1932

Abstract

Because germline mutations are the source of all evolutionary adaptations and heritable diseases, characterizing their properties and the rate at which they arise across individuals is of fundamental importance for human genetics. After decades during which estimates were based on indirect approaches, notably on inferences from evolutionary patterns, it is now feasible to count de novo mutations in transmissions from parents to offspring. Surprisingly, this direct approach yields a mutation rate that is twofold lower than previous estimates, calling into question our understanding of the chronology of human evolution and raising the possibility that mutation rates have evolved relatively rapidly. Here, we bring together insights from studies of human genetics and molecular evolution, focusing on where they conflict and what the discrepancies tell us about important open questions. We begin by outlining various methods for studying the properties of mutations in humans. We review what we have learned from their applications about genomic factors that influence mutation rates and the effects of sex, age, and other sources of interindividual variation. We then consider the mutation rate as a product of evolution and discuss how and why it may have changed over time in primates.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-genom-031714-125740
2014-08-31
2024-04-16
Loading full text...

Full text loading...

/deliver/fulltext/genom/15/1/annurev-genom-031714-125740.html?itemId=/content/journals/10.1146/annurev-genom-031714-125740&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 1000 Genomes Proj. Consort 2010. A map of human genome variation from population-scale sequencing. Nature 467:1061–73 [Google Scholar]
  2. Aarnio M, Sankila R, Pukkala E, Salovaara R, Aaltonen LA. 2.  et al. 1999. Cancer risk in mutation carriers of DNA mismatch repair genes. Int. J. Cancer 81:214–18 [Google Scholar]
  3. Agarwal A, Aponte-Mellado A, Premkumar BJ, Shaman A, Gupta S. 3.  2012. The effects of oxidative stress on female reproduction: a review. Reprod. Biol. Endocrinol. 10:49 [Google Scholar]
  4. Aitken RJ, De Iuliis GN. 4.  2007. Origins and consequences of DNA damage in male germ cells. Reprod. BioMed. Online 14:727–33 [Google Scholar]
  5. Aitken RJ, De Iuliis GN, Gibb Z, Baker MA. 5.  2012. The Simmet lecture: new horizons on an old landscape—oxidative stress, DNA damage and apoptosis in the male germ line. Reprod. Domest. Anim. 47:Suppl. 47–14 [Google Scholar]
  6. Alexandrov LB, Nik-Zainal S, Wedge DC, Aparicio SA, Behjati S. 6.  et al. 2013. Signatures of mutational processes in human cancer. Nature 500:415–21 [Google Scholar]
  7. Arndt PF, Burge CB, Hwa T. 7.  2003. DNA sequence evolution with neighbor-dependent mutation. J. Comput. Biol. 10:313–22 [Google Scholar]
  8. Arnheim N, Calabrese P. 8.  2009. Understanding what determines the frequency and pattern of human germline mutations. Nat. Rev. Genet. 10:478–88 [Google Scholar]
  9. Awadalla P, Gauthier J, Myers RA, Casals F, Hamdan FF. 9.  et al. 2010. Direct measure of the de novo mutation rate in autism and schizophrenia cohorts. Am. J. Hum. Genet. 87:316–24 [Google Scholar]
  10. Baer CF, Miyamoto MM, Denver DR. 10.  2007. Mutation rate variation in multicellular eukaryotes: causes and consequences. Nat. Rev. Genet. 8:619–31 [Google Scholar]
  11. Bartosch-Härlid A, Berlin S, Smith NGC, Møller AP, Ellegren H. 11.  2003. Life history and the male mutation bias. Evolution 57:2398 [Google Scholar]
  12. Benzer S. 12.  1961. On the topography of the genetic fine structure. Proc. Natl. Acad. Sci. USA 47:403–15 [Google Scholar]
  13. Bessman MJ, Muzyczka N, Goodman MF, Schnaar RL. 13.  1974. Studies on the biochemical basis of spontaneous mutation. II. The incorporation of a base and its analogue into DNA by wild-type, mutator and antimutator DNA polymerases. J. Mol. Biol. 88:409–21 [Google Scholar]
  14. Bird AP. 14.  1980. DNA methylation and the frequency of CpG in animal DNA. Nucleic Acids Res. 8:1499–504 [Google Scholar]
  15. Bloom LB, Otto MR, Eritja R, Reha-Krantz LJ, Goodman MF, Beechem JM. 15.  1994. Pre-steady-state kinetic analysis of sequence-dependent nucleotide excision by the 3′-exonuclease activity of bacteriophage T4 DNA polymerase. Biochemistry 33:7576–86 [Google Scholar]
