1932

Abstract

Asthma is a common, clinically heterogeneous disease with strong evidence of heritability. Progress in defining the genetic underpinnings of asthma, however, has been slow and hampered by issues of inconsistency. Recent advances in the tools available for analysis—assaying transcription, sequence variation, and epigenetic marks on a genome-wide scale—have substantially altered this landscape. Applications of such approaches are consistent with heterogeneity at the level of causation and specify patterns of commonality with a wide range of alternative disease traits. Looking beyond the individual as the unit of study, advances in technology have also fostered comprehensive analysis of the human microbiome and its varied roles in health and disease. In this article, we consider the implications of these technological advances for our current understanding of the genetics and genomics of asthma.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-genom-083117-021651
2018-08-31
2024-04-20
Loading full text...

Full text loading...

/deliver/fulltext/genom/19/1/annurev-genom-083117-021651.html?itemId=/content/journals/10.1146/annurev-genom-083117-021651&mimeType=html&fmt=ahah

Literature Cited

  1. 1.  Aagaard K, Ma J, Antony KM, Ganu R, Petrosino J, Versalovic J 2014. The placenta harbors a unique microbiome. Sci. Transl. Med. 6:237ra65
    [Google Scholar]
  2. 2.  Aguilar D, Pinart M, Koppelman GH, Saeys Y, Nawijn MC et al. 2017. Computational analysis of multimorbidity between asthma, eczema and rhinitis. PLOS ONE 12:e0179125
    [Google Scholar]
  3. 3.  Allen M, Heinzmann A, Noguchi E, Abecasis G, Broxholme J et al. 2003. Positional cloning of a novel gene influencing asthma from chromosome 2q14. Nat. Genet. 35:258–63
    [Google Scholar]
  4. 4.  Almoguera B, Vazquez L, Mentch F, Connolly J, Pacheco JA et al. 2017. Identification of four novel loci in asthma in European American and African American populations. Am. J. Respir. Crit. Care Med. 195:456–63
    [Google Scholar]
  5. 5.  Anderson CA, Boucher G, Lees CW, Franke A, D'Amato M et al. 2011. Meta-analysis identifies 29 additional ulcerative colitis risk loci, increasing the number of confirmed associations to 47. Nat. Genet. 43:246–52
    [Google Scholar]
  6. 6.  Arathimos R, Suderman M, Sharp GC, Burrows K, Granell R et al. 2017. Epigenome-wide association study of asthma and wheeze in childhood and adolescence. Clin. Epigenet. 9:112
    [Google Scholar]
  7. 7.  Arteaga-Solis E, Zee T, Emala CW, Vinson C, Wess J, Karsenty G 2013. Inhibition of leptin regulation of parasympathetic signaling as a cause of extreme body weight-associated asthma. Cell Metab 17:35–48
    [Google Scholar]
  8. 8.  Asano K, Matsushita T, Umeno J, Hosono N, Takahashi A et al. 2009. A genome-wide association study identifies three new susceptibility loci for ulcerative colitis in the Japanese population. Nat. Genet. 41:1325–29
    [Google Scholar]
  9. 9.  Astle WJ, Elding H, Jiang T, Allen D, Ruklisa D et al. 2016. The allelic landscape of human blood cell trait variation and links to common complex disease. Cell 167:1415–29
    [Google Scholar]
  10. 10. Autism Spectr. Disord. Work. Group Psychiatr. Genom. Consort. 2017. Meta-analysis of GWAS of over 16,000 individuals with autism spectrum disorder highlights a novel locus at 10q24.32 and a significant overlap with schizophrenia. Mol. Autism 8:21
    [Google Scholar]
  11. 11.  Balaci L, Spada MC, Olla N, Sole G, Loddo L et al. 2007. IRAK-M is involved in the pathogenesis of early-onset persistent asthma. Am. J. Hum. Genet. 80:1103–14
    [Google Scholar]
  12. 12.  Barnes PJ 2009. Targeting the epigenome in the treatment of asthma and chronic obstructive pulmonary disease. Proc. Am. Thorac. Soc. 6:693–96
    [Google Scholar]
  13. 13.  Barrett JC, Hansoul S, Nicolae DL, Cho JH, Duerr RH et al. 2008. Genome-wide association defines more than 30 distinct susceptibility loci for Crohn's disease. Nat. Genet. 40:955–62
    [Google Scholar]
  14. 14.  Bassis CM, Erb-Downward JR, Dickson RP, Freeman CM, Schmidt TM et al. 2015. Analysis of the upper respiratory tract microbiotas as the source of the lung and gastric microbiotas in healthy individuals. mBio 6:e00037
    [Google Scholar]
  15. 15.  Bhatnagar P, Barron-Casella E, Bean CJ, Milton JN, Baldwin CT et al. 2013. Genome-wide meta-analysis of systolic blood pressure in children with sickle cell disease. PLOS ONE 8:e74193
    [Google Scholar]
