1932

Abstract

One of the most remarkable examples of convergent evolution is the transition from C to C photosynthesis, an event that occurred on over 60 independent occasions. The evolution of C is particularly noteworthy because of the complexity of the developmental and metabolic changes that took place. In most cases, compartmentalized metabolic reactions were facilitated by the development of a distinct leaf anatomy known as Kranz. C Kranz anatomy differs from ancestral C anatomy with respect to vein spacing patterns across the leaf, cell-type specification around veins, and cell-specific organelle function. Here we review our current understanding of how Kranz anatomy evolved and how it develops, with a focus on studies that are dissecting the underlying genetic mechanisms. This research field has gained prominence in recent years because understanding the genetic regulation of Kranz may enable the C-to-C transition to be engineered, an endeavor that would significantly enhance crop productivity.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-genet-120417-031217
2018-11-23
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/genet/52/1/annurev-genet-120417-031217.html?itemId=/content/journals/10.1146/annurev-genet-120417-031217&mimeType=html&fmt=ahah

Literature Cited

  1. 1.  Aubry S, Kelly S, Kumpers BM, Smith-Unna RD, Hibberd JM 2014. Deep evolutionary comparison of gene expression identifies parallel recruitment of trans-factors in two independent origins of C4 photosynthesis. PLOS Genet 10:6e1004365
    [Google Scholar]
  2. 2.  Aubry S, Smith-Unna RD, Boursnell CM, Kopriva S, Hibberd JM 2014. Transcript residency on ribosomes reveals a key role for the Arabidopsis thaliana bundle sheath in sulfur and glucosinolate metabolism. Plant J 78:4659–73
    [Google Scholar]
  3. 3.  Bassham JA, Benson AA, Kay LD, Harris AZ, Wilson AT, Calvin M 1954. The path of carbon in photosynthesis. XXI. The cyclic regeneration of carbon dioxide acceptor. J. Am. Chem. Soc. 76:71760–70
    [Google Scholar]
  4. 4.  Bauwe H, Hagemann M, Fernie AR 2010. Photorespiration: players, partners and origin. Trends Plant Sci 15:6330–36
    [Google Scholar]
  5. 5.  Benfey PN, Linstead PJ, Roberts K, Schiefelbein JW, Hauser M-T, Aeschbacher RA 1993. Root development in Arabidopsis: four mutants with dramatically altered root morphogenesis. Development 119:57–70
    [Google Scholar]
  6. 6.  Bosabalidis AM, Evert RF, Russin WA 1994. Ontogeny of the vascular bundles and contiguous tissues in the maize leaf blade. Am. J. Bot. 81:6745–52
    [Google Scholar]
  7. 7.  Bräutigam A, Kajala K, Wullenweber J, Sommer M, Gagneul D et al. 2011. An mRNA blueprint for C4 photosynthesis derived from comparative transcriptomics of closely related C3 and C4 species. Plant Physiol 155:1142–56
    [Google Scholar]
  8. 8.  Brown WV 1975. Variations in anatomy, associations, and origins of Kranz tissue. Am. J. Bot. 62:4395–402
    [Google Scholar]
  9. 9.  Brutnell TP, Sawers RJH, Mant A, Langdale JA 1999. BUNDLE SHEATH DEFECTIVE2, a novel protein required for post-translational regulation of the rbcL gene of maize. Plant Cell 11:5849–64
    [Google Scholar]
  10. 10.  Brutnell TP, Wang L, Swartwood K, Goldschmidt A, Jackson D et al. 2010. Setaria viridis: a model for C4 photosynthesis. Plant Cell 22:82537–44
    [Google Scholar]
  11. 11.  Chang Y-M, Liu W-Y, Shih AC-C, Shen M-N, Lu C-H et al. 2012. Characterizing regulatory and functional differentiation between maize mesophyll and bundle sheath cells by transcriptomic analysis. Plant Physiol 160:1165–77
    [Google Scholar]
  12. 12.  Christin P-A, Besnard G, Samaritani E, Duvall MR, Hodkinson TR et al. 2008. Oligocene CO2 decline promoted C4 photosynthesis in grasses. Curr. Biol. 18:137–43
    [Google Scholar]
  13. 13.  Christin P-A, Osborne CP 2014. The evolutionary ecology of C4 plants. New Phytol 204:4765–81
    [Google Scholar]
  14. 14.  Christin P-A, Osborne CP, Chatelet DS, Columbus JT, Besnard G et al. 2013. Anatomical enablers and the evolution of C4 photosynthesis in grasses. PNAS 110:41381–86