  16. Bromham L. 16.  2011. The genome as a life-history character: why rate of molecular evolution varies between mammal species. Philos. Trans. R. Soc. B 366:2503–13 [Google Scholar]
  17. Brutlag D, Kornberg A. 17.  1972. Enzymatic synthesis of deoxyribonucleic acid: XXXVI. A proofreading function for the 3′ → 5′ exonuclease activity in deoxyribonucleic acid polymerases. J. Biol. Chem. 247:241–48 [Google Scholar]
  18. Bzymek M, Lovett ST. 18.  2001. Instability of repetitive DNA sequences: the role of replication in multiple mechanisms. Proc. Natl. Acad. Sci. USA 98:8319–25 [Google Scholar]
  19. Campbell CD, Chong JX, Malig M, Ko A, Dumont BL. 19.  et al. 2012. Estimating the human mutation rate using autozygosity in a founder population. Nat. Genet. 44:1277–81 [Google Scholar]
  20. Campbell CD, Eichler EE. 20.  2013. Properties and rates of germline mutations in humans. Trends Genet. 29:575–84 [Google Scholar]
  21. Capra JA, Hubisz MJ, Kostka D, Pollard KS, Siepel A. 21.  2013. A model-based analysis of GC-biased gene conversion in the human and chimpanzee genomes. PLoS Genet. 9:e1003684 [Google Scholar]
  22. Chang BH, Shimmin LC, Shyue SK, Hewett-Emmett D, Li WH. 22.  1994. Weak male-driven molecular evolution in rodents. Proc. Natl. Acad. Sci. USA 91:827–31 [Google Scholar]
  23. Chen F-C, Li W-H. 23.  2001. Genomic divergences between humans and other hominoids and the effective population size of the common ancestor of humans and chimpanzees. Am. J. Hum. Genet. 68:444–56 [Google Scholar]
  24. 24. Chimpanzee Seq. Anal. Consort 2005. Initial sequence of the chimpanzee genome and comparison with the human genome. Nature 437:69–87 [Google Scholar]
  25. Conrad DF, Keebler JE, DePristo MA, Lindsay SJ, Zhang Y. 25.  et al. 2011. Variation in genome-wide mutation rates within and between human families. Nat. Genet. 43:712–14 [Google Scholar]
  26. Cooper DN, Youssoufian H. 26.  1988. The CpG dinucleotide and human genetic disease. Hum. Genet. 78:151–55 [Google Scholar]
  27. Coulondre C, Miller JH, Farabaugh PJ, Gilbert W. 27.  1978. Molecular basis of base substitution hotspots in Escherichia coli. Nature 274:775–80 [Google Scholar]
  28. Crow JF. 28.  2000. The origins, patterns and implications of human spontaneous mutation. Nat. Rev. Genet. 1:40–47 [Google Scholar]
  29. Crow JF. 29.  2006. Age and sex effects on human mutation rates: an old problem with new complexities. J. Radiat. Res. 47:Suppl. BB75–82 [Google Scholar]
  30. Denver DR, Dolan PC, Wilhelm LJ, Sung W, Lucas-Lledo JI. 29a.  2009. A genome-wide view of Caenorhabditis elegans base-substitution mutation processes. Proc. Natl. Acad. Sci. USA 106:16310–14 [Google Scholar]
  31. Dixson AF, Anderson MJ. 30.  2004. Sexual behavior, reproductive physiology and sperm competition in male mammals. Physiol. Behav. 83:361–71 [Google Scholar]
  32. Drake JW, Charlesworth B, Charlesworth D, Crow JF. 31.  1998. Rates of spontaneous mutation. Genetics 148:1667–86 [Google Scholar]
  33. Driscoll DJ, Migeon BR. 32.  1990. Sex difference in methylation of single-copy genes in human meiotic germ cells: implications for X chromosome inactivation, parental imprinting, and origin of CpG mutations. Somat. Cell Mol. Genet. 16:267–82 [Google Scholar]
  34. Drost JB, Lee WR. 33.  1995. Biological basis of germline mutations: comparisons of spontaneous germline mutation rates among Drosophila, mouse, and human. Environ. Mol. Mutagen. 25:Suppl. S248–64 [Google Scholar]
  35. Duncan BK, Miller JH. 34.  1980. Mutagenic deamination of cytosine residues in DNA. Nature 287:560–61 [Google Scholar]
  36. Duret L, Galtier N. 35.  2009. Biased gene conversion and the evolution of mammalian genomic landscapes. Annu. Rev. Genomics Hum. Genet. 10:285–311 [Google Scholar]
  37. Ebersberger I, Metzler D, Schwarz C, Pääbo S. 36.  2002. Genomewide comparison of DNA sequences between humans and chimpanzees. Am. J. Hum. Genet. 70:1490–97 [Google Scholar]
  38. Echols H, Goodman MF. 37.  1991. Fidelity mechanisms in DNA replication. Annu. Rev. Biochem. 60:477–511 [Google Scholar]
  39. Ehmcke J. 38.  2006. Spermatogonial stem cells: questions, models and perspectives. Hum. Reprod. Update 12:275–82 [Google Scholar]
  40. Ehrlich M, Wang RY. 39.  1981. 5-Methylcytosine in eukaryotic DNA. Science 212:1350–57 [Google Scholar]