  16. 16.  Bigler J, Boedigheimer M, Schofield JPR, Skipp PJ, Corfield J et al. 2017. A severe asthma disease signature from gene expression profiling of peripheral blood from U-BIOPRED cohorts. Am. J. Respir. Crit. Care Med. 195:1311–20
    [Google Scholar]
  17. 17.  Bouzigon E, Corda E, Aschard H, Dizier MH, Boland A et al. 2008. Effect of 17q21 variants and smoking exposure in early-onset asthma. N. Engl. J. Med. 359:1985–94
    [Google Scholar]
  18. 18.  Bouzigon E, Forabosco P, Koppelman GH, Cookson WOC, Dizier MH et al. 2010. Meta-analysis of 20 genome-wide linkage studies evidenced new regions linked to asthma and atopy. Eur. J. Hum. Genet. 18:700–6
    [Google Scholar]
  19. 19.  Burdett T, Hall PN, Hastings E, Hindorff LA, Junkins HA et al. 2017. GWAS Catalog: the NHGRI-EBI Catalog of published genome-wide association studies Accessed Nov. 22, 2017. http://www.ebi.ac.uk/gwas
  20. 20. Cancer Genome Atlas Netw. 2012. Comprehensive molecular portraits of human breast tumours. Nature 490:61–70
    [Google Scholar]
  21. 21.  Chen J, Miller M, Unno H, Rosenthal P, Sanderson MJ, Broide DH 2018. Orosomucoid-like 3 (ORMDL3) upregulates airway smooth muscle proliferation, contraction, and Ca2+ oscillations in asthma. J. Allergy Clin. Immunol. 142:207–18
    [Google Scholar]
  22. 22.  Chen W, Wang T, Pino-Yanes M, Forno E, Liang L et al. 2017. An epigenome-wide association study of total serum IgE in Hispanic children. J. Allergy Clin. Immunol. 140:571–77
    [Google Scholar]
  23. 23.  Collado MC, Rautava S, Aakko J, Isolauri E, Salminen S 2016. Human gut colonisation may be initiated in utero by distinct microbial communities in the placenta and amniotic fluid. Sci. Rep. 6:23129
    [Google Scholar]
  24. 24.  Colodro-Conde L, Zhu G, Power RA, Henders A, Heath AC et al. 2015. A twin study of breastfeeding with a preliminary genome-wide association scan. Twin Res. Hum. Genet. 18:61–72
    [Google Scholar]
  25. 25.  Comuzzie AG, Cole SA, Laston SL, Voruganti VS, Haack K et al. 2012. Novel genetic loci identified for the pathophysiology of childhood obesity in the Hispanic population. PLOS ONE 7:e51954
    [Google Scholar]
  26. 26.  Cookson WOC, Moffatt MF 2000. Genetics of asthma and allergic disease. Hum. Mol. Genet. 9:2359–64
    [Google Scholar]
  27. 27.  Croteau-Chonka DC, Qiu W, Martinez FD, Strunk RC, Lemanske RF Jr. et al. 2017. Gene expression profiling in blood provides reproducible molecular insights into asthma control. Am. J. Respir. Crit. Care Med. 195:179–88
    [Google Scholar]
  28. 28.  Curtis C, Shah SP, Chin SF, Turashvili G, Rueda OM et al. 2012. The genomic and transcriptomic architecture of 2,000 breast tumours reveals novel subgroups. Nature 486:346–52
    [Google Scholar]
  29. 29.  Das S, Miller M, Beppu AK, Mueller J, McGeough MD et al. 2016. GSDMB induces an asthma phenotype characterized by increased airway responsiveness and remodeling without lung inflammation. PNAS 113:13132–37
    [Google Scholar]
  30. 30.  Davenport ER, Cusanovich DA, Michelini K, Barreiro LB, Ober C, Gilad Y 2015. Genome-wide association studies of the human gut microbiota. PLOS ONE 10:e0140301
    [Google Scholar]
  31. 31.  Davies ER, Kelly JF, Howarth PH, Wilson DI, Holgate ST et al. 2016. Soluble ADAM33 initiates airway remodeling to promote susceptibility for allergic asthma in early life. JCI Insight 1:e87632
    [Google Scholar]
  32. 32.  de Lange KM, Moutsianas L, Lee JC, Lamb CA, Luo Y et al. 2017. Genome-wide association study implicates immune activation of multiple integrin genes in inflammatory bowel disease. Nat. Genet. 49:256–61
    [Google Scholar]
  33. 33.  Deaton AM, Webb S, Kerr AR, Illingworth RS, Guy J et al. 2011. Cell type-specific DNA methylation at intragenic CpG islands in the immune system. Genome Res 21:1074–86
    [Google Scholar]
  34. 34.  Deliu M, Sperrin M, Belgrave D, Custovic A 2016. Identification of asthma subtypes using clustering methodologies. Pulm. Ther. 2:19–41
    [Google Scholar]
  35. 35.  Denham S, Koppelman GH, Blakey J, Wjst M, Ferreira MA et al. 2008. Meta-analysis of genome-wide linkage studies of asthma and related traits. Respir. Res. 9:38
    [Google Scholar]
  36. 36.  DeVries A, Wlasiuk G, Miller SJ, Bosco A, Stern DA et al. 2017. Epigenome-wide analysis links SMAD3 methylation at birth to asthma in children of asthmatic mothers. J. Allergy Clin. Immunol. 140:534–42
    [Google Scholar]
  37. 37.  Dickson RP, Erb-Downward JR, Freeman CM, McCloskey L, Beck JM et al. 2015. Spatial variation in the healthy human lung microbiome and the adapted island model of lung biogeography. Ann. Am. Thorac. Soc. 12:821–30
