1932

Abstract

The trillions of cells in the human body develop as a result of the fusion of two extremely specialized cells: an oocyte and a sperm. This process is essential for the continuation of our species, as it ensures that parental genetic information is mixed and passed on from generation to generation. In addition to producing oocytes, the female reproductive system must provide the environment for the appropriate development of the fetus until birth. New genomic and computational tools offer unique opportunities to study the tight spatiotemporal regulatory mechanisms that are required for the cycle of human reproduction. This review explores how single-cell technologies have been used to build cellular atlases of the human reproductive system across the life span and how these maps have proven useful to better understand reproductive pathologies and dissect the heterogeneity of in vitro model systems.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-genom-120121-114415
2022-08-31
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/genom/23/1/annurev-genom-120121-114415.html?itemId=/content/journals/10.1146/annurev-genom-120121-114415&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Alfano M, Tascini AS, Pederzoli F, Locatelli I, Nebuloni M et al. 2021. Aging, inflammation and DNA damage in the somatic testicular niche with idiopathic germ cell aplasia. Nat. Commun. 12:5205
    [Google Scholar]
  2. 2.
    Argelaguet R, Cuomo ASE, Stegle O, Marioni JC. 2021. Computational principles and challenges in single-cell data integration. Nat. Biotechnol. 39:1202–15
    [Google Scholar]
  3. 3.
    Bellofiore N, Ellery SJ, Mamrot J, Walker DW, Temple-Smith P, Dickinson H. 2017. First evidence of a menstruating rodent: the spiny mouse (Acomys cahirinus). Am. J. Obstet. Gynecol. 216:40.e1–11
    [Google Scholar]
  4. 4.
    Boretto M, Cox B, Noben M, Hendriks N, Fassbender A et al. 2017. Development of organoids from mouse and human endometrium showing endometrial epithelium physiology and long-term expandability. Development 144:1775–86
    [Google Scholar]
  5. 5.
    Boretto M, Maenhoudt N, Luo X, Hennes A, Boeckx B et al. 2019. Patient-derived organoids from endometrial disease capture clinical heterogeneity and are amenable to drug screening. Nat. Cell Biol. 21:1041–51
    [Google Scholar]
  6. 6.
    Broekmans FJ, Soules MR, Fauser BC. 2009. Ovarian aging: mechanisms and clinical consequences. Endocr. Rev. 30:465–93
    [Google Scholar]
  7. 7.
    Brosens I 2010. Unraveling the anatomy. Placental Bed Disorders: Basic Science and Its Translation to Obstetrics R Pijnenborg, I Brosens, R Romero 5–10 Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  8. 8.
    Brosens I, Pijnenborg R, Vercruysse L, Romero R. 2011. The “Great Obstetrical Syndromes” are associated with disorders of deep placentation. Am. J. Obstet. Gynecol. 204:193–201
    [Google Scholar]
  9. 9.
    Buenrostro JD, Giresi PG, Zaba LC, Chang HY, Greenleaf WJ. 2013. Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position. Nat. Methods 10:1213–18
    [Google Scholar]
  10. 10.
    Burton GJ, Fowden AL. 2015. The placenta: a multifaceted, transient organ. Philos. Trans. R. Soc. B 370:20140066
    [Google Scholar]
  11. 11.
    Burton GJ, Woods AW, Jauniaux E, Kingdom JCP. 2009. Rheological and physiological consequences of conversion of the maternal spiral arteries for uteroplacental blood flow during human pregnancy. Placenta 30:473–82
    [Google Scholar]
  12. 12.
    Camboni A, Marbaix E. 2021. Ectopic endometrium: the pathologist's perspective. Int. J. Mol. Sci. 22:10974
    [Google Scholar]
  13. 13.
    Camp JG, Wollny D, Treutlein B. 2018. Single-cell genomics to guide human stem cell and tissue engineering. Nat. Methods 15:661–67
    [Google Scholar]
  14. 14.
    Cancer Genome Atlas Res. Netw. 2011. Integrated genomic analyses of ovarian carcinoma. Nature 474:609–15 Erratum 2012. Nature 490:292
    [Google Scholar]
  15. 15.
    Cancer Genome Atlas Res. Netw. 2013. Integrated genomic characterization of endometrial carcinoma. Nature 497:67–73 Erratum 2013. Nature 500:242
    [Google Scholar]
  16. 16.