  41. Elango N, Lee J, Peng Z, Loh YHE, Yi SV. 40.  2009. Evolutionary rate variation in Old World monkeys. Biol. Lett. 5:405–8 [Google Scholar]
  42. Elango N, Thomas JW. 41. NISC Comp. Seq. Program, Yi SV 2006. Variable molecular clocks in hominoids. Proc. Natl. Acad. Sci. USA 103:1370–75 [Google Scholar]
  43. Ellegren H. 42.  2007. Characteristics, causes and evolutionary consequences of male-biased mutation. Proc. Biol. Sci. 274:1–10 [Google Scholar]
  44. Fenner JN. 43.  2005. Cross-cultural estimation of the human generation interval for use in genetics-based population divergence studies. Am. J. Phys. Anthropol. 128:415–23 [Google Scholar]
  45. Fitch WM. 44.  1967. Evidence suggesting a non-random character to nucleotide replacements in naturally occurring mutations. J. Mol. Biol. 26:499–507 [Google Scholar]
  46. Fousteri M, Mullenders LH. 45.  2008. Transcription-coupled nucleotide excision repair in mammalian cells: molecular mechanisms and biological effects. Cell Res. 18:73–84 [Google Scholar]
  47. Fromer M, Pocklington AJ, Kavanagh DH, Williams HJ, Dwyer S. 46.  et al. 2014. De novo mutations in schizophrenia implicate synaptic networks. Nature 506:179–84 [Google Scholar]
  48. Fryxell KJ, Zuckerkandl E. 47.  2000. Cytosine deamination plays a primary role in the evolution of mammalian isochores. Mol. Biol. Evol. 17:1371–83 [Google Scholar]
  49. Fu Q, Mittnik A, Johnson PL, Bos K, Lari M. 48.  et al. 2013. A revised timescale for human evolution based on ancient mitochondrial genomes. Curr. Biol. 23:553–59 [Google Scholar]
  50. Gage TB. 49.  1998. The comparative demography of primates: with some comments on the evolution of life histories. Annu. Rev. Anthropol. 27:197–221 [Google Scholar]
  51. Goodman M. 50.  1961. The role of immunologic differences in the phyletic development of human behavior. Hum. Biol. 33:131–62 [Google Scholar]
  52. Goodman MF, Creighton S, Bloom LB, Petruska J. 51.  1993. Biochemical basis of DNA replication fidelity. Crit. Rev. Biochem. Mol. Biol. 28:83–126 [Google Scholar]
  53. Goodman MF, Fygenson KD. 52.  1998. DNA polymerase fidelity: from genetics toward a biochemical understanding. Genetics 148:1475–82 [Google Scholar]
  54. Goriely A, Wilkie AO. 53.  2012. Paternal age effect mutations and selfish spermatogonial selection: causes and consequences for human disease. Am. J. Hum. Genet. 90:175–200 [Google Scholar]
  55. Green P, Ewing B, Miller W, Thomas PJ. 54. NISC Comp. Seq. Program, Green ED 2003. Transcription-associated mutational asymmetry in mammalian evolution. Nat. Genet. 33:514–17 [Google Scholar]
  56. Haldane JBS. 55.  1935. The rate of spontaneous mutation of a human gene. J. Genet. 31:317–26 [Google Scholar]
  57. Haldane JBS. 56.  1947. The mutation rate of the gene for haemophilia and its segregation ratios in males and females. Ann. Eugen. 13:262–71 [Google Scholar]
  58. Harcourt AH, Harvey PH, Larson SG, Short RV. 57.  1981. Testis weight, body weight and breeding system in primates. Nature 293:55–57 [Google Scholar]
  59. Hardison RC, Roskin KM, Yang S, Diekhans M, Kent WJ. 58.  et al. 2003. Covariation in frequencies of substitution, deletion, transposition, and recombination during eutherian evolution. Genome Res. 13:13–26 [Google Scholar]
  60. Harris K, Nielsen R. 59.  2013. Error-prone polymerase activity causes multinucleotide mutations in humans Unpublished manuscript, arXiv 1312.1395
  61. Harwood J, Tachibana A, Meuth M. 60.  1991. Multiple dispersed spontaneous mutations: a novel pathway of mutation in a malignant human cell line. Mol. Cell. Biol. 11:3163–70 [Google Scholar]
  62. Heller DA, Clermont Y. 61.  1963. Spermatogenesis in man: an estimate of its duration. Science 140:184–86 [Google Scholar]
  63. Hellmann I, Ebersberger I, Ptak SE, Pääbo S, Przeworski M. 62.  2003. A neutral explanation for the correlation of diversity with recombination rates in humans. Am. J. Hum. Genet. 72:1527–35 [Google Scholar]
  64. Hellmann I, Mang Y, Gu Z, Li P, de la Vega FM. 63.  et al. 2008. Population genetic analysis of shotgun assemblies of genomic sequences from multiple individuals. Genome Res. 18:1020–29 [Google Scholar]
  65. Henderson SA, Edwards RG. 64.  1968. Chiasma frequency and maternal age in mammals. Nature 218:22–28 [Google Scholar]