    [Google Scholar]
  38. 38.  Dixon AL, Liang L, Moffatt MF, Chen W, Heath S et al. 2007. A genome-wide association study of global gene expression. Nat. Genet. 39:1202–7
    [Google Scholar]
  39. 39.  Durrington HJ, Farrow SN, Loudon AS, Ray DW 2014. The circadian clock and asthma. Thorax 69:90–92
    [Google Scholar]
  40. 40.  Ehlers A, Xie W, Agapov E, Brown S, Steinberg D et al. 2018. BMAL1 links the circadian clock to viral airway pathology and asthma phenotypes. Mucosal Immunol 11:97–111
    [Google Scholar]
  41. 41.  Esparza-Gordillo J, Weidinger S, Folster-Holst R, Bauerfeind A, Ruschendorf F et al. 2009. A common variant on chromosome 11q13 is associated with atopic dermatitis. Nat. Genet. 41:596–601
    [Google Scholar]
  42. 42.  Etemadi MR, Ling K-H, Zainal Abidin S, Chee H-Y, Sekawi Z 2017. Gene expression patterns induced at different stages of rhinovirus infection in human alveolar epithelial cells. PLOS ONE 12:e0176947
    [Google Scholar]
  43. 43.  Fallon PG, Sasaki T, Sandilands A, Campbell LE, Saunders SP et al. 2009. A homozygous frameshift mutation in the mouse Flg gene facilitates enhanced percutaneous allergen priming. Nat. Genet. 41:602–8
    [Google Scholar]
  44. 44.  Ferkol T, Schraufnagel D 2014. The global burden of respiratory disease. Ann. Am. Thorac. Soc. 11:404–6
    [Google Scholar]
  45. 45.  Ferreira MA, Matheson MC, Duffy DL, Marks GB, Hui J et al. 2011. Identification of IL6R and chromosome 11q13.5 as risk loci for asthma. Lancet 378:1006–14
    [Google Scholar]
  46. 46.  Ferreira MA, Vonk JM, Baurecht H, Marenholz I, Tian C et al. 2017. Shared genetic origin of asthma, hay fever and eczema elucidates allergic disease biology. Nat. Genet. 49:1752–57
    [Google Scholar]
  47. 47.  Franke A, Balschun T, Karlsen TH, Sventoraityte J, Nikolaus S et al. 2008. Sequence variants in IL10, ARPC2 and multiple other loci contribute to ulcerative colitis susceptibility. Nat. Genet. 40:1319–23
    [Google Scholar]
  48. 48.  Franke A, Balschun T, Sina C, Ellinghaus D, Hasler R et al. 2010. Genome-wide association study for ulcerative colitis identifies risk loci at 7q22 and 22q13 (IL17REL). Nat. Genet. 42:292–4
    [Google Scholar]
  49. 49.  Franke A, McGovern DP, Barrett JC, Wang K, Radford-Smith GL et al. 2010. Genome-wide meta-analysis increases to 71 the number of confirmed Crohn's disease susceptibility loci. Nat. Genet. 42:1118–25
    [Google Scholar]
  50. 50.  Galfalvy H, Haghighi F, Hodgkinson C, Goldman D, Oquendo MA et al. 2015. A genome-wide association study of suicidal behavior. Am. J. Med. Genet. B 168:557–63
    [Google Scholar]
  51. 51.  Garcia-Etxebarria K, Bracho MA, Galan JC, Pumarola T, Castilla J et al. 2015. No major host genetic risk factor contributed to A(H1N1)2009 influenza severity. PLOS ONE 10:e0135983
    [Google Scholar]
  52. 52.  Garcia-Garcia ML, Calvo C, Ruiz S, Pozo F, Del Pozo V et al. 2017. Role of viral coinfections in asthma development. PLOS ONE 12:e0189083
    [Google Scholar]
  53. 53. Glob. Asthma Netw. 2014. The global asthma report 2014 Rep Glob. Asthma Netw Auckland, N.Z.:
  54. 54.  Goleva E, Jackson LP, Harris JK, Robertson CE, Sutherland ER et al. 2013. The effects of airway microbiome on corticosteroid responsiveness in asthma. Am. J. Respir. Crit. Care Med. 188:1193–201
    [Google Scholar]
  55. 55.  Gonzalez JR, Caceres A, Esko T, Cusco I, Puig M et al. 2014. A common 16p11.2 inversion underlies the joint susceptibility to asthma and obesity. Am. J. Hum. Genet. 94:361–72
    [Google Scholar]
  56. 56.  Gordon H, Trier Moller F, Andersen V, Harbord M 2015. Heritability in inflammatory bowel disease: from the first twin study to genome-wide association studies. Inflamm. Bowel Dis. 21:1428–34
    [Google Scholar]
  57. 57.  Granada M, Wilk JB, Tuzova M, Strachan DP, Weidinger S et al. 2012. A genome-wide association study of plasma total IgE concentrations in the Framingham Heart Study. J. Allergy Clin. Immunol. 129:840–45
    [Google Scholar]
  58. 58.  Halapi E, Gudbjartsson DF, Jonsdottir GM, Bjornsdottir US, Thorleifsson G et al. 2010. A sequence variant on 17q21 is associated with age at onset and severity of asthma. Eur. J. Hum. Genet. 18:902–8
    [Google Scholar]
  59. 59.  Hallstrand TS, Fischer ME, Wurfel MM, Afari N, Buchwald D, Goldberg J 2005. Genetic pleiotropy between asthma and obesity in a community-based sample of twins. J. Allergy Clin. Immunol. 116:1235–41
    [Google Scholar]
  60. 60.  Hao K, Bosse Y, Nickle DC, Pare PD, Postma DS et al. 2012. Lung eQTLs to help reveal the molecular underpinnings of asthma. PLOS Genet 8:e1003029
