4184107–16
    [Google Scholar]
  96. 96. 
    Klingler E, Francis F, Jabaudon D, Cappello S 2021. Mapping the molecular and cellular complexity of cortical malformations. Science 371:6527eaba4517
    [Google Scholar]
  97. 97. 
    Kriegstein A, Alvarez-Buylla A. 2009. The glial nature of embryonic and adult neural stem cells. Annu. Rev. Neurosci. 32:149–84
    [Google Scholar]
  98. 98. 
    Krienen FM, Goldman M, Zhang Q, del Rosario RCH, Florio M et al. 2020. Innovations present in the primate interneuron repertoire. Nature 586:7828262–69
    [Google Scholar]
  99. 99. 
    Kronenberg ZN, Fiddes IT, Gordon D, Murali S, Cantsilieris S et al. 2018. High-resolution comparative analysis of great ape genomes. Science 360:6393eaar6343
    [Google Scholar]
  100. 100. 
    Krumm N, O'Roak BJ, Shendure J, Eichler EE 2014. A de novo convergence of autism genetics and molecular neuroscience. Trends Neurosci 37:295–105
    [Google Scholar]
  101. 101. 
    Laclef C, Métin C. 2018. Conserved rules in embryonic development of cortical interneurons. Semin. Cell Dev. Biol. 76:86–100
    [Google Scholar]
  102. 102. 
    Lambert N, Lambot M-A, Bilheu A, Albert V, Englert Y et al. 2011. Genes expressed in specific areas of the human fetal cerebral cortex display distinct patterns of evolution. PLOS ONE 6:3e17753
    [Google Scholar]
  103. 103. 
    Lein ES, Belgard TG, Hawrylycz M, Molnar Z. 2017. Transcriptomic perspectives on neocortical structure, development, evolution, and disease. Annu. Rev. Neurosci. 40:629–52
    [Google Scholar]
  104. 104. 
    Lim L, Mi D, Llorca A, Marín O 2018. Development and functional diversification of cortical interneurons. Neuron 100:294–313
    [Google Scholar]
  105. 105. 
    Lin L, Shen S, Jiang P, Sato S, Davidson BL, Xing Y 2010. Evolution of alternative splicing in primate brain transcriptomes. Hum. Mol. Genet. 19:152958–73
    [Google Scholar]
  106. 106. 
    Linaro D, Vermaercke B, Iwata R, Ramaswamy A, Libé-Philippot B et al. 2019. Xenotransplanted human cortical neurons reveal species-specific development and functional integration into mouse visual circuits. Neuron 104:5972–86.e6
    [Google Scholar]
  107. 107. 
    Liu J, Liu W, Yang L, Wu Q, Zhang H et al. 2017. The primate-specific gene TMEM14B marks outer radial glia cells and promotes cortical expansion and folding. Cell Stem Cell 21:5635–49.e8
    [Google Scholar]
  108. 108. 
    Liu X, Somel M, Tang L, Yan Z, Jiang X et al. 2012. Extension of cortical synaptic development distinguishes humans from chimpanzees and macaques. Genome Res 22:4611–22
    [Google Scholar]
  109. 109. 
    Llinares-Benadero C, Borrell V. 2019. Deconstructing cortical folding: genetic, cellular and mechanical determinants. Nat. Rev. Neurosci. 20:161–76
    [Google Scholar]
  110. 110. 
    Lui JH, Hansen DV, Kriegstein AR. 2011. Development and evolution of the human neocortex. Cell 146:18–36
    [Google Scholar]
  111. 111. 
    Lui JH, Nowakowski TJ, Pollen AA, Javaherian A, Kriegstein AR, Oldham MC. 2014. Radial glia require PDGFD-PDGFRβ signalling in human but not mouse neocortex. Nature 515:264–68
    [Google Scholar]
  112. 112. 
    Lukaszewicz A, Savatier P, Cortay V, Giroud P, Huissoud C et al. 2005. G1 phase regulation, area-specific cell cycle control, and cytoarchitectonics in the primate cortex. Neuron 47:3353–64
    [Google Scholar]
  113. 113. 
    Malatesta P, Hartfuss E, Götz M 2000. Isolation of radial glial cells by fluorescent-activated cell sorting reveals a neural lineage. Development 127:5253–63
    [Google Scholar]
  114. 114. 