  66. Hermann BP, Sukhwani M, Hansel MC, Orwig KE. 65.  2010. Spermatogonial stem cells in higher primates: Are there differences from those in rodents?. Reproduction 139:479–93 [Google Scholar]
  67. Hess ST, Blake JD, Blake RD. 66.  1994. Wide variations in neighbor-dependent substitution rates. J. Mol. Biol. 236:1022–33 [Google Scholar]
  68. Hodgkinson A, Eyre-Walker A. 67.  2011. Variation in the mutation rate across mammalian genomes. Nat. Rev. Genet. 12:756–66 [Google Scholar]
  69. Huttley GA, Jakobsen IB, Wilson SR, Easteal S. 68.  2000. How important is DNA replication for mutagenesis?. Mol. Biol. Evol. 17:929–37 [Google Scholar]
  70. Hwang DG, Green P. 69.  2004. Bayesian Markov chain Monte Carlo sequence analysis reveals varying neutral substitution patterns in mammalian evolution. Proc. Natl. Acad. Sci. USA 101:13994–4001 [Google Scholar]
  71. Iossifov I, Ronemus M, Levy D, Wang Z, Hakker I. 70.  et al. 2012. De novo gene disruptions in children on the autistic spectrum. Neuron 74:285–99 [Google Scholar]
  72. Jiang YH, Yuen RK, Jin X, Wang M, Chen N. 71.  et al. 2013. Detection of clinically relevant genetic variants in autism spectrum disorder by whole-genome sequencing. Am. J. Hum. Genet. 93:249–63 [Google Scholar]
  73. Keightley PD, Ness RW, Halligan DL, Haddrill PR. 72.  2014. Estimation of the spontaneous mutation rate per nucleotide site in a Drosophila melanogaster full-sib family. Genetics 196:313–20 [Google Scholar]
  74. Kim SH, Elango N, Warden C, Vigoda E, Yi SV. 73.  2006. Heterogeneous genomic molecular clocks in primates. PLoS Genet. 2:e163 [Google Scholar]
  75. Kimble J, Ward S. 74.  1998. Germ-line development and fertilization. The Nematode Caenorhabditis elegans, ed. WB Wood 191–213 Woodbury, NY: Cold Spring Harb. Lab. Press [Google Scholar]
  76. Kimura M. 75.  1967. On the evolutionary adjustment of spontaneous mutation rates. Genet. Res. 9:23–34 [Google Scholar]
  77. Kimura M. 76.  1983. The Neutral Theory of Molecular Evolution Cambridge, UK: Cambridge Univ. Press
  78. Kobayashi H, Sakurai T, Miura F, Imai M, Mochiduki K. 77.  et al. 2013. High-resolution DNA methylome analysis of primordial germ cells identifies gender-specific reprogramming in mice. Genome Res. 23:616–27 [Google Scholar]
  79. Kondrashov AS. 78.  1995. Modifiers of mutation-selection balance: general approach and the evolution of mutation rates. Genet. Res. 66:53–69 [Google Scholar]
  80. Kondrashov AS. 79.  2003. Direct estimates of human per nucleotide mutation rates at 20 loci causing Mendelian diseases. Hum. Mutat. 21:12–27 [Google Scholar]
  81. Kong A, Frigge ML, Masson G, Besenbacher S, Sulem P. 80.  et al. 2012. Rate of de novo mutations and the importance of father's age to disease risk. Nature 488:471–75 [Google Scholar]
  82. Lambrot R, Xu C, Saint-Phar S, Chountalos G, Cohen T. 81.  et al. 2013. Low paternal dietary folate alters the mouse sperm epigenome and is associated with negative pregnancy outcomes. Nat. Commun. 4:1–13 [Google Scholar]
  83. Lang GI, Parsons L, Gammie AE. 82.  2013. Mutation rates, spectra, and genome-wide distribution of spontaneous mutations in mismatch repair deficient yeast. G3 3:1453–65 [Google Scholar]
  84. Langergraber KE, Prufer K, Rowney C, Boesch C, Crockford C. 83.  et al. 2012. Generation times in wild chimpanzees and gorillas suggest earlier divergence times in great ape and human evolution. Proc. Natl. Acad. Sci. USA 109:15716–21 [Google Scholar]
  85. Lawrence MS, Stojanov P, Polak P, Kryukov GV, Cibulskis K. 84.  et al. 2013. Mutational heterogeneity in cancer and the search for new cancer-associated genes. Nature 499:214–18 [Google Scholar]
  86. Leffler EM, Bullaughey K, Matute DR, Meyer WK, Ségurel L. 85.  et al. 2012. Revisiting an old riddle: What determines genetic diversity levels within species?. PLoS Biol. 10:e1001388 [Google Scholar]
  87. Leffler EM, Gao Z, Pfeifer S, Ségurel L, Auton A. 86.  et al. 2013. Multiple instances of ancient balancing selection shared between humans and chimpanzees. Science 339:1578–82 [Google Scholar]
  88. Lercher MJ, Hurst LD. 87.  2002. Human SNP variability and mutation rate are higher in regions of high recombination. Trends Genet. 18:337–40 [Google Scholar]
  89. Li H, Durbin R. 88.  2011. Inference of human population history from individual whole-genome sequences. Nature 475:493–96 [Google Scholar]