    [Google Scholar]
  15. 15.  Coelho C, Huang P, Brutnell TP 2017. Setaria viridis as a model for C4 photosynthesis. Genetics and Genomics of Setaria A Doust, X Diao 291–300 Cham, Switz.: Springer
    [Google Scholar]
  16. 16.  Cribb L, Hall LN, Langdale JA 2001. Four mutant alleles elucidate the role of the G2 protein in the development of C4 and C3 photosynthesizing maize tissues. Genetics 159:2787–97
    [Google Scholar]
  17. 17.  Crookston RK, Moss DN 1973. A variation of C4 leaf anatomy in Arundinella hirta (Gramineae). Plant Physiol 52:5397–402
    [Google Scholar]
  18. 18.  Cui H, Hao Y, Kovtun M, Stolc V, Deng XW et al. 2011. Genome-wide direct target analysis reveals a role for SHORT-ROOT in root vascular patterning through cytokinin homeostasis. Plant Physiol 157:31221–31
    [Google Scholar]
  19. 19.  Cui H, Kong D, Liu X, Hao Y 2014. SCARECROW, SCR-LIKE 23 and SHORT-ROOT control bundle sheath cell fate and function in Arabidopsis thaliana. Plant J 78:2319–27
    [Google Scholar]
  20. 20.  Cui H, Levesque MP, Vernoux T, Jung JW, Paquette AJ et al. 2007. An evolutionarily conserved mechanism delimiting SHR movement defines a single layer of endodermis in plants. Science 316:5823421–25
    [Google Scholar]
  21. 21.  Dannenhoffer JM, Ebert W Jr., Evert RF 1990. Leaf vasculature in barley, Hordeum vulgare (Poaceae). Am. J. Bot. 77:5636–52
    [Google Scholar]
  22. 22.  Dengler NG, Dengler RE, Hattersley PW 1985. Differing ontogenetic origins of PCR (“Kranz”) sheaths in leaf blades of C4 grasses (Poaceae). Am. J. Bot. 72:2284–302
    [Google Scholar]
  23. 23.  Dengler NG, Donnelly PM, Dengler RE 1996. Differentiation of bundle sheath, mesophyll, and distinctive cells in the C4 grass Arundinella hirta (Poaceae). Am. J. Bot. 83:1391–405
    [Google Scholar]
  24. 24.  Dengler NG, Woodvine MA, Donnelly PM, Dengler RE 1997. Formation of vascular pattern in developing leaves of the C4 grass Arundinella hirta. Int. J. Plant Sci 158:1–12
    [Google Scholar]
  25. 25.  Dhondt S, Coppens F, De Winter F, Swarup K, Merks RMH et al. 2010. SHORT-ROOT and SCARECROW regulate leaf growth in Arabidopsis by stimulating S-phase progression of the cell cycle. Plant Physiol 154:31183–95
    [Google Scholar]
  26. 26.  Di Laurenzio L, Wysocka-Diller J, Malamy J, Pysh L, Helariutta Y et al. 1996. The SCARECROW gene regulates an asymmetric cell division that is essential for generating the radial organization of the Arabidopsis root. Cell 86:3423–33
    [Google Scholar]
  27. 27.  Donner TJ, Sherr I, Scarpella E 2009. Regulation of preprocambial cell state acquisition by auxin signaling in Arabidopsis leaves. Development 136:193235–46
    [Google Scholar]
  28. 28.  Döring F, Streubel M, Bräutigam A, Gowik U 2016. Most photorespiratory genes are preferentially expressed in the bundle sheath cells of the C4 grass Sorghum bicolor. J. Exp. Bot. 67:103053–64
    [Google Scholar]
  29. 29.  Dunning LT, Lundgren MR, Moreno-Villena JJ, Namaganda M, Edwards EJ et al. 2017. Introgression and repeated co-option facilitated the recurrent emergence of C4 photosynthesis among close relatives. Evolution 71:61541–55
    [Google Scholar]
  30. 30.  Edwards EJ, Osborne CP, Strömberg CAE, Smith SA 2010. The origins of C4 grasslands: integrating evolutionary and ecosystem science. Science 328:5978587–90
    [Google Scholar]
  31. 31.  Edwards EJ, Smith SA 2010. Phylogenetic analyses reveal the shady history of C4 grasses. PNAS 107:62532–37
    [Google Scholar]
  32. 32.  Edwards EJ, Still CJ 2008. Climate, phylogeny and the ecological distribution of C4 grasses. Ecol. Lett. 11:3266–76
    [Google Scholar]
  33. 33.  Edwards GE, Franceschi VR, Voznesenskaya EV 2004. Single-cell C4 photosynthesis versus the dual-cell (Kranz) paradigm. Annu. Rev. Plant Biol. 55:173–96
    [Google Scholar]