    Chen GM, Kannan L, Geistlinger L, Kofia V, Safikhani Z et al. 2018. Consensus on molecular subtypes of high-grade serous ovarian carcinoma. Clin. Cancer Res. 24:5037–47
    [Google Scholar]
  17. 17.
    Chen H, Murray E, Sinha A, Laumas A, Li J et al. 2021. Dissecting mammalian spermatogenesis using spatial transcriptomics. Cell Rep 37:109915
    [Google Scholar]
  18. 18.
    Chen S, Lake BB, Zhang K. 2019. High-throughput sequencing of the transcriptome and chromatin accessibility in the same cell. Nat. Biotechnol. 37:1452–57
    [Google Scholar]
  19. 19.
    Chitiashvili T, Dror I, Kim R, Hsu F-M, Chaudhari R et al. 2020. Female human primordial germ cells display X-chromosome dosage compensation despite the absence of X-inactivation. Nat. Cell Biol. 22:1436–46
    [Google Scholar]
  20. 20.
    Chumduri C, Turco MY. 2021. Organoids of the female reproductive tract. J. Mol. Med. 99:531–53
    [Google Scholar]
  21. 21.
    Cindrova-Davies T, Zhao X, Elder K, Jones CJP, Moffett A et al. 2021. Menstrual flow as a non-invasive source of endometrial organoids. Commun. Biol. 4:651
    [Google Scholar]
  22. 22.
    Cochrane DR, Campbell KR, Greening K, Ho GC, Hopkins J et al. 2020. Single cell transcriptomes of normal endometrial derived organoids uncover novel cell type markers and cryptic differentiation of primary tumours. J. Pathol. 252:201–14
    [Google Scholar]
  23. 23.
    Courtois E, Tan Y, Flynn W, Sivajothi S, Luo D et al. 2021. Single cell analysis of endometriosis reveals a coordinated transcriptional program driving immunotolerance and angiogenesis across eutopic and ectopic tissues. Res. Square 745435 https://doi.org/10.21203/rs.3.rs-745435/v1
    [Crossref]
  24. 24.
    Critchley HOD, Maybin JA, Armstrong GM, Williams ARW. 2020. Physiology of the endometrium and regulation of menstruation. Physiol. Rev. 100:1149–79
    [Google Scholar]
  25. 25.
    Crow J, Amso NN, Lewin J, Shaw RW. 1994. Morphology and ultrastructure of fallopian tube epithelium at different stages of the menstrual cycle and menopause. Hum. Reprod. 9:2224–33
    [Google Scholar]
  26. 26.
    Cunha GR, Sinclair A, Ricke WA, Robboy SJ, Cao M, Baskin LS. 2019. Reproductive tract biology: of mice and men. Differentiation 110:49–63
    [Google Scholar]
  27. 27.
    Di Persio S, Tekath T, Siebert-Kuss LM, Cremers J-F, Wistuba J et al. 2021. Single-cell RNA-seq unravels alterations of the human spermatogonial stem cell compartment in patients with impaired spermatogenesis. Cell Rep. Med. 2:100395
    [Google Scholar]
  28. 28.
    Dinh HQ, Lin X, Abbasi F, Nameki R, Haro M et al. 2021. Single-cell transcriptomics identifies gene expression networks driving differentiation and tumorigenesis in the human fallopian tube. Cell Rep 35:108978
    [Google Scholar]
  29. 29.
    Efremova M, Vento-Tormo M, Teichmann SA, Vento-Tormo R. 2020. CellPhoneDB: inferring cell-cell communication from combined expression of multi-subunit ligand-receptor complexes. Nat. Protoc. 15:1484–506
    [Google Scholar]
  30. 30.
    Fan X, Bialecka M, Moustakas I, Lam E, Torrens-Juaneda V et al. 2019. Single-cell reconstruction of follicular remodeling in the human adult ovary. Nat. Commun. 10:3164
    [Google Scholar]
  31. 31.
    Fitzgerald HC, Dhakal P, Behura SK, Schust DJ, Spencer TE. 2019. Self-renewing endometrial epithelial organoids of the human uterus. PNAS 116:23132–42
    [Google Scholar]
  32. 32.