  90. Li WH, Ellsworth DL, Krushkal J, Chang BH, Hewett-Emmett D. 89.  1996. Rates of nucleotide substitution in primates and rodents and the generation-time effect hypothesis. Mol. Phylogenet. Evol. 5:182–87 [Google Scholar]
  91. Li WH, Wu CI, Luo CC. 90.  1984. Nonrandomness of point mutation as reflected in nucleotide substitutions in pseudogenes and its evolutionary implications. J. Mol. Evol. 21:58–71 [Google Scholar]
  92. Lindahl T. 91.  1993. Instability and decay of the primary structure of DNA. Nature 362:709–15 [Google Scholar]
  93. Lindahl T, Nyberg B. 92.  1974. Heat-induced deamination of cytosine residues in deoxyribonucleic acid. Biochemistry 13:3405–10 [Google Scholar]
  94. Liu P, Carvalho CM, Hastings PJ, Lupski JR. 93.  2012. Mechanisms for recurrent and complex human genomic rearrangements. Curr. Opin. Genet. Dev. 22:211–20 [Google Scholar]
  95. Lynch M. 94.  2008. The cellular, developmental and population-genetic determinants of mutation-rate evolution. Genetics 180:933–43 [Google Scholar]
  96. Lynch M. 95.  2010a. Evolution of the mutation rate. Trends Genet. 26:345–52 [Google Scholar]
  97. Lynch M. 96.  2010b. Rate, molecular spectrum, and consequences of human mutation. Proc. Natl. Acad. Sci. USA 107:961–68 [Google Scholar]
  98. Lynch M, Sung W, Morris K, Coffey N, Landry CR. 96a.  2008. A genome-wide view of the spectrum of spontaneous mutations in yeast. Proc. Natl. Acad. Sci. USA 105:9272–77 [Google Scholar]
  99. Makova KD, Li WH. 97.  2002. Strong male-driven evolution of DNA sequences in humans and apes. Nature 416:624–26 [Google Scholar]
  100. Marson J, Meuris S, Cooper RW, Jouannet P. 98.  1991. Puberty in the male chimpanzee: progressive maturation of semen characteristics. Biol. Reprod. 44:448–55 [Google Scholar]
  101. Martin AP, Palumbi SR. 99.  1993. Body size, metabolic rate, generation time, and the molecular clock. Proc. Natl. Acad. Sci. USA 90:4087–91 [Google Scholar]
  102. McVean GT, Hurst LD. 100.  1997. Evidence for a selectively favourable reduction in the mutation rate of the X chromosome. Nature 386:388–92 [Google Scholar]
  103. McVicker G, Gordon D, Davis C, Green P. 101.  2009. Widespread genomic signatures of natural selection in hominid evolution. PLoS Genet. 5:e1000471 [Google Scholar]
  104. McVicker G, Green P. 102.  2010. Genomic signatures of germline gene expression. Genome Res. 20:1503–11 [Google Scholar]
  105. Michaelson JJ, Shi Y, Gujral M, Zheng H, Malhotra D. 103.  et al. 2012. Whole-genome sequencing in autism identifies hot spots for de novo germline mutation. Cell 151:1431–42 [Google Scholar]
  106. Miyata T, Hayashida H, Kuma K, Mitsuyasu K, Yasunaga T. 104.  1987. Male-driven molecular evolution: a model and nucleotide sequence analysis. Cold Spring Harb. Symp. Quant. Biol. 52:863–67 [Google Scholar]
  107. Mohrenweiser HW, Wilson DM III, Jones IM. 105.  2003. Challenges and complexities in estimating both the functional impact and the disease risk associated with the extensive genetic variation in human DNA repair genes. Mutat. Res. 526:93–125 [Google Scholar]
  108. Molaro A, Hodges E, Fang F, Song Q, McCombie WR. 106.  et al. 2011. Sperm methylation profiles reveal features of epigenetic inheritance and evolution in primates. Cell 146:1029–41 [Google Scholar]
  109. Møller AP, Cuervo JJ. 107.  2003. Sexual selection, germline mutation rate and sperm competition. BMC Evol. Biol. 3:1–11 [Google Scholar]
  110. Moran S, Ren RX, Kool ET. 108.  1997. A thymidine triphosphate shape analog lacking Watson-Crick pairing ability is replicated with high sequence selectivity. Proc. Natl. Acad. Sci. USA 94:10506–11 [Google Scholar]
  111. Muzyczka N, Poland RL, Bessman MJ. 109.  1972. Studies on the biochemical basis of spontaneous mutation. I. A comparison of the deoxyribonucleic acid polymerases of mutator, antimutator, and wild type strains of bacteriophage T4. J. Biol. Chem. 247:7116–22 [Google Scholar]
  112. Nachman MW. 110.  2004. Haldane and the first estimates of the human mutation rate. J. Genet. 83:231–33 [Google Scholar]
  113. Nachman MW, Crowell SL. 111.  2000. Estimate of the mutation rate per nucleotide in humans. Genetics 156:297–304 [Google Scholar]
  114. Nagylaki T. 112.  1983. Evolution of a finite population under gene conversion. Proc. Natl. Acad. Sci. USA 80:6278–81 [Google Scholar]
