1932

Abstract

γδ T cells, αβ T cells, and B cells are present together in all but the most primitive vertebrates, suggesting that each population contributes to host immune competence uniquely and that all three are necessary for maintaining immune competence. Functional and molecular analyses indicate that in infections, γδ T cells respond earlier than αβ T cells do and that they emerge late after pathogen numbers start to decline. Thus, these cells may be involved in both establishing and regulating the inflammatory response. Moreover, γδ T cells and αβ T cells are clearly distinct in their antigen recognition and activation requirements as well as in the development of their antigen-specific repertoire and effector function. These aspects allow γδ T cells to occupy unique temporal and functional niches in host immune defense. We review these and other advances in γδ T cell biology in the context of their being the major initial IL-17 producers in acute infection.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-immunol-032713-120216
2014-03-21
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/immunol/32/1/annurev-immunol-032713-120216.html?itemId=/content/journals/10.1146/annurev-immunol-032713-120216&mimeType=html&fmt=ahah

Literature Cited

  1. Saito H, Kranz DM, Takagaki Y, Hayday AC, Eisen HN, Tonegawa S. 1.  1984. Complete primary structure of a heterodimeric T-cell receptor deduced from cDNA sequences. Nature 309:5971757–62 [Google Scholar]
  2. Chien YH, Iwashima M, Kaplan KB, Elliott JF, Davis MM. 2.  1987. A new T-cell receptor gene located within the alpha locus and expressed early in T-cell differentiation. Nature 327:6124677–82 [Google Scholar]
  3. Groh V, Porcelli S, Fabbi M, Lanier LL, Picker LJ. 3.  et al. 1989. Human lymphocytes bearing T cell receptor γ/δ are phenotypically diverse and evenly distributed throughout the lymphoid system. J. Exp. Med. 169:41277–94 [Google Scholar]
  4. Parker CM, Groh V, Band H, Porcelli SA, Morita C. 4.  et al. 1990. Evidence for extrathymic changes in the T cell receptor γ/δ repertoire. J. Exp. Med. 171:51597–612 [Google Scholar]
  5. Itohara S, Farr AG, Lafaille JJ, Bonneville M, Takagaki Y. 5.  et al. 1990. Homing of a γδ thymocyte subset with homogeneous T-cell receptors to mucosal epithelia. Nature 343:6260754–57 [Google Scholar]
  6. Goodman T, Lefrancois L. 6.  1989. Intraepithelial lymphocytes. Anatomical site, not T cell receptor form, dictates phenotype and function. J. Exp. Med. 170:51569–81 [Google Scholar]
  7. Cai Y, Shen X, Ding C, Qi C, Li K. 7.  et al. 2011. Pivotal role of dermal IL-17-producing γδ T cells in skin inflammation. Immunity 35:4596–610 [Google Scholar]
  8. Gray EE, Suzuki K, Cyster JG. 8.  2011. Cutting edge: identification of a motile IL-17-producing γδ T cell population in the dermis. J. Immunol. 186:116091–95 [Google Scholar]
  9. Havran WL, Allison JP. 9.  1990. Origin of Thy-1+ dendritic epidermal cells of adult mice from fetal thymic precursors. Nature 344:626168–70 [Google Scholar]
  10. Hein WR, Mackay CR. 10.  1991. Prominence of γδ T cells in the ruminant immune system. Immunol. Today 12:130–34 [Google Scholar]
  11. Mackay CR, Hein WR. 11.  1989. A large proportion of bovine T cells express the γδ T cell receptor and show a distinct tissue distribution and surface phenotype. Int. Immunol. 1:5540–45 [Google Scholar]
  12. King DP, Hyde DM, Jackson KA, Novosad DM, Ellis TN. 12.  et al. 1999. Cutting edge: protective response to pulmonary injury requires γδ T lymphocytes. J. Immunol. 162:95033–36 [Google Scholar]