    Fonseca MAS, Wright KN, Lin X, Abbasi F, Haro M et al. 2021. A cellular and molecular portrait of endometriosis subtypes. bioRxiv 2021.05.20.445037. https://doi.org/10.1101/2021.05.20.445037
    [Crossref]
  33. 33.
    Garcia-Alonso L, Handfield L-F, Roberts K, Nikolakopoulou K, Fernando RC et al. 2021. Mapping the temporal and spatial dynamics of the human endometrium in vivo and in vitro. Nat. Genet. 53:1698–711
    [Google Scholar]
  34. 34.
    Garcia-Alonso L, Lorenzi V, Mazzeo CI, Sancho-Serra C, Roberts K et al. 2021. Single-cell roadmap of human gonadal development. Res. Square 496470 https://doi.org/10.21203/rs.3.rs-496470/v1
    [Crossref] [Google Scholar]
  35. 35.
    Giuliani E, As-Sanie S, Marsh EE. 2020. Epidemiology and management of uterine fibroids. Int. J. Gynaecol. Obstet. 149:3–9
    [Google Scholar]
  36. 36.
    Gnecco JS, Brown A, Buttrey K, Ives C, Goods B et al. 2021. Tissue engineered organoid co-culture model of the cycling human endometrium in a fully-defined synthetic extracellular matrix. bioRxiv 2021.09.30.462577. https://doi.org/10.1101/2021.09.30.462577
    [Crossref]
  37. 37.
    Greenbaum S, Averbukh I, Soon E, Rizzuto G, Baranski A et al. 2021. Spatio-temporal coordination at the maternal-fetal interface promotes trophoblast invasion and vascular remodeling in the first half of human pregnancy. bioRxiv 2021.09.08.459490. https://doi.org/10.1101/2021.09.08.459490
    [Crossref]
  38. 38.
    Guo F, Yan L, Guo H, Li L, Hu B et al. 2015. The transcriptome and DNA methylome landscapes of human primordial germ cells. Cell 161:1437–52
    [Google Scholar]
  39. 39.
    Guo J, Grow EJ, Mlcochova H, Maher GJ, Lindskog C et al. 2018. The adult human testis transcriptional cell atlas. Cell Res 28:1141–57
    [Google Scholar]
  40. 40.
    Guo J, Grow EJ, Yi C, Mlcochova H, Maher GJ et al. 2017. Chromatin and single-cell RNA-seq profiling reveal dynamic signaling and metabolic transitions during human spermatogonial stem cell development. Cell Stem Cell 21:533–46.e6
    [Google Scholar]
  41. 41.
    Guo J, Nie X, Giebler M, Mlcochova H, Wang Y et al. 2020. The dynamic transcriptional cell atlas of testis development during human puberty. Cell Stem Cell 26:262–76.e4
    [Google Scholar]
  42. 42.
    Guo J, Sosa E, Chitiashvili T, Nie X, Rojas EJ et al. 2021. Single-cell analysis of the developing human testis reveals somatic niche cell specification and fetal germline stem cell establishment. Cell Stem Cell 28:764–78.e4
    [Google Scholar]
  43. 43.
    Habib N, Avraham-Davidi I, Basu A, Burks T, Shekhar K et al. 2017. Massively parallel single-nucleus RNA-seq with DroNc-seq. Nat. Methods 14:955–58
    [Google Scholar]
  44. 44.
    Hagemann-Jensen M, Ziegenhain C, Chen P, Ramsköld D, Hendriks G-J et al. 2020. Single-cell RNA counting at allele and isoform resolution using Smart-seq3. Nat. Biotechnol. 38:708–14
    [Google Scholar]
  45. 45.
    Haider S, Meinhardt G, Saleh L, Kunihs V, Gamperl M et al. 2018. Self-renewing trophoblast organoids recapitulate the developmental program of the early human placenta. Stem Cell Rep 11:537–51
    [Google Scholar]
  46. 46.
    Hanley NA, Hagan DM, Clement-Jones M, Ball SG, Strachan T et al. 2000. SRY, SOX9, and DAX1 expression patterns during human sex determination and gonadal development. Mech. Dev. 91:403–7
    [Google Scholar]
  47. 47.
    Hermann BP, Cheng K, Singh A, Roa-De La Cruz L, Mutoji KN et al. 2018. The mammalian spermatogenesis single-cell transcriptome, from spermatogonial stem cells to spermatids. Cell Rep 25:1650–67.e8
    [Google Scholar]
  48. 48.