  115. Nakamura J, Swenberg JA. 113.  1999. Endogenous apurinic/apyrimidinic sites in genomic DNA of mammalian tissues. Cancer Res. 59:2522–26 [Google Scholar]
  116. Nakamura N, Suyama A, Noda A, Kodama Y. 114.  2013. Radiation effects on human heredity. Annu. Rev. Genet. 47:33–50 [Google Scholar]
  117. Neale BM, Kou Y, Liu L, Ma'ayan A, Samocha KE. 115.  et al. 2012. Patterns and rates of exonic de novo mutations in autism spectrum disorders. Nature 485:242–45 [Google Scholar]
  118. Ness RW, Morgan AD, Colegrave N, Keightley PD. 115a.  2012. Estimate of the spontaneous mutation rate in Chlamydomonas reinhardtii. Genetics 192:1447–54 [Google Scholar]
  119. Nielsen T, Skakkebaek NE, Richardson DW, Darling JAB, Hunter WM. 116.  et al. 1986. Onset of the release of spermatozoa (spermarche) in boys in relation to age, testicular growth, pubic hair, and height. J. Clin. Endocrinol. Metab. 62:532–35 [Google Scholar]
  120. Nik-Zainal S, Wedge DC, Alexandrov LB, Petljak M, Butler AP. 117.  et al. 2014. Association of a germline copy number polymorphism of APOBEC3A and APOBEC3B with burden of putative APOBEC-dependent mutations in breast cancer. Nat. Genet. 46:487–91 [Google Scholar]
  121. O'Roak BJ, Deriziotis P, Lee C, Vives L, Schwartz JJ. 118.  et al. 2011. Exome sequencing in sporadic autism spectrum disorders identifies severe de novo mutations. Nat. Genet. 43:585–89 [Google Scholar]
  122. O'Roak BJ, Vives L, Girirajan S, Karakoc E, Krumm N. 119.  et al. 2012. Sporadic autism exomes reveal a highly interconnected protein network of de novo mutations. Nature 485:246–50 [Google Scholar]
  123. Odenthal-Hesse L, Berg IL, Veselis A, Jeffreys AJ, May CA. 120.  2014. Transmission distortion affecting human noncrossover but not crossover recombination: a hidden source of meiotic drive. PLoS Genet. 10:e1004106 [Google Scholar]
  124. Ohno M, Sakumi K, Fukumura R, Furuichi M, Iwasaki Y. 121.  et al. 2014. 8-Oxoguanine causes spontaneous de novo germline mutations in mice. Sci. Rep. 4:4689 [Google Scholar]
  125. Ohta T. 122.  1993. An examination of the generation-time effect on molecular evolution. Proc. Natl. Acad. Sci. USA 90:10676–80 [Google Scholar]
  126. Parker GA. 123.  1970. Sperm competition and its evolutionary consequences in the insects. Biol. Rev. 45:525–67 [Google Scholar]
  127. Patterson N, Richter DJ, Gnerre S, Lander ES, Reich D. 124.  2006. Genetic evidence for complex speciation of humans and chimpanzees. Nature 441:1103–8 [Google Scholar]
  128. Penrose LS. 125.  1955. Parental age and mutation. Lancet 269:312–13 [Google Scholar]
  129. Perry GH, Reeves D, Melsted P, Ratan A, Miller W. 126.  et al. 2012. A genome sequence resource for the aye-aye (Daubentonia madagascariensis), a nocturnal lemur from Madagascar. Genome Biol. Evol. 4:126–35 [Google Scholar]
  130. Petruska J, Goodman MF. 127.  1985. Influence of neighboring bases on DNA polymerase insertion and proofreading fidelity. J. Biol. Chem. 260:7533–39 [Google Scholar]
  131. Pfeifer GP. 128.  2006. Mutagenesis at methylated CpG sequences. Curr. Top. Microbiol. Immunol. 301:259–81 [Google Scholar]
  132. Pfeifer GP, You YH, Besaratinia A. 129.  2005. Mutations induced by ultraviolet light. Mutat. Res. 571:19–31 [Google Scholar]
  133. Phillips BT, Gassei K, Orwig KE. 130.  2010. Spermatogonial stem cell regulation and spermatogenesis. Philos. Trans. R. Soc. B 365:1663–78 [Google Scholar]
  134. Pleasance ED, Cheetham RK, Stephens PJ, McBride DJ, Humphray SJ. 131.  et al. 2010. A comprehensive catalogue of somatic mutations from a human cancer genome. Nature 463:191–96 [Google Scholar]
  135. Pleasance ED, Stephens PJ, O'Meara S, McBride DJ, Meynert A. 132.  et al. 2010. A small-cell lung cancer genome with complex signatures of tobacco exposure. Nature 463:184–90 [Google Scholar]
  136. Presgraves DC, Yi SV. 133.  2009. Doubts about complex speciation between humans and chimpanzees. Trends Ecol. Evol. 24:533–40 [Google Scholar]
  137. Ramm SA, Stockley P. 134.  2010. Sperm competition and sperm length influence the rate of mammalian spermatogenesis. Biol. Lett. 6:219–21 [Google Scholar]
  138. Reizel Y, Itzkovitz S, Adar R, Elbaz J, Jinich A. 135.  et al. 2012. Cell lineage analysis of the mammalian female germline. PLoS Genet. 8:e1002477 [Google Scholar]