  34. 34.  Edwards GE, Voznesenskaya EV 2011. C4 photosynthesis: Kranz forms and single-cell C4 in terrestrial plants. C4 Photosynthesis and Related CO2 Concentrating Mechanisms AS Raghavendra, RF Sage 29–61 Dordrecht, Neth.: Springer
    [Google Scholar]
  35. 35.  Esau K 1943. Ontogeny of the vascular bundle in Zea mays. Hilgardia 15:3327–68
    [Google Scholar]
  36. 36.  Esau K 1965. Plant Anatomy New York: John Wiley & Sons, Inc
  37. 37.  Feldman AB, Leung H, Baraoidan M, Elmido-Mabilangan A, Canicosa I et al. 2017. Increasing leaf vein density via mutagenesis in rice results in an enhanced rate of photosynthesis, smaller cell sizes and can reduce interveinal mesophyll cell number. Front. Plant Sci. 8:1883
    [Google Scholar]
  38. 38.  Feldman AB, Murchie EH, Leung H, Baraoidan M, Coe R et al. 2014. Increasing leaf vein density by mutagenesis: laying the foundations for C4 rice. PLOS ONE 9:4e94947
    [Google Scholar]
  39. 39.  Fitter DW, Martin DJ, Copley MJ, Scotland RW, Langdale JA 2002. GLK gene pairs regulate chloroplast development in diverse plant species. Plant J 31:6713–27
    [Google Scholar]
  40. 40.  Fladung M 1994. Genetic variants of Panicum maximum (Jacq.) in C4 photosynthetic traits. J. Plant Physiol. 143:2165–72
    [Google Scholar]
  41. 41.  Fouracre JP, Ando S, Langdale JA 2014. Cracking the Kranz enigma with systems biology. J. Exp. Bot. 65:133327–39
    [Google Scholar]
  42. 42.  Furbank RT 2016. Walking the C4 pathway: past, present, and future. J. Exp. Bot. 67:144057–66
    [Google Scholar]
  43. 43.  Gallagher KL, Benfey PN 2009. Both the conserved GRAS domain and nuclear localization are required for SHORT-ROOT movement. Plant J 57:5785–97
    [Google Scholar]
  44. 44.  Gardiner J, Donner TJ, Scarpella E 2011. Simultaneous activation of SHR and ATHB8 expression defines switch to preprocambial cell state in Arabidopsis leaf development. Dev. Dyn. 240:1261–70
    [Google Scholar]
  45. 45.  Gowik U, Bräutigam A, Weber KL, Weber APM, Westhoff P 2011. Evolution of C4 photosynthesis in the genus Flaveria: How many and which genes does it take to make C4?. Plant Cell 23:62087–105
    [Google Scholar]
  46. 46. Grass Phylogeny Working Group II. 2012. New grass phylogeny resolves deep evolutionary relationships and discovers C4 origins. New Phytol 193:2304–12
    [Google Scholar]
  47. 47.  Griffiths H, Weller G, Toy LFM, Dennis RJ 2013. You're so vein: bundle sheath physiology, phylogeny and evolution in C3 and C4 plants. Plant. Cell Environ. 36:2249–61
    [Google Scholar]
  48. 48.  Haberlandt G 1896. Physiologische Pflanzenanatomie Leipzig, Ger.: Wilhelm Engelman
  49. 49.  Hall LN, Rossini L, Cribb L, Langdale JA 1998. GOLDEN 2: a novel transcriptional regulator of cellular differentiation in the maize leaf. Plant Cell 10:6925–36
    [Google Scholar]
  50. 50.  Hatch M, Slack C 1966. Photosynthesis by sugar-cane leaves: a new carboxylation reaction and the pathway of sugar formation. Biochem. J. 101:1103–11
    [Google Scholar]
  51. 51.  Heckmann D, Schulze S, Denton A, Gowik U, Westhoff P et al. 2013. Predicting C4 photosynthesis evolution: modular, individually adaptive steps on a Mount Fuji fitness landscape. Cell 153:71579–88
    [Google Scholar]
  52. 52.  Heidstra R, Welch D, Scheres B 2004. Mosaic analyses using marked activation and deletion clones dissect Arabidopsis SCARECROW action in asymmetric cell division. Genes Dev 18:161964–69
    [Google Scholar]
  53. 53.  Helariutta Y, Fukaki H, Wysocka-Diller J, Nakajima K, Jung J et al. 2000. The SHORT-ROOT gene controls radial patterning of the Arabidopsis root through radial signaling. Cell 101:5555–67
    [Google Scholar]
  54. 54.  Henry S, Dievart A, Divol F, Pauluzzi G, Meynard D et al. 2017. SHR overexpression induces the formation of supernumerary cell layers with cortex cell identity in rice. Dev. Biol. 425:11–7
    [Google Scholar]
  55. 55.  Hibberd JM, Sheehy JE, Langdale JA 2008. Using C4 photosynthesis to increase the yield of rice—rationale and feasibility. Curr. Opin. Plant Biol. 11:2228–31
    [Google Scholar]