    Hernandez SF, Vahidi NA, Park S, Weitzel RP, Tisdale J et al. 2015. Characterization of extracellular DDX4- or Ddx4-positive ovarian cells. Nat. Med. 21:1114–16
    [Google Scholar]
  49. 49.
    Hoo R, Nakimuli A, Vento-Tormo R. 2020. Innate immune mechanisms to protect against infection at the human decidual-placental interface. Front. Immunol. 11:2070
    [Google Scholar]
  50. 50.
    Hu Z, Artibani M, Alsaadi A, Wietek N, Morotti M et al. 2020. The repertoire of serous ovarian cancer non-genetic heterogeneity revealed by single-cell sequencing of normal fallopian tube epithelial cells. Cancer Cell 37:226–42.e7
    [Google Scholar]
  51. 51.
    Izar B, Tirosh I, Stover EH, Wakiro I, Cuoco MS et al. 2020. A single-cell landscape of high-grade serous ovarian cancer. Nat. Med. 26:1271–79
    [Google Scholar]
  52. 52.
    Kaya-Okur HS, Janssens DH, Henikoff JG, Ahmad K, Henikoff S 2020. Efficient low-cost chromatin profiling with CUT&Tag. Nat. Protoc. 15:3264–83
    [Google Scholar]
  53. 53.
    Kaya-Okur HS, Wu SJ, Codomo CA, Pledger ES, Bryson TD et al. 2019. CUT&Tag for efficient epigenomic profiling of small samples and single cells. Nat. Commun. 10:1930
    [Google Scholar]
  54. 54.
    Klein AM, Mazutis L, Akartuna I, Tallapragada N, Veres A et al. 2015. Droplet barcoding for single-cell transcriptomics applied to embryonic stem cells. Cell 161:1187–201
    [Google Scholar]
  55. 55.
    Kleshchevnikov V, Shmatko A, Dann E, Aivazidis A, King HW et al. 2022. Cell2location maps fine-grained cell types in spatial transcriptomics. Nat. Biotechnol. 40:66171
    [Google Scholar]
  56. 56.
    Konecny GE, Wang C, Hamidi H, Winterhoff B, Kalli KR et al. 2014. Prognostic and therapeutic relevance of molecular subtypes in high-grade serous ovarian cancer. J. Natl. Cancer Inst. 106:dju249
    [Google Scholar]
  57. 57.
    Koshiyama M, Matsumura N, Konishi I. 2017. Subtypes of ovarian cancer and ovarian cancer screening. Diagnostics 7:12
    [Google Scholar]
  58. 58.
    Lancaster MA, Huch M. 2019. Disease modelling in human organoids. Dis. Model. Mech. 12:dmm039347
    [Google Scholar]
  59. 59.
    Lee Y, Miron A, Drapkin R, Nucci MR, Medeiros F et al. 2007. A candidate precursor to serous carcinoma that originates in the distal fallopian tube. J. Pathol. 211:26–35
    [Google Scholar]
  60. 60.
    Lewis SM, Asselin-Labat M-L, Nguyen Q, Berthelet J, Tan X et al. 2021. Spatial omics and multiplexed imaging to explore cancer biology. Nat. Methods 188:997–1012
    [Google Scholar]
  61. 61.
    Li H, Huang Q, Liu Y, Garmire LX. 2020. Single cell transcriptome research in human placenta. Reproduction 160:R155–67
    [Google Scholar]
  62. 62.
    Li L, Dong J, Yan L, Yong J, Liu X et al. 2017. Single-cell RNA-seq analysis maps development of human germline cells and gonadal niche interactions. Cell Stem Cell 20:891–92
    [Google Scholar]
  63. 63.
    Li L, Yang R, Yin C, Kee K. 2020. Studying human reproductive biology through single-cell analysis and in vitro differentiation of stem cells into germ cell-like cells. Hum. Reprod. Update 26:670–88
    [Google Scholar]
  64. 64.
    Liu Z, Doan QV, Blumenthal P, Dubois RW. 2007. A systematic review evaluating health-related quality of life, work impairment, and health-care costs and utilization in abnormal uterine bleeding. Value Health 10:183–94
    [Google Scholar]
  65. 65.