    Marchetto MC, Hrvoj-Mihic B, Kerman BE, Yu DX, Vadodaria KC et al. 2019. Species-specific maturation profiles of human, chimpanzee and bonobo neural cells. eLife 8:e37527
    [Google Scholar]
  115. 115. 
    Maroof AM, Keros S, Tyson JA, Ying S-W, Ganat YM et al. 2013. Directed differentiation and functional maturation of cortical interneurons from human embryonic stem cells. Cell Stem Cell 12:5559–72
    [Google Scholar]
  116. 116. 
    Martinez-Cerdeno V, Noctor SC, Kriegstein AR. 2006. Estradiol stimulates progenitor cell division in the ventricular and subventricular zones of the embryonic neocortex. Eur. J. Neurosci. 24:123475–88
    [Google Scholar]
  117. 117. 
    Martínez-Martínez , De Juan Romero C, Fernández V, Cárdenas A, Götz M, Borrell V 2016. A restricted period for formation of outer subventricular zone defined by Cdh1 and Trnp1 levels. Nat. Commun. 7:11812
    [Google Scholar]
  118. 118. 
    Matsuda M, Hayashi H, Garcia-Ojalvo J, Yoshioka-Kobayashi K, Kageyama R et al. 2020. Species-specific segmentation clock periods are due to differential biochemical reaction speeds. Science 369:65091450–55
    [Google Scholar]
  119. 119. 
    McLean CY, Reno PL, Pollen AA, Bassan AI, Capellini TD et al. 2011. Human-specific loss of regulatory DNA and the evolution of human-specific traits. Nature 471:7337216–19
    [Google Scholar]
  120. 120. 
    Miller JA, Ding SL, Sunkin SM, Smith KA, Ng L et al. 2014. Transcriptional landscape of the prenatal human brain. Nature 508:7495199–206
    [Google Scholar]
  121. 121. 
    Mohan H, Verhoog MB, Doreswamy KK, Eyal G, Aardse R et al. 2015. Dendritic and axonal architecture of individual pyramidal neurons across layers of adult human neocortex. Cereb. Cortex 25:124839–53
    [Google Scholar]
  122. 122. 
    Monod J, Jacob F. 1961. Teleonomic mechanisms in cellular metabolism, growth, and differentiation. Cold Spring Harb. Symp. Quant. Biol. 26:389–401
    [Google Scholar]
  123. 123. 
    Montgomery SH, Capellini I, Venditti C, Barton RA, Mundy NI. 2011. Adaptive evolution of four microcephaly genes and the evolution of brain size in anthropoid primates. Mol. Biol. Evol. 28:1625–38
    [Google Scholar]
  124. 124. 
    Mora-Bermúdez F, Badsha F, Kanton S, Camp JG, Vernot B et al. 2016. Differences and similarities between human and chimpanzee neural progenitors during cerebral cortex development. eLife 5:e18683
    [Google Scholar]
  125. 125. 
    Moriano J, Boeckx C 2020. Modern human changes in regulatory regions implicated in cortical development. BMC Genom 21:304
    [Google Scholar]
  126. 126. 
    Mosca S, Raponi M, Meneghello A, Buratti E, Woods CG, Baralle D. 2017. Human NDE1 splicing and mammalian brain development. Sci. Rep. 7:43504
    [Google Scholar]
  127. 127. 
    Mountcastle VB. 1997. The columnar organization of the neocortex. Brain 120:701–22
    [Google Scholar]
  128. 128. 
    Mrzljak L, Uylings HBM, Van Eden GG, Judáš M. 1991. Neuronal development in human prefrontal cortex in prenatal and postnatal stages. Prog. Brain Res 85:185–222
    [Google Scholar]
  129. 129. 
    Namba T, Dóczi J, Pinson A, Xing L, Kalebic N et al. 2020. Human-specific ARHGAP11B acts in mitochondria to expand neocortical progenitors by glutaminolysis. Neuron 105:5867–81.e9
    [Google Scholar]
  130. 130. 
    Nicholas CR, Chen J, Tang Y, Southwell DG, Chalmers N et al. 2013. Functional maturation of hPSC-derived forebrain interneurons requires an extended timeline and mimics human neural development. Cell Stem Cell 12:5573–86
    [Google Scholar]
  131. 131. 
    Noctor SC, Flint AC, Weissman TA, Dammerman RS, Kriegstein AR. 2001. Neurons derived from radial glial cells establish radial units in neocortex. Nature 409:6821714–20
    [Google Scholar]
  132. 132. 