  139. Risch N, Reich EW, Wishnick MM, McCarthy JG. 136.  1987. Spontaneous mutation and parental age in humans. Am. J. Hum. Genet. 41:218–48 [Google Scholar]
  140. Roach JC, Glusman G, Smit AF, Huff CD, Hubley R. 137.  et al. 2010. Analysis of genetic inheritance in a family quartet by whole-genome sequencing. Science 328:636–39 [Google Scholar]
  141. Roberts JD, Kunkel TA. 138.  1996. Fidelity of DNA Replication Woodbury, NY: Cold Spring Harb. Lab. Press
  142. Rubin AF, Green P. 139.  2009. Mutation patterns in cancer genomes. Proc. Natl. Acad. Sci. USA 106:21766–70 [Google Scholar]
  143. Ruggeri B, DiRado M, Zhang SY, Bauer B, Goodrow T, Klein-Szanto AJ. 140.  1993. Benzo[a]pyrene-induced murine skin tumors exhibit frequent and characteristic G to T mutations in the p53 gene. Proc. Natl. Acad. Sci. USA 90:1013–17 [Google Scholar]
  144. Sanders SJ, Murtha MT, Gupta AR, Murdoch JD, Raubeson MJ. 141.  et al. 2012. De novo mutations revealed by whole-exome sequencing are strongly associated with autism. Nature 485:237–41 [Google Scholar]
  145. Saxer G, Havlak P, Fox SA, Quance MA, Gupta S. 141a.  2012. Whole genome sequencing of mutation accumulation lines reveals a low mutation rate in the social amoeba Dictyostelium discoideum. PLoS ONE 7:e46759 [Google Scholar]
  146. Scally A, Durbin R. 142.  2012. Revising the human mutation rate: implications for understanding human evolution. Nat. Rev. Genet. 13:745–53 [Google Scholar]
  147. Scally A, Dutheil JY, Hillier LW, Jordan GE, Goodhead I. 143.  et al. 2012. Insights into hominid evolution from the gorilla genome sequence. Nature 483:169–75 [Google Scholar]
  148. Schaibley VM, Zawistowski M, Wegmann D, Ehm MG, Nelson MR. 144.  et al. 2013. The influence of genomic context on mutation patterns in the human genome inferred from rare variants. Genome Res. 23:1974–84 [Google Scholar]
  149. Schmidt S, Gerasimova A, Kondrashov FA, Adzhubei IA, Kondrashov AS, Sunyaev S. 145.  2008. Hypermutable non-synonymous sites are under stronger negative selection. PLoS Genet. 4:e1000281 [Google Scholar]
  150. Schmutte C, Yang AS, Beart RW, Jones PA. 146.  1995. Base excision repair of U:G mismatches at a mutational hotspot in the p53 gene is more efficient than base excision repair of T:G mismatches in extracts of human colon tumors. Cancer Res. 55:3742–46 [Google Scholar]
  151. Seidman MM, Bredberg A, Seetharam S, Kraemer KH. 147.  1987. Multiple point mutations in a shuttle vector propagated in human cells: evidence for an error-prone DNA polymerase activity. Proc. Natl. Acad. Sci. USA 84:4944–48 [Google Scholar]
  152. Siepel A, Haussler D. 148.  2004. Phylogenetic estimation of context-dependent substitution rates by maximum likelihood. Mol. Biol. Evol. 21:468–88 [Google Scholar]
  153. Sinclair KD, Allegrucci C, Singh R, Gardner DS, Sebastian S. 149.  et al. 2007. DNA methylation, insulin resistance, and blood pressure in offspring determined by maternal periconceptional B vitamin and methionine status. Proc. Natl. Acad. Sci. USA 104:19351–56 [Google Scholar]
  154. Smallwood SA, Kelsey G. 150.  2012. De novo DNA methylation: a germ cell perspective. Trends Genet. 28:33–42 [Google Scholar]
  155. Smithwick EB, Young LG, Gould KG. 151.  1996. Duration of spermatogenesis and relative frequency of each stage in the seminiferous epithelial cycle of the chimpanzee. Tissue Cell 28:357–66 [Google Scholar]
  156. Stamatoyannopoulos JA, Adzhubei I, Thurman RE, Kryukov GV, Mirkin SM, Sunyaev SR. 152.  2009. Human mutation rate associated with DNA replication timing. Nat. Genet. 41:393–95 [Google Scholar]
  157. Stone JE, Lujan SA, Kunkel TA, Kunkel TA. 153.  2012. DNA polymerase zeta generates clustered mutations during bypass of endogenous DNA lesions in Saccharomyces cerevisiae. Environ. Mol. Mutagen. 53:777–86 [Google Scholar]
  158. Sung W, Tucker AE, Doak TG, Choi E, Thomas WK, Lynch M. 153a.  2012. Extraordinary genome stability in the ciliate Paramecium tetraurelia. Proc. Natl. Acad. Sci. USA 109:19339–44 [Google Scholar]
  159. Sunyaev S, Polak P, Francioli L, Kloosterman W, de Bakker PIW. 154. Genome Neth. Consort 2013. Large-scale parent-child trio sequencing highlights factors influencing spontaneous human mutation. Presented at Am. Soc. Hum. Genet. Meet., Boston, October 22–26