    Llonch S, Barragán M, Nieto P, Mallol A, Elosua-Bayes M et al. 2021. Single human oocyte transcriptome analysis reveals distinct maturation stage-dependent pathways impacted by age. Aging Cell 20:e13360
    [Google Scholar]
  66. 65a.
    Lu KH, Broaddus RR 2020. Endometrial cancer. N. Engl. J. Med 383:205364
    [Google Scholar]
  67. 66.
    Macosko EZ, Basu A, Satija R, Nemesh J, Shekhar K et al. 2015. Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets. Cell 161:1202–14
    [Google Scholar]
  68. 67.
    Matulonis UA, Sood AK, Fallowfield L, Howitt BE, Sehouli J, Karlan BY. 2016. Ovarian cancer. Nat. Rev. Dis. Primers 2:16061
    [Google Scholar]
  69. 68.
    Mercuri ND, Cox BJ. 2021. Meta-research: a poor research landscape hinders the progression of knowledge and treatment of reproductive diseases. bioRxiv 2021.11.16.468787. https://doi.org/10.1101/2021.11.16.468787
    [Crossref]
  70. 69.
    Nicosia SV. 1987. The aging ovary. Med. Clin. North Am. 71:1–9
    [Google Scholar]
  71. 70.
    Niu W, Spradling AC. 2020. Two distinct pathways of pregranulosa cell differentiation support follicle formation in the mouse ovary. PNAS 117:20015–26
    [Google Scholar]
  72. 71.
    Okae H, Toh H, Sato T, Hiura H, Takahashi S et al. 2018. Derivation of human trophoblast stem cells. Cell Stem Cell 22:50–63.e6
    [Google Scholar]
  73. 72.
    Overeem AW, Chang YW, Spruit J, Roelse CM, Chuva De Sousa Lopes SM. 2021. Ligand–receptor interactions elucidate sex-specific pathways in the trajectory from primordial germ cells to gonia during human development. Front. Cell Dev. Biol. 9:661243
    [Google Scholar]
  74. 73.
    Parham P, Guethlein LA. 2010. Pregnancy immunogenetics: NK cell education in the womb?. J. Clin. Investig. 120:3801–4
    [Google Scholar]
  75. 74.
    Pavličev M, Wagner GP, Chavan AR, Owens K, Maziarz J et al. 2017. Single-cell transcriptomics of the human placenta: inferring the cell communication network of the maternal-fetal interface. Genome Res 27:349–61
    [Google Scholar]
  76. 75.
    Perheentupa A, Huhtaniemi I. 2009. Aging of the human ovary and testis. Mol. Cell. Endocrinol. 299:2–13
    [Google Scholar]
  77. 76.
    Peters H, Byskov AG, Himelstein-Braw R, Faber M. 1975. Follicular growth: the basic event in the mouse and human ovary. J. Reprod. Fertil. 45:559–66
    [Google Scholar]
  78. 77.
    Pique-Regi R, Romero R, Tarca AL, Sendler ED, Xu Y et al. 2019. Single cell transcriptional signatures of the human placenta in term and preterm parturition. eLife 8:e52004
    [Google Scholar]
  79. 78.
    Rao A, Barkley D, França GS, Yanai I. 2021. Exploring tissue architecture using spatial transcriptomics. Nature 596:211–20
    [Google Scholar]
  80. 79.
    Rawlings TM, Makwana K, Taylor DM, Molè MA, Fishwick KJ et al. 2021. Modelling the impact of decidual senescence on embryo implantation in human endometrial assembloids. eLife 10:e69603
    [Google Scholar]
  81. 80.
    Regev A, Teichmann SA, Lander ES, Amit I, Benoist C et al. 2017. Science forum: the Human Cell Atlas. eLife 6:e27041
    [Google Scholar]
  82. 81.
    Reik W, Surani MA. 2015. Germline and pluripotent stem cells. Cold Spring Harb. Perspect. Biol. 7:a019422
    [Google Scholar]
  83. 82.
    Ruth KS, Day FR, Hussain J, Martínez-Marchal A, Aiken CE et al. 2021. Genetic insights into biological mechanisms governing human ovarian ageing. Nature 596:393–97
    [Google Scholar]
  84. 83.