    Noctor SC, Martínez-Cerdeño V, Ivic L, Kriegstein AR 2004. Cortical neurons arise in symmetric and asymmetric division zones and migrate through specific phases. Nat. Neurosci. 7:2136–44
    [Google Scholar]
  133. 133. 
    Noctor SC, Martínez-Cerdeño V, Kriegstein AR. 2007. Contribution of intermediate progenitor cells to cortical histogenesis. Arch. Neurol. 64:5639–42
    [Google Scholar]
  134. 134. 
    Nowakowski TJ, Bhaduri A, Pollen AA, Alvarado B, Mostajo-Radji MA et al. 2017. Spatiotemporal gene expression trajectories reveal developmental hierarchies of the human cortex. Science 358:1318–23
    [Google Scholar]
  135. 135. 
    Nowakowski TJ, Pollen AA, Sandoval-Espinosa C, Kriegstein AR. 2016. Transformation of the radial glia scaffold demarcates two stages of human cerebral cortex development. Neuron 91:1219–27
    [Google Scholar]
  136. 136. 
    Nowakowski TJ, Rani N, Golkaram M, Zhou HR, Alvarado B et al. 2018. Regulation of cell-type-specific transcriptomes by microRNA networks during human brain development. Nat. Neurosci. 21:1784–92
    [Google Scholar]
  137. 137. 
    Oberst P, Agirman G, Jabaudon D 2019. Principles of progenitor temporal patterning in the developing invertebrate and vertebrate nervous system. Curr. Opin. Neurobiol. 56:185–93
    [Google Scholar]
  138. 138. 
    Ohno S. 1999. Gene duplication and the uniqueness of vertebrate genomes circa 1970–1999. Semin. Cell Dev. Biol. 10:5517–22
    [Google Scholar]
  139. 139. 
    Otani T, Marchetto MC, Gage FH, Simons BD, Livesey FJ. 2016. 2D and 3D stem cell models of primate cortical development identify species-specific differences in progenitor behavior contributing to brain size. Cell Stem Cell 18:4467–80
    [Google Scholar]
  140. 140. 
    Paredes MF, James D, Gil-Perotin S, Kim H, Cotter JA et al. 2016. Extensive migration of young neurons into the infant human frontal lobe. Science 354:6308aaf7073
    [Google Scholar]
  141. 141. 
    Pebworth M-P, Ross J, Andrews M, Bhaduri A, Kriegstein AR. 2021. Human intermediate progenitor diversity during cortical development. PNAS 118:26e2019415118
    [Google Scholar]
  142. 142. 
    Pessoa L. 2014. Understanding brain networks and brain organization. Phys. Life Rev. 11:400–35
    [Google Scholar]
  143. 143. 
    Petanjek Z, Judas M, Simic G, Rasin MR, Uylings HBM et al. 2011. Extraordinary neoteny of synaptic spines in the human prefrontal cortex. PNAS 108:3213281–86
    [Google Scholar]
  144. 144. 
    Pilaz L-J, Joshi K, Liu J, Tsunekawa Y, Alsina FC et al. 2020. Subcellular mRNA localization and local translation of Arhgap11a in radial glial cells regulates cortical development. bioRxiv 2020.07.30.229724. https://doi.org/10.1101/2020.07.30.229724
    [Crossref]
  145. 145. 
    Pilaz L-J, McMahon JJ, Miller EE, Lennox AL, Suzuki A et al. 2016. Prolonged mitosis of neural progenitors alters cell fate in the developing brain. Neuron 89:83–99
    [Google Scholar]
  146. 146. 
    Pletikos M, Sousa AMM, Sedmak G, Meyer KA, Zhu Y et al. 2014. Temporal specification and bilaterality of human neocortical topographic gene expression. Neuron 81:2321–32
    [Google Scholar]
  147. 147. 
    Pollard KS, Salama SR, Lambert N, Lambot M-A, Coppens S et al. 2006. An RNA gene expressed during cortical development evolved rapidly in humans. Nature 443:7108167–72
    [Google Scholar]
  148. 148. 
    Pollen AA, Bhaduri A, Andrews MG, Nowakowski TJ, Meyerson OS et al. 2019. Establishing cerebral organoids as models of human-specific brain evolution. Cell 176:4743–56.e17
    [Google Scholar]
  149. 149. 