  56. 56.  Huang C-F, Yu C-P, Wu Y-H, Lu M-YJ, Tu S-L et al. 2017. Elevated auxin biosynthesis and transport underlie high vein density in C4 leaves. PNAS 114:E6884–91
    [Google Scholar]
  57. 57.  Jankovsky JP, Smith LG, Nelson T 2001. Specification of bundle sheath cell fates during maize leaf development: roles of lineage and positional information evaluated through analysis of the tangled1 mutant. Development 128:142747–53
    [Google Scholar]
  58. 58.  Jenkins MT 1927. A second gene producing golden plant color in maize. Am. Nat. 60:484–88
    [Google Scholar]
  59. 59.  John CR, Smith-Unna RD, Woodfield H, Covshoff S, Hibberd JM 2014. Evolutionary convergence of cell-specific gene expression in independent lineages of C4 grasses. Plant Physiol 165:162–75
    [Google Scholar]
  60. 60.  Johnston R, Leiboff S, Scanlon MJ 2015. Ontogeny of the sheathing leaf base in maize (Zea mays). New Phytol 205:1306–15
    [Google Scholar]
  61. 61.  Kadereit G, Ackerly D, Pirie MD 2012. A broader model for C4 photosynthesis evolution in plants inferred from the goosefoot family (Chenopodiaceae s.s.). Proc. R. Soc. B 279:17413304–11
    [Google Scholar]
  62. 62.  Kang J, Dengler N 2002. Cell cycling frequency and expression of the homeobox gene ATHB-8 during leaf vein development in Arabidopsis. Planta 216:2212–19
    [Google Scholar]
  63. 63.  Kang J, Mizukami Y, Wang H, Fowke L, Dengler NG 2007. Modification of cell proliferation patterns alters leaf vein architecture in Arabidopsis thaliana. Planta 226:51207–18
    [Google Scholar]
  64. 64.  Kapralov MV, Kubien DS, Andersson I, Filatov DA 2011. Changes in Rubisco kinetics during the evolution of C4 photosynthesis in Flaveria (Asteraceae) are associated with positive selection on genes encoding the enzyme. Mol. Biol. Evol. 28:41491–503
    [Google Scholar]
  65. 65.  Khoshravesh R, Stinson CR, Stata M, Busch FA, Sage RF et al. 2016. C3–C4 intermediacy in grasses: organelle enrichment and distribution, glycine decarboxylase expression, and the rise of C2 photosynthesis. J. Exp. Bot. 67:103065–78
    [Google Scholar]
  66. 66.  Kinsman EA, Pyke KA 1998. Bundle sheath cells and cell-specific plastid development in Arabidopsis leaves. Development 125:101815–22
    [Google Scholar]
  67. 67.  Knappe S, Löttgert T, Schneider A, Voll L, Flügge U-I, Fischer K 2003. Characterization of two functional phosphoenolpyruvate/phosphate translocator (PPT) genes in Arabidopsis-AtPPT1 may be involved in the provision of signals for correct mesophyll development. Plant J 36:3411–20
    [Google Scholar]
  68. 68.  Kukaki H, Wysocka-Diller J, Kato T, Fujisawa H, Benfey PN et al. 1998. Genetic evidence that the endodermis is essential for shoot gravitropism in Arabidopsis thaliana. Plant J 14:4425–30
    [Google Scholar]
  69. 69.  Külahoglu C, Denton AK, Sommer M, Maß J, Schliesky S et al. 2014. Comparative transcriptome atlases reveal altered gene expression modules between two Cleomaceae C3 and C4 plant species. Plant Cell 26:83243–60
    [Google Scholar]
  70. 70.  Laetsch WM 1974. The C4 syndrome: a structural analysis. Annu. Rev. Plant Physiol. 25:27–52
    [Google Scholar]
  71. 71.  Langdale JA 2011. C4 cycles: past, present, and future research on C4 photosynthesis. Plant Cell 23:113879–92
    [Google Scholar]
  72. 72.  Langdale JA, Hall LN, Roth R 1995. Control of cellular differentiation in maize leaves. Philos. Trans. R. Soc. B 350:53–57
    [Google Scholar]
  73. 73.  Langdale JA, Kidner CA 1994. bundle sheath defective, a mutation that disrupts cellular differentiation in maize leaves. Development 120:673–81
    [Google Scholar]
  74. 74.  Langdale JA, Lane B, Freeling M, Nelson T 1989. Cell lineage analysis of maize bundle sheath and mesophyll cells. Dev. Biol. 133:1128–39
    [Google Scholar]
  75. 75.  Langdale JA, Metzler MC, Nelson T 1987. The argentia mutation delays normal development of photosynthetic cell-types in Zea mays. Dev. Biol 122:1243–55
    [Google Scholar]
  76. 76.  Langdale JA, Nelson T 1991. Spatial regulation of photosynthetic development in C4 plants. Trends Genet 7:6191–96