    Saitou M, Hayashi K. 2021. Mammalian in vitro gametogenesis. Science 374:eaaz6830
    [Google Scholar]
  85. 84.
    Schatten H, Constantinescu GM. 2017. Animal Models and Human Reproduction Hoboken, NJ: Wiley & Sons
  86. 85.
    Schulz KN, Harrison MM. 2019. Mechanisms regulating zygotic genome activation. Nat. Rev. Genet. 20:221–34
    [Google Scholar]
  87. 86.
    Shannon M, Baltayeva J, Castellana B, Wächter J, McNeill GL et al. 2022. Cell trajectory modeling identifies a primitive trophoblast state defined by BCAM enrichment. Development 149:dev199840
    [Google Scholar]
  88. 87.
    Simoens S, Dunselman G, Dirksen C, Hummelshoj L, Bokor A et al. 2012. The burden of endometriosis: costs and quality of life of women with endometriosis and treated in referral centres. Hum. Reprod. 27:1292–99
    [Google Scholar]
  89. 88.
    Sohni A, Tan K, Song H-W, Burow D, de Rooij DG et al. 2019. The neonatal and adult human testis defined at the single-cell level. Cell Rep 26:1501–17.e4
    [Google Scholar]
  90. 89.
    Ståhl PL, Salmén F, Vickovic S, Lundmark A, Navarro JF et al. 2016. Visualization and analysis of gene expression in tissue sections by spatial transcriptomics. Science 353:78–82
    [Google Scholar]
  91. 90.
    Stickels RR, Murray E, Kumar P, Li J, Marshall JL et al. 2021. Highly sensitive spatial transcriptomics at near-cellular resolution with Slide-seqV2. Nat. Biotechnol. 39:313–19
    [Google Scholar]
  92. 91.
    Sun H, Gong T-T, Jiang Y-T, Zhang S, Zhao Y-H, Wu Q-J. 2019. Global, regional, and national prevalence and disability-adjusted life-years for infertility in 195 countries and territories, 1990–2017: results from a global burden of disease study, 2017. Aging 11:10952–91
    [Google Scholar]
  93. 92.
    Suryawanshi H, Morozov P, Straus A, Sahasrabudhe N, Max KEA et al. 2018. A single-cell survey of the human first-trimester placenta and decidua. Sci. Adv. 4:eaau4788
    [Google Scholar]
  94. 93.
    Svensson V, Vento-Tormo R, Teichmann SA. 2018. Exponential scaling of single-cell RNA-seq in the past decade. Nat. Protoc. 13:599–604
    [Google Scholar]
  95. 94.
    Tan K, Wilkinson MF. 2020. A single-cell view of spermatogonial stem cells. Curr. Opin. Cell Biol. 67:71–78
    [Google Scholar]
  96. 95.
    Tang F, Barbacioru C, Wang Y, Nordman E, Lee C et al. 2009. mRNA-Seq whole-transcriptome analysis of a single cell. Nat. Methods 6:377–82
    [Google Scholar]
  97. 96.
    Tang WWC, Dietmann S, Irie N, Leitch HG, Floros VI et al. 2015. A unique gene regulatory network resets the human germline epigenome for development. Cell 161:1453–67
    [Google Scholar]
  98. 97.
    Tilly JL, Sinclair DA. 2013. Germline energetics, aging, and female infertility. Cell Metab 17:838–50
    [Google Scholar]
  99. 98.
    Tsang JCH, Vong JSL, Ji L, Poon LCY, Jiang P et al. 2017. Integrative single-cell and cell-free plasma RNA transcriptomics elucidates placental cellular dynamics. PNAS 114:E7786–95
    [Google Scholar]
  100. 99.
    Turco MY, Gardner L, Hughes J, Cindrova-Davies T, Gomez MJ et al. 2017. Long-term, hormone-responsive organoid cultures of human endometrium in a chemically defined medium. Nat. Cell Biol. 19:568–77
    [Google Scholar]
  101. 100.
    Turco MY, Gardner L, Kay RG, Hamilton RS, Prater M et al. 2018. Trophoblast organoids as a model for maternal-fetal interactions during human placentation. Nature 564:263–67
    [Google Scholar]
  102. 101.
    Vento-Tormo R, Efremova M, Botting RA, Turco MY, Vento-Tormo M et al. 2018. Single-cell reconstruction of the early maternal-fetal interface in humans. Nature 563:347–53
    [Google Scholar]
  103. 102.