    Pollen AA, Nowakowski TJ, Chen J, Retallack H, Sandoval-Espinosa C et al. 2015. Molecular identity of human outer radial glia during cortical development. Cell 163:155–67
    [Google Scholar]
  150. 150. 
    Prabhakar S, Noonan JP, Paabo S, Rubin EM 2006. Accelerated evolution of conserved noncoding sequences in humans. Science 314:5800786
    [Google Scholar]
  151. 151. 
    Prabhakar S, Visel A, Akiyama JA, Shoukry M, Lewis KD et al. 2008. Human-specific gain of function in a developmental enhancer. Science 321:58941346–50
    [Google Scholar]
  152. 152. 
    Pulvers JN, Bryk J, Fish JL, Wilsch-Bräuninger M, Arai Y et al. 2010. Mutations in mouse Aspm (abnormal spindle-like microcephaly associated) cause not only microcephaly but also major defects in the germline. PNAS 107:3816595–600
    [Google Scholar]
  153. 153. 
    Qian X, Shen Q, Goderie SK, He W, Capela A et al. 2000. Timing of CNS cell generation: a programmed sequence of neuron and glial cell production from isolated murine cortical stem cells. Neuron 28:169–80
    [Google Scholar]
  154. 154. 
    Rakic P. 1995. A small step for the cell, a giant leap for mankind: a hypothesis of neocortical expansion during evolution. Trends Neurosci 18:9383–88
    [Google Scholar]
  155. 155. 
    Rakic P. 2009. Evolution of the neocortex: a perspective from developmental biology. Nat. Rev. Neurosci. 10:10724–35
    [Google Scholar]
  156. 156. 
    Rani N, Nowakowski TJ, Zhou H, Godshalk SE, Lisi V et al. 2016. A primate lncRNA mediates Notch signaling during neuronal development by sequestering miRNA. Neuron 90:61174–88
    [Google Scholar]
  157. 157. 
    Rayon T, Stamataki D, Perez-Carrasco R, Garcia-Perez L, Barrington C et al. 2020. Species-specific pace of development is associated with differences in protein stability. Science 369:eaba7667
    [Google Scholar]
  158. 158. 
    Reillo I, de Juan Romero C, Garcia-Cabezas MA, Borrell V 2011. A role for intermediate radial glia in the tangential expansion of the mammalian cerebral cortex. Cereb. Cortex 21:71674–94
    [Google Scholar]
  159. 159. 
    Reilly SK, Noonan JP. 2016. Evolution of gene regulation in humans. Annu. Rev. Genom. Hum. Genet. 17:45–67
    [Google Scholar]
  160. 160. 
    Reilly SK, Yin J, Ayoub AE, Emera D, Leng J et al. 2015. Evolutionary changes in promoter and enhancer activity during human corticogenesis. Science 347:62261155–59
    [Google Scholar]
  161. 161. 
    Richerson PJ, Gavrilets S, de Waal FBM. 2021. Modern theories of human evolution foreshadowed by Darwin's Descent of Man. Science 372:6544eaba3776
    [Google Scholar]
  162. 162. 
    Rossi AM, Fernandes VM, Desplan C. 2017. Timing temporal transitions during brain development. Curr. Opin. Neurobiol. 42:84–92
    [Google Scholar]
  163. 163. 
    Rosso L, Marques AC, Weier M, Lambert N, Lambot M-A et al. 2008. Birth and rapid subcellular adaptation of a hominoid-specific CDC14 protein. PLOS Biol 6:6e140
    [Google Scholar]
  164. 164. 
    Ryu H, Inoue F, Whalen S, Williams A, Kircher M et al. 2018. Massively parallel dissection of human accelerated regions in human and chimpanzee neural progenitors. bioRxiv 256313. https://doi.org/10.1101/256313
    [Crossref]
  165. 165. 
    Sahara S, O'Leary DDM. 2009. Fgf10 regulates transition period of cortical stem cell differentiation to radial glia controlling generation of neurons and basal progenitors. Neuron 63:48–62
    [Google Scholar]
  166. 166. 
    Sarropoulos I, Marin R, Cardoso-Moreira M, Kaessmann H. 2019. Developmental dynamics of lncRNAs across mammalian organs and species. Nature 571:7766510–14
    [Google Scholar]
  167. 167. 