    [Google Scholar]
  61. 61.  Hilty M, Burke C, Pedro H, Cardenas P, Bush A et al. 2010. Disordered microbial communities in asthmatic airways. PLOS ONE 5:e8578
    [Google Scholar]
  62. 62.  Himes BE, Hunninghake GM, Baurley JW, Rafaels NM, Sleiman P et al. 2009. Genome-wide association analysis identifies PDE4D as an asthma-susceptibility gene. Am. J. Hum. Genet. 84:581–93
    [Google Scholar]
  63. 63.  Hirota T, Takahashi A, Kubo M, Tsunoda T, Tomita K et al. 2011. Genome-wide association study identifies three new susceptibility loci for adult asthma in the Japanese population. Nat. Genet. 43:893–96
    [Google Scholar]
  64. 64.  Hirschhorn JN, Lohmueller K, Byrne E, Hirschhorn K 2002. A comprehensive review of genetic association studies. Genet. Med. 4:45–61
    [Google Scholar]
  65. 65.  Hobbs BD, de Jong K, Lamontagne M, Bosse Y, Shrine NR et al. 2017. Genetic loci associated with chronic obstructive pulmonary disease overlap with loci for lung function and pulmonary fibrosis. Nat. Genet. 49:426–32
    [Google Scholar]
  66. 66.  Holt RJ, Vandiedonck C, Willis-Owen SAG, Knight JC, Cookson WOC et al. 2015. A functional AT/G polymorphism in the 5′-untranslated region of SETDB2 in the IgE locus on human chromosome 13q14. Genes Immun 16:488–94
    [Google Scholar]
  67. 67.  Howard R, Rattray M, Prosperi M, Custovic A 2015. Distinguishing asthma phenotypes using machine learning approaches. Curr. Allergy Asthma Rep. 15:38
    [Google Scholar]
  68. 68.  Ikari J, Inamine A, Yamamoto T, Watanabe-Takano H, Yoshida N et al. 2014. Plant homeodomain finger protein 11 promotes class switch recombination to IgE in murine activated B cells. Allergy 69:223–30
    [Google Scholar]
  69. 69.  Ioannidis JP, Ntzani EE, Trikalinos TA, Contopoulos-Ioannidis DG 2001. Replication validity of genetic association studies. Nat. Genet. 29:306–9
    [Google Scholar]
  70. 70.  Irvine AD, McLean WH, Leung DY 2011. Filaggrin mutations associated with skin and allergic diseases. N. Engl. J. Med. 365:1315–27
    [Google Scholar]
  71. 71.  Jiang Y, Zhang H 2011. Propensity score-based nonparametric test revealing genetic variants underlying bipolar disorder. Genet. Epidemiol. 35:125–32
    [Google Scholar]
  72. 72.  Jostins L, Ripke S, Weersma RK, Duerr RH, McGovern DP et al. 2012. Host-microbe interactions have shaped the genetic architecture of inflammatory bowel disease. Nature 491:119–24
    [Google Scholar]
  73. 73.  Jung ES, Cheon JH, Lee JH, Park SJ, Jang HW et al. 2016. HLA-C*01 is a risk factor for Crohn's disease. Inflamm. Bowel Dis. 22:796–806
    [Google Scholar]
  74. 74.  Juyal G, Negi S, Sood A, Gupta A, Prasad P et al. 2015. Genome-wide association scan in north Indians reveals three novel HLA-independent risk loci for ulcerative colitis. Gut 64:571–79
    [Google Scholar]
  75. 75.  Kenny EE, Pe'er I, Karban A, Ozelius L, Mitchell AA et al. 2012. A genome-wide scan of Ashkenazi Jewish Crohn's disease suggests novel susceptibility loci. PLOS Genet 8:e1002559
    [Google Scholar]
  76. 76.  Kuenzig ME, Barnabe C, Seow CH, Eksteen B, Negron ME et al. 2017. Athma is associated with subsequent development of inflammatory bowel disease: a population-based case-control study. Clin. Gastroenterol. Hepatol. 15:1405–12
    [Google Scholar]
  77. 77.  Kugathasan S, Baldassano RN, Bradfield JP, Sleiman PM, Imielinski M et al. 2008. Loci on 20q13 and 21q22 are associated with pediatric-onset inflammatory bowel disease. Nat. Genet. 40:1211–15
    [Google Scholar]
  78. 78.  Laitinen T, Polvi A, Rydman P, Vendelin J, Pulkkinen V et al. 2004. Characterization of a common susceptibility locus for asthma-related traits. Science 304:300–4
    [Google Scholar]
  79. 79.  Larsen JM, Musavian HS, Butt TM, Ingvorsen C, Thysen AH, Brix S 2015. Chronic obstructive pulmonary disease and asthma-associated Proteobacteria, but not commensal Prevotella spp., promote Toll-like receptor 2-independent lung inflammation and pathology. Immunology 144:333–42
    [Google Scholar]
  80. 80.  Lasky-Su J, Himes BE, Raby BA, Klanderman BJ, Sylvia JS et al. 2012. HLA-DQ strikes again: genome-wide association study further confirms HLA-DQ in the diagnosis of asthma among adults. Clin. Exp. Allergy 42:1724–33
    [Google Scholar]
  81. 81.  Lauc G, Huffman JE, Pucic M, Zgaga L, Adamczyk B et al. 2013. Loci associated with N-glycosylation of human immunoglobulin G show pleiotropy with autoimmune diseases and haematological cancers. PLOS Genet 9:e1003225
    [Google Scholar]