    [Google Scholar]
  77. 77.  Langdale JA, Rothermel BA, Nelson T 1988. Cellular patterns of photosynthetic gene expression in developing maize leaves. Genes Dev 2:106–15
    [Google Scholar]
  78. 78.  Langdale JA, Zelitch I, Miller E, Nelson T 1988. Cell position and light influence C4 versus C3 patterns of photosynthetic gene expression in maize. EMBO J 7:3643–51
    [Google Scholar]
  79. 79.  Lauterbach M, Billakurthi K, Kadereit G, Ludwig M, Westhoff P, Gowik U 2017. C3 cotyledons are followed by C4 leaves: intra-individual transcriptome analysis of Salsola soda (Chenopodiaceae). J. Exp. Bot. 68:2161–76
    [Google Scholar]
  80. 80.  Leegood RC 2008. Roles of the bundle sheath cells in leaves of C3 plants. J. Exp. Bot. 59:71663–73
    [Google Scholar]
  81. 81.  Levesque MP, Vernoux T, Busch W, Cui H, Wang JY et al. 2006. Whole-genome analysis of the SHORT-ROOT developmental pathway in Arabidopsis. PLOS Biol 4:5e143
    [Google Scholar]
  82. 82.  Li P, Ponnala L, Gandotra N, Wang L, Si Y et al. 2010. The developmental dynamics of the maize leaf transcriptome. Nat. Genet. 42:121060–67
    [Google Scholar]
  83. 83.  Li Y, Ma X, Zhao J, Xu J, Shi J et al. 2015. Developmental genetic mechanisms of C4 syndrome based on transcriptome analysis of C3 cotyledons and C4 assimilating shoots in Haloxylon ammodendron. PLOS ONE 10:2e0117175
    [Google Scholar]
  84. 84.  Lim J, Jung JW, Lim CE, Lee M-HH, Kim BJ et al. 2005. Conservation and diversification of SCARECROW in maize. Plant Mol. Biol. 59:4619–30
    [Google Scholar]
  85. 85.  Liu W-Y, Chang Y-M, Chen SC-C, Lu C-H, Wu Y-H et al. 2013. Anatomical and transcriptional dynamics of maize embryonic leaves during seed germination. PNAS 110:103979–84
    [Google Scholar]
  86. 86.  Long Y, Smet W, Cruz-Ramírez A, Castelijns B, de Jonge W et al. 2015. Arabidopsis BIRD zinc finger proteins jointly stabilize tissue boundaries by confining the cell fate regulator SHORT-ROOT and contributing to fate specification. Plant Cell 27:41185–99
    [Google Scholar]
  87. 87.  Lorimer GH 1981. The carboxylation and oxygenation of ribulose 1,5-bisphosphate: the primary events in photosynthesis and photorespiration. Annu. Rev. Plant Physiol. 32:1349–82
    [Google Scholar]
  88. 88.  Lundgren MR, Osborne CP, Christin P-A 2014. Deconstructing Kranz anatomy to understand C4 evolution. J. Exp. Bot. 65:133357–69
    [Google Scholar]
  89. 89.  Lundquist PK, Rosar C, Bräutigam A, Weber APM 2014. Plastid signals and the bundle sheath: mesophyll development in reticulate mutants. Mol. Plant 7:114–29
    [Google Scholar]
  90. 90.  Ma L, Sang X, Zhang T, Yu Z, Li Y et al. 2017. ABNORMAL VASCULAR BUNDLES regulates cell proliferation and procambium cell establishment during aerial organ development in rice. New Phytol 213:1275–86
    [Google Scholar]
  91. 91.  Majeran W, Cai Y, Sun Q, van Wijk KJ 2005. Functional differentiation of bundle sheath and mesophyll maize chloroplasts determined by comparative proteomics. Plant Cell 17:113111–40
    [Google Scholar]
  92. 92.  Mallmann J, Heckmann D, Bräutigam A, Lercher MJ, Weber APM et al. 2014. The role of photorespiration during the evolution of C4 photosynthesis in the genus Flaveria. eLife 3:e02478
    [Google Scholar]
  93. 93.  Matasci N, Hung L-H, Yan Z, Carpenter EJ, Wickett NJ et al. 2014. Data access for the 1,000 Plants (1KP) project. Gigascience 3:117
    [Google Scholar]
  94. 94.  McKown AD, Dengler NG 2009. Shifts in leaf vein density through accelerated vein formation in C4Flaveria (Asteraceae). Ann. Bot. 104:1085–98
    [Google Scholar]
  95. 95.  McKown AD, Moncalvo J-M, Dengler NG 2005. Phylogeny of Flaveria (Asteraceae) and inference of C4 photosynthesis evolution. Am. J. Bot. 92:111911–28
    [Google Scholar]
  96. 96.  Monson RK, Rawsthorne S 2000. CO2 assimilation in C3–C4 intermediate plants. Photosynthesis: Physiology and Metabolism RC Leegood, TD Sharkey, S von Caemmerer 533–50 Dordrecht, Neth.: Kluwer Acad. Publ.