    Vértesy Á, Arindrarto W, Roost MS, Reinius B, Torrens-Juaneda V et al. 2018. Parental haplotype-specific single-cell transcriptomics reveal incomplete epigenetic reprogramming in human female germ cells. Nat. Commun. 9:1873
    [Google Scholar]
  104. 103.
    Vickovic S, Eraslan G, Salmén F, Klughammer J, Stenbeck L et al. 2019. High-definition spatial transcriptomics for in situ tissue profiling. Nat. Methods 16:987–90
    [Google Scholar]
  105. 104.
    Wagner M, Yoshihara M, Douagi I, Damdimopoulos A, Panula S et al. 2020. Single-cell analysis of human ovarian cortex identifies distinct cell populations but no oogonial stem cells. Nat. Commun. 11:1147
    [Google Scholar]
  106. 105.
    Wang M, Liu X, Chang G, Chen Y, An G et al. 2018. Single-cell RNA sequencing analysis reveals sequential cell fate transition during human spermatogenesis. Cell Stem Cell 23:599–614.e4
    [Google Scholar]
  107. 106.
    Wang S, Zheng Y, Li J, Yu Y, Zhang W et al. 2020. Single-cell transcriptomic atlas of primate ovarian aging. Cell 180:585–600.e19
    [Google Scholar]
  108. 107.
    Wang W, Vilella F, Alama P, Moreno I, Mignardi M et al. 2020. Single-cell transcriptomic atlas of the human endometrium during the menstrual cycle. Nat. Med. 26:1644–53
    [Google Scholar]
  109. 108.
    White YAR, Woods DC, Takai Y, Ishihara O, Seki H, Tilly JL. 2012. Oocyte formation by mitotically active germ cells purified from ovaries of reproductive-age women. Nat. Med. 18:413–21
    [Google Scholar]
  110. 109.
    Winters BR, Walsh TJ. 2014. The epidemiology of male infertility. Urol. Clin. N. Am. 41:195–204
    [Google Scholar]
  111. 110.
    World Health Organ. 2019. Infertility is a global public health issue. World Health Organization http://www.who.int/reproductivehealth/topics/infertility/perspective/en
    [Google Scholar]
  112. 111.
    Yong HEJ, Chan S-Y. 2020. Current approaches and developments in transcript profiling of the human placenta. Hum. Reprod. Update 26:799–840
    [Google Scholar]
  113. 112.
    Young RE, Huh DD. 2021. Organ-on-a-chip technology for the study of the female reproductive system. Adv. Drug Deliv. Rev. 173:461–78
    [Google Scholar]
  114. 113.
    Zappia L, Theis FJ. 2021. Over 1000 tools reveal trends in the single-cell RNA-seq analysis landscape. Genome Biol 22:301
    [Google Scholar]
  115. 114.
    Zhang B, Srivastava A, Mimitou E, Stuart T, Raimondi I et al. 2021. Characterizing cellular heterogeneity in chromatin state with scCUT&Tag-pro. bioRxiv 2021.09.13.460120. https://doi.org/10.1101/2021.09.13.460120
    [Crossref]
  116. 115.
    Zhang Y, Yan Z, Qin Q, Nisenblat V, Chang H-M et al. 2018. Transcriptome landscape of human folliculogenesis reveals oocyte and granulosa cell interactions. Mol. Cell 72:1021–34.e4
    [Google Scholar]
  117. 116.
    Zhao L, Yao C, Xing X, Jing T, Li P et al. 2020. Single-cell analysis of developing and azoospermia human testicles reveals central role of Sertoli cells. Nat. Commun. 11:5683
    [Google Scholar]
  118. 117.
    Zimmermann C, Stévant I, Borel C, Conne B, Pitetti J-L et al. 2015. Research resource: the dynamic transcriptional profile of Sertoli cells during the progression of spermatogenesis. Mol. Endocrinol. 29:627–42
    [Google Scholar]
  119. 118.
    Zondervan KT, Becker CM, Missmer SA. 2020. Endometriosis. N. Engl. J. Med. 382:1244–56
    [Google Scholar]
/content/journals/10.1146/annurev-genom-120121-114415
Loading
/content/journals/10.1146/annurev-genom-120121-114415
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error