  82. 82.  Li Q, Wineinger NE, Fu DJ, Libiger O, Alphs L et al. 2017. Genome-wide association study of paliperidone efficacy. Pharmacogenet. Genom. 27:7–18
    [Google Scholar]
  83. 83.  Li QS, Tian C, Seabrook GR, Drevets WC, Narayan VA 2016. Analysis of 23andMe antidepressant efficacy survey data: implication of circadian rhythm and neuroplasticity in bupropion response. Transl. Psychiatry 6:e889
    [Google Scholar]
  84. 84.  Liang L, Cookson WOC 2014. Grasping nettles: cellular heterogeneity and other confounders in epigenome-wide association studies. Hum. Mol. Genet. 23:R83–88
    [Google Scholar]
  85. 85.  Liang L, Willis-Owen SAG, Laprise C, Wong KC, Davies GA et al. 2015. An epigenome-wide association study of total serum immunoglobulin E concentration. Nature 520:670–74
    [Google Scholar]
  86. 86.  Lichtenstein P, Svartengren M 1997. Genes, environments, and sex: factors of importance in atopic diseases in 7–9-year-old Swedish twins. Allergy 52:1079–86
    [Google Scholar]
  87. 87.  Liu JZ, van Sommeren S, Huang H, Ng SC, Alberts R et al. 2015. Association analyses identify 38 susceptibility loci for inflammatory bowel disease and highlight shared genetic risk across populations. Nat. Genet. 47:979–86
    [Google Scholar]
  88. 88.  Liu L, Pan Y, Zhu Y, Song Y, Su X et al. 2017. Association between rhinovirus wheezing illness and the development of childhood asthma: a meta-analysis. BMJ Open 7:e013034
    [Google Scholar]
  89. 89.  Liu YP, Rajamanikham V, Baron M, Patel S, Mathur SK et al. 2017. Association of ORMDL3 with rhinovirus-induced endoplasmic reticulum stress and type I Interferon responses in human leucocytes. Clin. Exp. Allergy 47:371–82
    [Google Scholar]
  90. 90.  Lluis A, Schedel M, Liu J, Illi S, Depner M et al. 2011. Asthma-associated polymorphisms in 17q21 influence cord blood ORMDL3 and GSDMA gene expression and IL-17 secretion. J. Allergy Clin. Immunol. 127:1587–94
    [Google Scholar]
  91. 91.  Loffredo LF, Abdala-Valencia H, Anekalla KR, Cuervo-Pardo L, Gottardi CJ, Berdnikovs S 2017. Beyond epithelial-to-mesenchymal transition: common suppression of differentiation programs underlies epithelial barrier dysfunction in mild, moderate, and severe asthma. Allergy 72:1988–2004
    [Google Scholar]
  92. 92.  Löser S, Gregory LG, Zhang Y, Schaefer K, Walker SA et al. 2017. Pulmonary ORMDL3 is critical for induction of Alternaria-induced allergic airways disease. J. Allergy Clin. Immunol. 139:1496–507
    [Google Scholar]
  93. 93.  Lugogo NL, Kraft M, Dixon AE 2010. Does obesity produce a distinct asthma phenotype?. J. Appl. Physiol. 108:729–34
    [Google Scholar]
  94. 94.  Lutz SM, Cho MH, Young K, Hersh CP, Castaldi PJ et al. 2015. A genome-wide association study identifies risk loci for spirometric measures among smokers of European and African ancestry. BMC Genet 16:138
    [Google Scholar]
  95. 95.  Man WH, de Steenhuijsen Piters WA, Bogaert D 2017. The microbiota of the respiratory tract: gatekeeper to respiratory health. Nat. Rev. Microbiol. 15:259–70
    [Google Scholar]
  96. 96.  Manolio TA, Collins FS, Cox NJ, Goldstein DB, Hindorff LA et al. 2009. Finding the missing heritability of complex diseases. Nature 461:747–53
    [Google Scholar]
  97. 97.  Marenholz I, Esparza-Gordillo J, Ruschendorf F, Bauerfeind A, Strachan DP et al. 2015. Meta-analysis identifies seven susceptibility loci involved in the atopic march. Nat. Commun. 6:8804
    [Google Scholar]
  98. 98.  Marsh RL, Kaestli M, Chang AB, Binks MJ, Pope CE et al. 2016. The microbiota in bronchoalveolar lavage from young children with chronic lung disease includes taxa present in both the oropharynx and nasopharynx. Microbiome 4:37
    [Google Scholar]
  99. 99.  Martin EM, Clapp PW, Rebuli ME, Pawlak EA, Glista-Baker E et al. 2016. E-cigarette use results in suppression of immune and inflammatory-response genes in nasal epithelial cells similar to cigarette smoke. Am. J. Physiol. Lung Cell. Mol. Physiol. 311:L135–44
    [Google Scholar]
  100. 100.  Martinez FD, Graves PE, Baldini M, Solomon S, Erickson R 1997. Association between genetic polymorphisms of the β2-adrenoceptor and response to albuterol in children with and without a history of wheezing. J. Clin. Investig. 100:3184–88
    [Google Scholar]
  101. 101.  McClenaghan J, Warrington NM, Jamrozik EF, Hui J, Beilby JP et al. 2009. The PHF11 gene is not associated with asthma or asthma phenotypes in two independent populations. Thorax 64:620–25
    [Google Scholar]