    [Google Scholar]
  97. 97.  Muhaidat R, Sage TL, Frohlich MW, Dengler NG, Sage RF 2011. Characterization of C3–C4 intermediate species in the genus Heliotropium L. (Boraginaceae): anatomy, ultrastructure and enzyme activity. Plant Cell Environ 34:101723–36
    [Google Scholar]
  98. 98.  Nakajima K, Sena G, Nawy T, Benfey PN 2001. Intercellular movement of the putative transcription factor SHR in root patterning. Nature 413:6853307–11
    [Google Scholar]
  99. 99.  Nakamura H, Muramatsu M, Hakata M, Ueno O, Nagamura Y et al. 2009. Ectopic overexpression of the transcription factor OsGLK1 induces chloroplast development in non-green rice cells. Plant Cell Physiol 50:111933–49
    [Google Scholar]
  100. 100.  Nelson T 2011. The grass leaf developmental gradient as a platform for a systems understanding of the anatomical specialization of C4 leaves. J. Exp. Bot. 62:93039–48
    [Google Scholar]
  101. 101.  Nelson T, Dengler N 1997. Leaf vascular pattern formation. Plant Cell 9:1121–35
    [Google Scholar]
  102. 102.  O'Connor DL, Elton S, Ticchiarelli F, Hsia MM, Vogel JP, Leyser O 2017. Cross-species functional diversity within the PIN auxin efflux protein family. eLife 6:e31804
    [Google Scholar]
  103. 103.  O'Connor DL, Runions A, Sluis A, Bragg J, Vogel JP et al. 2014. A division in PIN-mediated auxin patterning during organ initiation in grasses. PLOS Comput. Biol. 10:1e1003447
    [Google Scholar]
  104. 104.  Ogasawara H, Kaimi R, Colasanti J, Kozaki A 2011. Activity of transcription factor JACKDAW is essential for SHR/SCR-dependent activation of SCARECROW and MAGPIE and is modulated by reciprocal interactions with MAGPIE, SCARECROW and SHORT ROOT. Plant Mol. Biol. 77:4–5489–99
    [Google Scholar]
  105. 105.  Osborne CP, Sack L 2012. Evolution of C4 plants: a new hypothesis for an interaction of CO2 and water relations mediated by plant hydraulics. Philos. Trans. R. Soc. B 367:1588583–600
    [Google Scholar]
  106. 106.  Pick TR, Bräutigam A, Schlüter U, Denton AK, Colmsee C et al. 2011. Systems analysis of a maize leaf developmental gradient redefines the current C4 model and provides candidates for regulation. Plant Cell 23:124208–20
    [Google Scholar]
  107. 107.  Rao X, Lu N, Li G, Nakashima J, Tang Y, Dixon RA 2016. Comparative cell-specific transcriptomics reveals differentiation of C4 photosynthesis pathways in switchgrass and other C4 lineages. J. Exp. Bot. 67:61649–62
    [Google Scholar]
  108. 108.  Raven JA, Cockell CS, De La Rocha CL 2008. The evolution of inorganic carbon concentrating mechanisms in photosynthesis. Philos. Trans. R. Soc. B 363:15042641–50
    [Google Scholar]
  109. 109.  Rizal G, Thakur V, Dionora J, Karki S, Wanchana S et al. 2015. Two forward genetic screens for vein density mutants in sorghum converge on a cytochrome P450 gene in the brassinosteroid pathway. Plant J 84:2257–66
    [Google Scholar]
  110. 110.  Rossini L, Cribb L, Martin DJ, Langdale JA 2001. The maize Golden2 gene defines a novel class of transcriptional regulators in plants. Plant Cell 13:51231–44
    [Google Scholar]
  111. 111.  Roth R, Hall LN, Brutnell TP, Langdale JA 1996. bundle sheath defective2, a mutation that disrupts the coordinated development of bundle sheath and mesophyll cells in the maize leaf. Plant Cell 8:5915–27
    [Google Scholar]
  112. 112.  Russell SH, Evert RF 1985. Leaf vasculature in Zea mays L. Planta 164:448–58
    [Google Scholar]
  113. 113.  Sachs T 1981. The control of the pattern differentiation of vascular tissue. Adv. Bot. Res. 9:151–62
    [Google Scholar]
  114. 114.  Sage RF, Christin P-A, Edwards EJ 2011. The C4 plant lineages of planet Earth. J. Exp. Bot. 62:93155–69
    [Google Scholar]
  115. 115.  Sage RF, Khoshravesh R, Sage TL 2014. From proto-Kranz to C4 Kranz: building the bridge to C4 photosynthesis. J. Exp. Bot. 65:133341–56
    [Google Scholar]
  116. 116.  Sage RF, Sage TL, Kocacinar F 2012. Photorespiration and the evolution of C4 photosynthesis. Annu. Rev. Plant Biol. 63:19–47
    [Google Scholar]