  13. Koohsari H, Tamaoka M, Campbell HR, Martin JG. 13.  2007. The role of γδ T cells in airway epithelial injury and bronchial responsiveness after chlorine gas exposure in mice. Respir. Res. 8:21 [Google Scholar]
  14. Moore TA, Moore BB, Newstead MW, Standiford TJ. 14.  2000. γδ-T cells are critical for survival and early proinflammatory cytokine gene expression during murine Klebsiella pneumonia. J. Immunol. 165:52643–50 [Google Scholar]
  15. Toth B, Alexander M, Daniel T, Chaudry IH, Hubbard WJ, Schwacha MG. 15.  2004. The role of γδ T cells in the regulation of neutrophil-mediated tissue damage after thermal injury. J. Leukoc. Biol. 76:3545–52 [Google Scholar]
  16. Balbi B, Valle MT, Oddera S, Giunti D, Manca F. 16.  et al. 1993. T-lymphocytes with γδ+ Vδ2+ antigen receptors are present in increased proportions in a fraction of patients with tuberculosis or with sarcoidosis. Am. Rev. Respir. Dis. 148:6 Pt. 11685–90 [Google Scholar]
  17. Bertotto A, Gerli R, Spinozzi F, Muscat C, Scalise F. 17.  et al. 1993. Lymphocytes bearing the γδ T cell receptor in acute Brucella melitensis infection. Eur. J. Immunol. 23:51177–80 [Google Scholar]
  18. Caldwell CW, Everett ED, McDonald G, Yesus YW, Roland WE, Huang HM. 18.  1996. Apoptosis of γ/δ T cells in human ehrlichiosis. Am. J. Clin. Pathol. 105:5640–46 [Google Scholar]
  19. Hara T, Mizuno Y, Takaki K, Takada H, Akeda H. 19.  et al. 1992. Predominant activation and expansion of Vγ9-bearing γδ T cells in vivo as well as in vitro in Salmonella infection. J. Clin. Investig. 90:1204–10 [Google Scholar]
  20. De Maria A, Ferrazin A, Ferrini S, Ciccone E, Terragna A, Moretta L. 20.  1992. Selective increase of a subset of T cell receptor γδ T lymphocytes in the peripheral blood of patients with human immunodeficiency virus type 1 infection. J. Infect. Dis. 165:5917–919 [Google Scholar]
  21. Munk ME, Gatrill AJ, Kaufmann SH. 21.  1990. Target cell lysis and IL-2 secretion by γ/δ T lymphocytes after activation with bacteria. J. Immunol. 145:82434–39 [Google Scholar]
  22. Perera MK, Carter R, Goonewardene R, Mendis KN. 22.  1994. Transient increase in circulating γ/δ T cells during Plasmodium vivax malarial paroxysms. J. Exp. Med. 179:1311–15 [Google Scholar]
  23. Raziuddin S, Telmasani AW, El-Hag El-Awad M, Al-Amari O, Al-Janadi M. 23.  1992. γδ T cells and the immune response in visceral leishmaniasis. Eur. J. Immunol. 22:51143–48 [Google Scholar]
  24. Scalise F, Gerli R, Castellucci G, Spinozzi F, Fabietti GM. 24.  et al. 1992. Lymphocytes bearing the γδ T-cell receptor in acute toxoplasmosis. Immunology 76:4668–70 [Google Scholar]
  25. Sumida T, Maeda T, Takahashi H, Yoshida S, Yonaha F. 25.  et al. 1992. Predominant expansion of Vγ9/Vδ2 T cells in a tularemia patient. Infect. Immun. 60:62554–58 [Google Scholar]
  26. Wucherpfennig KW, Newcombe J, Li H, Keddy C, Cuzner ML, Hafler DA. 26.  1992. γδ T-cell receptor repertoire in acute multiple sclerosis lesions. Proc. Natl. Acad. Sci. USA 89:104588–92 [Google Scholar]
  27. Ferrick DA, Schrenzel MD, Mulvania T, Hsieh B, Ferlin WG, Lepper H. 27.  1995. Differential production of interferon-γ and interleukin-4 in response to Th1- and Th2-stimulating pathogens by γδ T cells in vivo. Nature 373:6511255–57 [Google Scholar]
  28. Bonneville M, O'Brien RL, Born WK. 28.  2010. γδ T cell effector functions: a blend of innate programming and acquired plasticity. Nat. Rev. Immunol. 10:7467–78 [Google Scholar]