  102. 102.  McGovern DP, Gardet A, Torkvist L, Goyette P, Essers J et al. 2010. Genome-wide association identifies multiple ulcerative colitis susceptibility loci. Nat. Genet. 42:332–37
    [Google Scholar]
  103. 103.  McKay JD, Hung RJ, Han Y, Zong X, Carreras-Torres R et al. 2017. Large-scale association analysis identifies new lung cancer susceptibility loci and heterogeneity in genetic susceptibility across histological subtypes. Nat. Genet. 49:1126–32
    [Google Scholar]
  104. 104.  Melén E, Granell R, Kogevinas M, Strachan D, Gonzalez JR et al. 2013. Genome-wide association study of body mass index in 23 000 individuals with and without asthma. Clin. Exp. Allergy 43:463–74
    [Google Scholar]
  105. 105.  Melén E, Himes BE, Brehm JM, Boutaoui N, Klanderman BJ et al. 2010. Analyses of shared genetic factors between asthma and obesity in children. J. Allergy Clin. Immunol. 126:631–37
    [Google Scholar]
  106. 106.  Melén E, Kho AT, Sharma S, Gaedigk R, Leeder JS et al. 2011. Expression analysis of asthma candidate genes during human and murine lung development. Respir. Res. 12:86
    [Google Scholar]
  107. 107.  Miller M, Rosenthal P, Beppu A, Mueller JL, Hoffman HM et al. 2014. ORMDL3 transgenic mice have increased airway remodeling and airway responsiveness characteristic of asthma. J. Immunol. 192:3475–87
    [Google Scholar]
  108. 108.  Moffatt MF, Gut IG, Demenais F, Strachan DP, Bouzigon E et al. 2010. A large-scale, consortium-based genomewide association study of asthma. N. Engl. J. Med. 363:1211–21
    [Google Scholar]
  109. 109.  Moffatt MF, Kabesch M, Liang L, Dixon AL, Strachan D et al. 2007. Genetic variants regulating ORMDL3 expression contribute to the risk of childhood asthma. Nature 448:470–73
    [Google Scholar]
  110. 110.  Newton C, McHugh S, Widen R, Nakachi N, Klein T, Friedman H 2000. Induction of interleukin-4 (IL-4) by legionella pneumophila infection in BALB/c mice and regulation of tumor necrosis factor α, IL-6, and IL-1β. Infect. Immun. 68:5234–40
    [Google Scholar]
  111. 111.  Nicodemus-Johnson J, Myers RA, Sakabe NJ, Sobreira DR, Hogarth DK et al. 2016. DNA methylation in lung cells is associated with asthma endotypes and genetic risk. JCI Insight 1:e90151
    [Google Scholar]
  112. 112.  Nicolae D, Cox NJ, Lester LA, Schneider D, Tan Z et al. 2005. Fine mapping and positional candidate studies identify HLA-G as an asthma susceptibility gene on chromosome 6p21. Am. J. Hum. Genet. 76:349–57
    [Google Scholar]
  113. 113.  Noguchi E, Sakamoto H, Hirota T, Ochiai K, Imoto Y et al. 2011. Genome-wide association study identifies HLA-DP as a susceptibility gene for pediatric asthma in Asian populations. PLOS Genet 7:e1002170
    [Google Scholar]
  114. 114.  Noguchi E, Yokouchi Y, Zhang J, Shibuya K, Shibuya A et al. 2005. Positional identification of an asthma susceptibility gene on human chromosome 5q33. Am. J. Respir. Crit. Care Med. 172:183–88
    [Google Scholar]
  115. 115.  Ober C, Hoffjan S 2006. Asthma genetics 2006: the long and winding road to gene discovery. Genes Immun 7:95–100
    [Google Scholar]
  116. 116.  Ober C, Yao TC 2011. The genetics of asthma and allergic disease: a 21st century perspective. Immunol. Rev. 242:10–30
    [Google Scholar]
  117. 117.  Okbay A, Baselmans BM, De Neve JE, Turley P, Nivard MG et al. 2016. Genetic variants associated with subjective well-being, depressive symptoms, and neuroticism identified through genome-wide analyses. Nat. Genet. 48:624–33
    [Google Scholar]
  118. 118.  Palmer CN, Irvine AD, Terron-Kwiatkowski A, Zhao Y, Liao H et al. 2006. Common loss-of-function variants of the epidermal barrier protein filaggrin are a major predisposing factor for atopic dermatitis. Nat. Genet. 38:441–46
    [Google Scholar]
  119. 119.  Parsa A, Chang YP, Kelly RJ, Corretti MC, Ryan KA et al. 2011. Hypertrophy-associated polymorphisms ascertained in a founder cohort applied to heart failure risk and mortality. Clin. Transl. Sci. 4:17–23
    [Google Scholar]
  120. 120.  Patarcic I, Gelemanovic A, Kirin M, Kolcic I, Theodoratou E et al. 2015. The role of host genetic factors in respiratory tract infectious diseases: systematic review, meta-analyses and field synopsis. Sci. Rep. 5:16119
    [Google Scholar]
  121. 121.  Paternoster L, Standl M, Waage J, Baurecht H, Hotze M et al. 2015. Multi-ancestry genome-wide association study of 21,000 cases and 95,000 controls identifies new risk loci for atopic dermatitis. Nat. Genet. 47:1449–56
    [Google Scholar]