  117. 117.  Sage TL, Busch FA, Johnson DC, Friesen PC, Stinson CR et al. 2013. Initial events during the evolution of C4 photosynthesis in C3 species of Flaveria. Plant Physiol 163:31266–76
    [Google Scholar]
  118. 118.  Sakaguchi J, Fukuda H 2008. Cell differentiation in the longitudinal veins and formation of commissural veins in rice (Oryza sativa) and maize (Zea mays). J. Plant Res. 121:6593–602
    [Google Scholar]
  119. 119.  Sauer M, Balla J, Luschnig C, Wiśniewska J, Reinöhl V et al. 2006. Canalization of auxin flow by Aux/IAA-ARF-dependent feedback regulation of PIN polarity. Genes Dev 20:202902–11
    [Google Scholar]
  120. 120.  Scarpella E, Boot KJM, Rueb S, Meijer AH 2002. The procambium specification gene Oshox1 promotes polar auxin transport capacity and reduces its sensitivity toward inhibition. Plant Physiol 130:31349–60
    [Google Scholar]
  121. 121.  Scarpella E, Marcos D, Friml JJ, Berleth T 2006. Control of leaf vascular patterning by polar auxin transport. Genes Dev 20:81015–27
    [Google Scholar]
  122. 122.  Scarpella E, Rueb S, Meijer AH 2003. The RADICLELESS1 gene is required for vascular pattern formation in rice. Development 130:4645–58
    [Google Scholar]
  123. 123.  Scheres B, Di Laurenzio L, Willemsen V, Hauser M-T, Janmaat K et al. 1995. Mutations affecting the radial organization of the Arabidopsis root display specific defects throughout the embryonic axis. Development 121:53–62
    [Google Scholar]
  124. 124.  Schuler ML, Sedelnikova OV, Walker BJ, Westhoff P, Langdale JA 2018. SHORTROOT-mediated increase in stomatal density has no impact on photosynthetic efficiency. Plant Physiol 176:757–72
    [Google Scholar]
  125. 125.  Sharman B 1942. Developmental anatomy of the shoot of Zea mays L. Ann. Bot. 6:245–84
    [Google Scholar]
  126. 126.  Slewinski TL, Anderson AA, Price S, Withee JR, Gallagher K, Turgeon R 2014. Short-Root1 plays a role in the development of vascular tissue and Kranz anatomy in maize leaves. Mol. Plant 7:81388–92
    [Google Scholar]
  127. 127.  Slewinski TL, Anderson AA, Zhang C, Turgeon R 2012. Scarecrow plays a role in establishing Kranz anatomy in maize leaves. Plant Cell Physiol 53:122030–37
    [Google Scholar]
  128. 128.  Smillie IRA, Pyke KA, Murchie EH 2012. Variation in vein density and mesophyll cell architecture in a rice deletion mutant population. J. Exp. Bot. 63:124563–70
    [Google Scholar]
  129. 129.  Stata M, Sage TL, Hoffmann N, Covshoff S, Ka-Shu Wong G, Sage RF 2016. Mesophyll chloroplast investment in C3, C4 and C2 species of the genus Flaveria. Plant Cell Physiol 57:5904–18
    [Google Scholar]
  130. 130.  Steeves TA, Sussex IM 1989. Patterns in Plant Development Cambridge, UK: Cambridge Univ. Press
  131. 131.  Stewart RN, Derman H 1975. Flexibility in ontogeny as shown by the contribution of shoot apical layers to leaves of periclinal chimeras. Am. J. Bot. 62:935–47
    [Google Scholar]
  132. 132.  Still CJ, Berry JA, Collatz GJ, DeFries RS 2003. Global distribution of C3 and C4 vegetation: carbon cycle implications. Global Biogeochem. Cycles 17:11006
    [Google Scholar]
  133. 133.  Streatfield SJ, Weber A, Kinsman EA, Hausler RE, Li J et al. 1999. The phosphoenolpyruvate/phosphate translocator is required for phenolic metabolism, palisade cell development, and plastid-dependent nuclear gene expression. Plant Cell 11:91609–22
    [Google Scholar]
  134. 134.  Sud R, Dengler NG 2000. Cell lineage of vein formation in variegated leaves of the C4 grass Stenotaphrum secundatum. Ann. Bot. 86:199–112
    [Google Scholar]
  135. 135.  Tausta SL, Li P, Si Y, Gandotra N, Liu P et al. 2014. Developmental dynamics of Kranz cell transcriptional specificity in maize leaf reveals early onset of C4-related processes. J. Exp. Bot. 65:133543–55
    [Google Scholar]
  136. 136.  Tsiantis M, Brown MI, Skibinski G, Langdale JA 1999. Disruption of auxin transport is associated with aberrant leaf development in maize. Plant Physiol 121:41163–68
    [Google Scholar]
  137. 137.  van den Bergh E, Külahoglu C, Bräutigam A, Hibberd JM, Weber APM et al. 2014. Gene and genome duplications and the origin of C4 photosynthesis: birth of a trait in the Cleomaceae. Curr. Plant Biol. 1:2–9