    Sauerland C, Menzies BR, Glatzle M, Seeger J, Renfree MB, Fietz SA. 2018. The basal radial glia occurs in marsupials and underlies the evolution of an expanded neocortex in therian mammals. Cereb. Cortex 28:1145–57
    [Google Scholar]
  168. 168. 
    Schmidt ERE, Kupferman JV, Stackmann M, Polleux F. 2019. The human-specific paralogs SRGAP2B and SRGAP2C differentially modulate SRGAP2A-dependent synaptic development. Sci. Rep. 9:118692
    [Google Scholar]
  169. 169. 
    Schörnig M, Ju X, Fast L, Ebert S, Weigert A et al. 2021. Comparison of induced neurons reveals slower structural and functional maturation in humans than in apes. eLife 10:e59323
    [Google Scholar]
  170. 170. 
    Shabani K, Pigeon J, Zariouh MBT, Liu T, Saffarian A et al. 2021. The Amyloid Precursor Protein regulates human cortical neurogenesis. bioRxiv 2021.02.17.431707. https://doi.org/10.1101/2021.02.17.431707
    [Crossref]
  171. 171. 
    Sherwood CC, Gomez-Robles A. 2017. Brain plasticity and human evolution. Annu. Rev. Anthropol. 46:399–419
    [Google Scholar]
  172. 172. 
    Shitamukai A, Konno D, Matsuzaki F. 2011. Oblique radial glial divisions in the developing mouse neocortex induce self-renewing progenitors outside the germinal zone that resemble primate outer subventricular zone progenitors. J. Neurosci. 31:103683–95
    [Google Scholar]
  173. 173. 
    Silbereis JC, Pochareddy S, Zhu Y, Li M, Sestan N 2016. The cellular and molecular landscapes of the developing human central nervous system. Neuron 89:248–68
    [Google Scholar]
  174. 174. 
    Smart IHM, Dehay C, Giroud P, Berland M, Kennedy H, Cedex B 2002. Unique morphological features of the proliferative zones and postmitotic compartments of the neural epithelium giving rise to striate and extrastriate cortex in the monkey. Cereb. Cortex. 12:137–53
    [Google Scholar]
  175. 175. 
    Song M, Pebworth MP, Yang X, Abnousi A, Fan C et al. 2020. Cell-type-specific 3D epigenomes in the developing human cortex. Nature 587:7835644–49
    [Google Scholar]
  176. 176. 
    Sousa AMM, Meyer KA, Santpere G, Gulden FO, Sestan N. 2017. Evolution of the human nervous system function, structure, and development. Cell 170:226–47
    [Google Scholar]
  177. 177. 
    Sporny M, Guez-Haddad J, Kreusch A, Shakartzi S, Neznansky A et al. 2017. Structural history of human SRGAP2 proteins. Mol. Biol. Evol. 34:61463–78
    [Google Scholar]
  178. 178. 
    Stahl R, Walcher T, De Juan Romero C, Pilz GA, Cappello S et al. 2013. Trnp1 regulates expansion and folding of the mammalian cerebral cortex by control of radial glial fate. Cell 153:3535–49
    [Google Scholar]
  179. 179. 
    Stepien BK, Naumann R, Holtz A, Helppi J, Huttner WB, Vaid S. 2020. Lengthening neurogenic period during neocortical development causes a hallmark of neocortex expansion. Curr. Biol. 30:214227–37.e5
    [Google Scholar]
  180. 180. 
    Subramanian L, Bershteyn M, Paredes MF, Kriegstein AR. 2017. Dynamic behaviour of human neuroepithelial cells in the developing forebrain. Nat. Commun. 8:114167
    [Google Scholar]
  181. 181. 
    Sudmant PH, Kitzman JO, Antonacci F, Alkan C, Malig M et al. 2010. Diversity of human copy number variation and multicopy genes. Science 330:6004641–46
    [Google Scholar]
  182. 182. 
    Sugathan A, Biagioli M, Golzio C, Erdin S, Blumenthal I et al. 2014. CHD8 regulates neurodevelopmental pathways associated with autism spectrum disorder in neural progenitors. PNAS 111:42E4468–77
    [Google Scholar]
  183. 183. 
    Sun T, Hevner RF. 2014. Growth and folding of the mammalian cerebral cortex: from molecules to malformations. Nat. Rev. Neurosci. 15:217–32
    [Google Scholar]
  184. 184. 