  122. 122.  Peters-Golden M, Swern A, Bird SS, Hustad CM, Grant E, Edelman JM 2006. Influence of body mass index on the response to asthma controller agents. Eur. Respir. J. 27:495–503
    [Google Scholar]
  123. 123.  Pickrell JK, Berisa T, Liu JZ, Segurel L, Tung JY, Hinds DA 2016. Detection and interpretation of shared genetic influences on 42 human traits. Nat. Genet. 48:709–17
    [Google Scholar]
  124. 124.  Ramasamy A, Kuokkanen M, Vedantam S, Gajdos ZK, Couto Alves A et al. 2012. Genome-wide association studies of asthma in population-based cohorts confirm known and suggested loci and identify an additional association near HLA. PLOS ONE 7:e44008
    [Google Scholar]
  125. 125.  Rastogi D, Fraser S, Oh J, Huber AM, Schulman Y et al. 2015. Inflammation, metabolic dysregulation, and pulmonary function among obese urban adolescents with asthma. Am. J. Respir. Crit. Care Med. 191:149–60
    [Google Scholar]
  126. 126.  Rosenberg HF, Dyer KD, Foster PS 2013. Eosinophils: changing perspectives in health and disease. Nat. Rev. Immunol. 13:9–22
    [Google Scholar]
  127. 127.  Shindou H, Hishikawa D, Nakanishi H, Harayama T, Ishii S et al. 2007. A single enzyme catalyzes both platelet-activating factor production and membrane biogenesis of inflammatory cells. Cloning and characterization of acetyl-CoA:LYSO-PAF acetyltransferase. J. Biol. Chem. 282:6532–39
    [Google Scholar]
  128. 128.  Silverberg MS, Cho JH, Rioux JD, McGovern DP, Wu J et al. 2009. Ulcerative colitis-risk loci on chromosomes 1p36 and 12q15 found by genome-wide association study. Nat. Genet. 41:216–20
    [Google Scholar]
  129. 129.  Sleiman PM, Flory J, Imielinski M, Bradfield JP, Annaiah K et al. 2010. Variants of DENND1B associated with asthma in children. N. Engl. J. Med. 362:36–44
    [Google Scholar]
  130. 130.  Smit LA, Bouzigon E, Pin I, Siroux V, Monier F et al. 2010. 17q21 variants modify the association between early respiratory infections and asthma. Eur. Respir. J. 36:57–64
    [Google Scholar]
  131. 131.  Song DJ, Miller M, Beppu A, Rosenthal P, Das S et al. 2017. Rhinovirus infection of ORMDL3 transgenic mice is associated with reduced rhinovirus viral load and airway inflammation. J. Immunol. 199:2215–24
    [Google Scholar]
  132. 132.  Song Y, Schwager MJ, Backer V, Guo J, Porsbjerg C et al. 2017. Environment changes genetic effects on respiratory conditions and allergic phenotypes. Sci. Rep. 7:6342
    [Google Scholar]
  133. 133.  Soriano JB, Davis KJ, Coleman B, Visick G, Mannino D, Pride NB 2003. The proportional Venn diagram of obstructive lung disease: two approximations from the United States and the United Kingdom. Chest 124:474–81
    [Google Scholar]
  134. 134.  Spada J, Scholz M, Kirsten H, Hensch T, Horn K et al. 2016. Genome-wide association analysis of actigraphic sleep phenotypes in the LIFE Adult Study. J. Sleep Res. 25:690–701
    [Google Scholar]
  135. 135.  Staley JT, Konopka A 1985. Measurement of in situ activities of nonphotosynthetic microorganisms in aquatic and terrestrial habitats. Annu. Rev. Microbiol. 39:321–46
    [Google Scholar]
  136. 136.  Strachan DP 1989. Hay fever, hygiene, and household size. BMJ 299:1259–60
    [Google Scholar]
  137. 137.  Torgerson DG, Ampleford EJ, Chiu GY, Gauderman WJ, Gignoux CR et al. 2011. Meta-analysis of genome-wide association studies of asthma in ethnically diverse North American populations. Nat. Genet. 43:887–92
    [Google Scholar]
  138. 138. UK IBD Genet. Consort., Wellcome Trust Case Control Consort. 2009. Genome-wide association study of ulcerative colitis identifies three new susceptibility loci, including the HNF4A region. Nat. Genet. 41:1330–34
    [Google Scholar]
  139. 139.  Umland SP, Garlisi CG, Shah H, Wan Y, Zou J et al. 2003. Human ADAM33 messenger RNA expression profile and post-transcriptional regulation. Am. J. Respir. Cell Mol. Biol. 29:571–82
    [Google Scholar]
  140. 140.  van Beijsterveldt CE, Boomsma DI 2007. Genetics of parentally reported asthma, eczema and rhinitis in 5-yr-old twins. Eur. Respir. J. 29:516–21
    [Google Scholar]
  141. 141.  van der Valk RJ, Duijts L, Kerkhof M, Willemsen SP, Hofman A et al. 2012. Interaction of a 17q12 variant with both fetal and infant smoke exposure in the development of childhood asthma-like symptoms. Allergy 67:767–74
    [Google Scholar]
  142. 142.  Van Eerdewegh P, Little RD, Dupuis J, Del Mastro RG, Falls K et al. 2002. Association of the ADAM33 gene with asthma and bronchial hyperresponsiveness. Nature 418:426–30
    [Google Scholar]