  160. Taylor J, Tyekucheva S, Zody M, Chiaromonte F, Makova KD. 155.  2006. Strong and weak male mutation bias at different sites in the primate genomes: insights from the human-chimpanzee comparison. Mol. Biol. Evol. 23:565–73 [Google Scholar]
  161. Tennessen JA, Bigham AW, O'Connor TD, Fu W, Kenny EE. 156.  et al. 2012. Evolution and functional impact of rare coding variation from deep sequencing of human exomes. Science 337:64–69 [Google Scholar]
  162. Thomas GWC, Hahn MW. 157.  2014. The human mutation rate is increasing, even as it slows. Mol. Biol. Evol. 31:253–57 [Google Scholar]
  163. Trautner TA, Swartz MN, Kornberg A. 158.  1962. Enzymatic synthesis of deoxyribonucleic acid. X. Influence of bromouracil substitutions on replication. Proc. Natl. Acad. Sci. USA 48:449–55 [Google Scholar]
  164. Venn O, Turner I, Mathieson I, de Groot N, Bontrop R, McVean G. 158a.  2014. Strong male bias drives germline mutation in chimpanzees. Science 344:1272–75 [Google Scholar]
  165. Vogel F, Rathenberg R. 159.  1975. Spontaneous mutation in man. Adv. Hum. Genet. 5:223–318 [Google Scholar]
  166. Wakeley J. 160.  1996. The excess of transitions among nucleotide substitutions: new methods of estimating transition bias underscore its significance. Trends Ecol. Evol. 11:158–62 [Google Scholar]
  167. Wakeley J. 161.  2008. Complex speciation of humans and chimpanzees. Nature 452:E3–4 [Google Scholar]
  168. Wang J, Fan HC, Behr B, Quake SR. 162.  2012. Genome-wide single-cell analysis of recombination activity and de novo mutation rates in human sperm. Cell 150:402–12 [Google Scholar]
  169. Watanabe Y, Fujiyama A, Ichiba Y, Hattori M, Yada T. 163.  et al. 2002. Chromosome-wide assessment of replication timing for human chromosomes 11q and 21q: disease-related genes in timing-switch regions. Hum. Mol. Genet. 11:13–21 [Google Scholar]
  170. Weinberg W. 164.  1912. Zur vererbung des zwergwuchses. Arch. Rassen-u. Ges. Biol. 9:710–18 [Google Scholar]
  171. Wheeler JMD, Bodmer WF. 165.  2000. DNA mismatch repair genes and colorectal cancer. Gut 47:148–53 [Google Scholar]
  172. Whitlock MC, Agrawal AF. 166.  2009. Purging the genome with sexual selection: reducing mutation load through selection on males. Evolution 63:569–82 [Google Scholar]
  173. Wilson Sayres MA, Venditti C, Pagel M, Makova KD. 167.  2011. Do variations in substitution rates and male mutation bias correlate with life-history traits? A study of 32 mammalian genomes. Evolution 65:2800–15 [Google Scholar]
  174. Woodruff RC, Thompson JNJ. 168.  1992. Have premeiotic clusters of mutation been overlooked in evolutionary theory?. J. Evol. Biol. 5:457–646 [Google Scholar]
  175. Wu CI, Li WH. 169.  1985. Evidence for higher rates of nucleotide substitution in rodents than in man. Proc. Natl. Acad. Sci. USA 82:1741–45 [Google Scholar]
  176. Xu K, Oh S, Park T, Presgraves DC, Yi SV. 170.  2012. Lineage-specific variation in slow- and fast-X evolution in primates. Evolution 66:1751–61 [Google Scholar]
  177. Xue Y, Wang Q, Long Q, Ng BL, Swerdlow H. 171.  et al. 2009. Human Y chromosome base-substitution mutation rate measured by direct sequencing in a deep-rooting pedigree. Curr. Biol. 19:1453–57 [Google Scholar]
  178. Yi S, Ellsworth DL, Li WH. 172.  2002. Slow molecular clocks in Old World monkeys, apes, and humans. Mol. Biol. Evol. 19:2191–98 [Google Scholar]
  179. Ying H, Epps J, Williams R, Huttley G. 173.  2010. Evidence that localized variation in primate sequence divergence arises from an influence of nucleosome placement on DNA repair. Mol. Biol. Evol. 27:637–49 [Google Scholar]
  180. Yoon JH, Smith LE, Feng Z, Tang M, Lee CS, Pfeifer GP. 174.  2001. Methylated CpG dinucleotides are the preferential targets for G-to-T transversion mutations induced by benzo[a]pyrene diol epoxide in mammalian cells: similarities with the p53 mutation spectrum in smoking-associated lung cancers. Cancer Res. 61:7110–17 [Google Scholar]
  181. Zaidi S, Choi M, Wakimoto H, Ma L, Jiang J. 175.  et al. 2013. De novo mutations in histone-modifying genes in congenital heart disease. Nature 498:220–23 [Google Scholar]
  182. Zenzes MT. 176.  2000. Smoking and reproduction: gene damage to human gametes and embryos. Hum. Reprod. Update 6:122–31 [Google Scholar]
/content/journals/10.1146/annurev-genom-031714-125740
Loading
/content/journals/10.1146/annurev-genom-031714-125740
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error