    Sur M, Rubenstein JL. 2005. Patterning and plasticity of the cerebral cortex. Science 310:5749805–10
    [Google Scholar]
  185. 185. 
    Suzuki IK, Gacquer D, Van Heurck R, Kumar D, Wojno M et al. 2018. Human-specific NOTCH2NL genes expand cortical neurogenesis through Delta/Notch regulation. Cell 173:61370–84.e16
    [Google Scholar]
  186. 186. 
    Tabata H. 2015. Diverse subtypes of astrocytes and their development during corticogenesis. Front. Neurosci. 9:114
    [Google Scholar]
  187. 187. 
    Taverna E, Götz M, Huttner WB. 2014. The cell biology of neurogenesis: toward an understanding of the development and evolution of the neocortex. Annu. Rev. Cell Dev. Biol. 30:465–502
    [Google Scholar]
  188. 188. 
    Tiberi L, Vanderhaeghen P, van den Ameele J. 2012. Cortical neurogenesis and morphogens: diversity of cues, sources and functions. Curr. Opin. Cell Biol. 24:2269–76
    [Google Scholar]
  189. 189. 
    Tissir F, Goffinet AM. 2003. Reelin and brain development. Nat. Rev. Neurosci. 4:6496–505
    [Google Scholar]
  190. 190. 
    Uebbing S, Gockley J, Reilly SK, Kocher AA, Geller E et al. 2021. Massively parallel discovery of human-specific substitutions that alter enhancer activity. PNAS 118:2e2007049118
    [Google Scholar]
  191. 191. 
    van den Ameele J, Tiberi L, Vanderhaeghen P, Espuny-Camacho I. 2014. Thinking out of the dish: what to learn about cortical development using pluripotent stem cells. Trends Neurosci 37:6334–42
    [Google Scholar]
  192. 192. 
    Van Heurck R, Wojno M, Suzuki IK, Velez-Bravo FD, Bonnefont J et al. 2020. CROCCP2 acts as a human-specific modifier of cilia dynamics and mTOR signalling to promote expansion of cortical progenitors. bioRxiv 2020.06.17.142976. https://doi.org/10.1101/2020.06.17.142976
    [Crossref]
  193. 193. 
    Wang J, Lu ZX, Tokheim CJ, Miller SE, Xing Y. 2015. Species-specific exon loss in human transcriptomes. Mol. Biol. Evol. 32:2481–94
    [Google Scholar]
  194. 194. 
    Wang X, Tsai J-W, LaMonica B, Kriegstein AR 2011. A new subtype of progenitor cell in the mouse embryonic neocortex. Nat. Neurosci. 14:5555–61
    [Google Scholar]
  195. 195. 
    Wei Y, de Lange SC, Scholtens LH, Watanabe K, Ardesch DJ et al. 2019. Genetic mapping and evolutionary analysis of human-expanded cognitive networks. Nat. Commun. 10:14839
    [Google Scholar]
  196. 196. 
    Won H, Huang J, Opland CK, Hartl CL, Geschwind DH. 2019. Human evolved regulatory elements modulate genes involved in cortical expansion and neurodevelopmental disease susceptibility. Nat. Commun. 10:12396
    [Google Scholar]
  197. 197. 
    Yoon K-J, Ringeling FR, Vissers C, Jacob F, Pokrass M et al. 2017. Temporal control of mammalian cortical neurogenesis by m6A methylation. Cell 171:877–89.e17
    [Google Scholar]
  198. 198. 
    Yuste R, Hawrylycz M, Aalling N, Aguilar-Valles A, Arendt D et al. 2020. A community-based transcriptomics classification and nomenclature of neocortical cell types. Nat. Neurosci. 23:121456–68
    [Google Scholar]
  199. 199. 
    Zhang YE, Landback P, Vibranovski MD, Long M. 2011. Accelerated recruitment of new brain development genes into the human genome. PLOS Biol 9:10e1001179
    [Google Scholar]
  200. 200. 
    Zhu Y, Sousa AMM, Gao T, Skarica M, Li M et al. 2018. Spatiotemporal transcriptomic divergence across human and macaque brain development. Science 362:6420eaat8077
    [Google Scholar]
/content/journals/10.1146/annurev-genet-071719-020705
Loading
/content/journals/10.1146/annurev-genet-071719-020705
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error