  143. 143.  Vonk JM, Scholtens S, Postma DS, Moffatt MF, Jarvis D et al. 2017. Adult onset asthma and interaction between genes and active tobacco smoking: the GABRIEL consortium. PLOS ONE 12:e0172716
    [Google Scholar]
  144. 144.  Wain LV, Shrine NR, Soler Artigas M, Erzurumluoglu AM, Noyvert B et al. 2017. Genome-wide association analyses for lung function and chronic obstructive pulmonary disease identify new loci and potential druggable targets. Nat. Genet. 49:416–25
    [Google Scholar]
  145. 145.  Wan YI, Shrine NR, Soler Artigas M, Wain LV, Blakey JD et al. 2012. Genome-wide association study to identify genetic determinants of severe asthma. Thorax 67:762–68
    [Google Scholar]
  146. 146.  Wang K, Baldassano R, Zhang H, Qu HQ, Imielinski M et al. 2010. Comparative genetic analysis of inflammatory bowel disease and type 1 diabetes implicates multiple loci with opposite effects. Hum. Mol. Genet. 19:2059–67
    [Google Scholar]
  147. 147.  Wang L, Murk W, DeWan AT 2015. Genome-wide gene by environment interaction analysis identifies common SNPs at 17q21.2 that are associated with increased body mass index only among asthmatics. PLOS ONE 10:e0144114
    [Google Scholar]
  148. 148.  Weidinger S, Willis-Owen SAG, Kamatani Y, Baurecht H, Morar N et al. 2013. A genome-wide association study of atopic dermatitis identifies loci with overlapping effects on asthma and psoriasis. Hum. Mol. Genet. 22:4841–56
    [Google Scholar]
  149. 149.  Weinmayr G, Forastiere F, Buchele G, Jaensch A, Strachan DP, Nagel G 2014. Overweight/obesity and respiratory and allergic disease in children: international study of asthma and allergies in childhood (ISAAC) phase two. PLOS ONE 9:e113996
    [Google Scholar]
  150. 150.  Weiss ST 2005. Obesity: insight into the origins of asthma. Nat. Immunol. 6:537–39
    [Google Scholar]
  151. 151.  White JH, Chiano M, Wigglesworth M, Geske R, Riley J et al. 2008. Identification of a novel asthma susceptibility gene on chromosome 1qter and its functional evaluation. Hum. Mol. Genet. 17:1890–903
    [Google Scholar]
  152. 152. World Health Organ. (WHO). 1990. International Statistical Classification of Diseases and Related Health Problems Geneva: WHO, 10th rev..
  153. 153.  Xu C-J, Söderhäll C, Bustamante M, Baïz N, Gruzieva O et al. 2018. DNA methylation in childhood asthma: an epigenome-wide meta-analysis. Lancet Respir. Med. 6:379–88
    [Google Scholar]
  154. 154.  Xu W, Xu J, Shestopaloff K, Dicks E, Green J et al. 2015. A genome wide association study on Newfoundland colorectal cancer patients’ survival outcomes. Biomark. Res. 3:6
    [Google Scholar]
  155. 155.  Yamazaki K, Umeno J, Takahashi A, Hirano A, Johnson TA et al. 2013. A genome-wide association study identifies 2 susceptibility loci for Crohn's disease in a Japanese population. Gastroenterology 144:781–88
    [Google Scholar]
  156. 156.  Yan Q, Brehm J, Pino-Yanes M, Forno E, Lin J et al. 2017. A meta-analysis of genome-wide association studies of asthma in Puerto Ricans. Eur. Respir. J. 49:1601505
    [Google Scholar]
  157. 157.  Yan X, Chu JH, Gomez J, Koenigs M, Holm C et al. 2015. Noninvasive analysis of the sputum transcriptome discriminates clinical phenotypes of asthma. Am. J. Respir. Crit. Care Med. 191:1116–25
    [Google Scholar]
  158. 158.  Yang SK, Hong M, Zhao W, Jung Y, Baek J et al. 2014. Genome-wide association study of Crohn's disease in Koreans revealed three new susceptibility loci and common attributes of genetic susceptibility across ethnic populations. Gut 63:80–87
    [Google Scholar]
  159. 159.  Yang SK, Hong M, Zhao W, Jung Y, Tayebi N et al. 2013. Genome-wide association study of ulcerative colitis in Koreans suggests extensive overlapping of genetic susceptibility with Caucasians. Inflamm. Bowel Dis. 19:954–66
    [Google Scholar]
  160. 160.  Zeng Z, Feingold E, Wang X, Weeks DE, Lee M et al. 2014. Genome-wide association study of primary dentition pit-and-fissure and smooth surface caries. Caries Res 48:330–38
    [Google Scholar]
  161. 161.  Zhang Y, Fear DJ, Willis-Owen SAG, Cookson WOC, Moffatt MF 2016. Global gene regulation during activation of immunoglobulin class switching in human B cells. Sci. Rep. 6:37988
    [Google Scholar]
  162. 162.  Zhang Y, Leaves NI, Anderson GG, Ponting CP, Broxholme J et al. 2003. Positional cloning of a quantitative trait locus on chromosome 13q14 that influences immunoglobulin E levels and asthma. Nat. Genet. 34:181–86
    [Google Scholar]
/content/journals/10.1146/annurev-genom-083117-021651
Loading
/content/journals/10.1146/annurev-genom-083117-021651
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error