    [Google Scholar]
  138. 138.  Vicentini A, Barber JC, Aliscioni SS, Giussani LM, Kellogg EA 2008. The age of the grasses and clusters of origins of C4 photosynthesis. Glob. Chang. Biol. 14:122963–77
    [Google Scholar]
  139. 139.  Voll L, Häusler RE, Hecker R, Weber A, Weissenböck G et al. 2003. The phenotype of the Arabidopsis cue1 mutant is not simply caused by a general restriction of the shikimate pathway. Plant J 36:3301–17
    [Google Scholar]
  140. 140.  von Caemmerer S, Quick WP, Furbank RT 2012. The development of C4 rice: current progress and future challenges. Science 336:60891671–72
    [Google Scholar]
  141. 141.  Voznesenskaya EV, Franceschi VR, Kiirats O, Freitag H, Edwards GE 2001. Kranz anatomy is not essential for terrestrial C4 plant photosynthesis. Nature 414:6863543–46
    [Google Scholar]
  142. 142.  Wakayama M, Ohnishi J, Ueno O 2006. Structure and enzyme expression in photosynthetic organs of the atypical C4 grass Arundinella hirta. Planta 223:61243–55
    [Google Scholar]
  143. 143.  Wang L, Czedik-Eysenberg A, Mertz RA, Si Y, Tohge T et al. 2014. Comparative analyses of C4 and C3 photosynthesis in developing leaves of maize and rice. Nat. Biotechnol. 32:111158–65
    [Google Scholar]
  144. 144.  Wang P, Fouracre J, Kelly S, Karki S, Gowik U et al. 2013. Evolution of GOLDEN2-LIKE gene function in C3 and C4 plants. Planta 237:2481–95
    [Google Scholar]
  145. 145.  Wang P, Karki S, Biswal AK, Lin H-C, Dionora MJ et al. 2017. Candidate regulators of early leaf development in maize perturb hormone signalling and secondary cell wall formation when constitutively expressed in rice. Sci. Rep. 7:14535
    [Google Scholar]
  146. 146.  Wang P, Kelly S, Fouracre JP, Langdale JA 2013. Genome-wide transcript analysis of early maize leaf development reveals gene cohorts associated with the differentiation of C4 Kranz anatomy. Plant J 75:4656–70
    [Google Scholar]
  147. 147.  Wang P, Khoshravesh R, Karki S, Tapia R, Balahadia CP et al. 2017. Re-creation of a key step in the evolutionary switch from C3 to C4 leaf anatomy. Curr. Biol. 27:3278–87
    [Google Scholar]
  148. 148.  Wang P, Vlad D, Langdale JA 2016. Finding the genes to build C4 rice. Curr. Opin. Plant Biol. 31:44–50
    [Google Scholar]
  149. 149.  Waters MT, Wang P, Korkaric M, Capper RG, Saunders NJ, Langdale JA 2009. GLK transcription factors coordinate expression of the photosynthetic apparatus in Arabidopsis. Plant Cell 21:41109–28
    [Google Scholar]
  150. 150.  Welch D, Hassan H, Blilou I, Immink R, Heidstra R, Scheres B 2007. Arabidopsis JACKDAW and MAGPIE zinc finger proteins delimit asymmetric cell division and stabilize tissue boundaries by restricting SHORT-ROOT action. Genes Dev 21:172196–204
    [Google Scholar]
  151. 151.  Williams BP, Johnston IG, Covshoff S, Hibberd JM 2013. Phenotypic landscape inference reveals multiple evolutionary paths to C4 photosynthesis. eLife 2:e00961
    [Google Scholar]
  152. 152.  Wu S, Lee C-M, Hayashi T, Price S, Divol F et al. 2014. A plausible mechanism, based upon SHORT-ROOT movement, for regulating the number of cortex cell layers in roots. PNAS 111:4516184–89
    [Google Scholar]
  153. 153.  Wysocka-Diller JW, Helariutta Y, Fukaki H, Malamy JE, Benfey PN 2000. Molecular analysis of SCARECROW function reveals a radial patterning mechanism common to root and shoot. Development 127:3595–603
    [Google Scholar]
  154. 154.  Yasumura Y, Moylan EC, Langdale JA 2005. A conserved transcription factor mediates nuclear control of organelle biogenesis in anciently diverged land plants. Plant Cell 17:71894–907
    [Google Scholar]
  155. 155.  Yi G, Neelakandan AK, Gontarek BC, Vollbrecht E, Becraft PW 2015. The naked endosperm genes encode duplicate INDETERMINATE domain transcription factors required for maize endosperm cell patterning and differentiation. Plant Physiol 167:2443–56
    [Google Scholar]
/content/journals/10.1146/annurev-genet-120417-031217
Loading
/content/journals/10.1146/annurev-genet-120417-031217
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error