  29. Turner J-E, Krebs C, Tittel AP, Paust H-J, Meyer-Schwesinger C. 29.  et al. 2012. IL-17A production by renal γδ T cells promotes kidney injury in crescentic GN. J. Am. Soc. Nephrol. 23:91486–95 [Google Scholar]
  30. Roark CL, French JD, Taylor MA, Bendele AM, Born WK, O'Brien RL. 30.  2007. Exacerbation of collagen-induced arthritis by oligoclonal, IL-17-producing γδ T cells. J. Immunol. 179:85576–83 [Google Scholar]
  31. Hirota K, Duarte JH, Veldhoen M, Hornsby E, Li Y. 31.  et al. 2011. Fate mapping of IL-17-producing T cells in inflammatory responses. Nat. Immunol. 12:3255–63 [Google Scholar]
  32. Jensen KD, Su X, Shin S, Li L, Youssef S. 32.  et al. 2008. Thymic selection determines γδ T cell effector fate: antigen-naive cells make interleukin-17 and antigen-experienced cells make interferon γ. Immunity 29:190–100 [Google Scholar]
  33. Petermann F, Rothhammer V, Claussen MC, Haas JD, Blanco LR. 33.  et al. 2010. γδ T cells enhance autoimmunity by restraining regulatory T cell responses via an interleukin-23-dependent mechanism. Immunity 33:3351–63 [Google Scholar]
  34. Price AE, Reinhardt RL, Liang HE, Locksley RM. 34.  2012. Marking and quantifying IL-17A-producing cells in vivo. PLoS ONE 7:6e39750 [Google Scholar]
  35. Markle JGM, Mortin-Toth S, Wong ASL, Geng L, Hayday A, Danska JS. 35.  2013. γδ T cells are essential effectors of type 1 diabetes in the nonobese diabetic mouse model. J. Immunol. 190:115392–401 [Google Scholar]
  36. Stark MA, Huo Y, Burcin TL, Morris MA, Olson TS, Ley K. 36.  2005. Phagocytosis of apoptotic neutrophils regulates granulopoiesis via IL-23 and IL-17. Immunity 22:3285–94 [Google Scholar]
  37. Chien YH, Konigshofer Y. 37.  2007. Antigen recognition by γδ T cells. Immunol. Rev. 215:46–58 [Google Scholar]
  38. Jensen KD, Chien YH. 38.  2009. Thymic maturation determines γδ T cell function, but not their antigen specificities. Curr. Opin. Immunol. 21:2140–45 [Google Scholar]
  39. Chien Y, Zeng X, Prinz I. 39.  2013. The natural and the inducible: interleukin (IL)-17-producing γδ T cells. Trends Immunol. 34:4151–54 [Google Scholar]
  40. Heilig JS, Tonegawa S. 40.  1986. Diversity of murine gamma genes and expression in fetal and adult T lymphocytes. Nature 322:6082836–40 [Google Scholar]
  41. Lefranc MP, Rabbitts TH. 41.  1990. A nomenclature to fit the organization of the human T-cell receptor gamma and delta genes. Res. Immunol. 141:7615–18 [Google Scholar]
  42. Pereira P, Boucontet L. 42.  2004. Rates of recombination and chain pair biases greatly influence the primary γδ TCR repertoire in the thymus of adult mice. J. Immunol. 173:53261–70 [Google Scholar]
  43. Davies DR, Padlan EA, Sheriff S. 43.  1990. Antibody-antigen complexes. Annu. Rev. Biochem. 59:439–73 [Google Scholar]
  44. Jorgensen JL, Reay PA, Ehrich EW, Davis MM. 44.  1992. Molecular components of T-cell recognition. Annu. Rev. Immunol. 10:835–73 [Google Scholar]
  45. Adams EJ, Chien YH, Garcia KC. 45.  2005. Structure of a γδ T cell receptor in complex with the nonclassical MHC T22. Science 308:5719227–31 [Google Scholar]
  46. Xu JL, Davis MM. 46.  2000. Diversity in the CDR3 region of V(H) is sufficient for most antibody specificities. Immunity 13:137–45 [Google Scholar]
  47. Chothia C, Lesk AM. 47.  1987. Canonical structures for the hypervariable regions of immunoglobulins. J. Mol. Biol. 196:4901–17 [Google Scholar]
  48. Chothia C, Lesk AM, Tramontano A, Levitt M, Smith-Gill SJ. 48.  et al. 1989. Conformations of immunoglobulin hypervariable regions. Nature 342:6252877–83 [Google Scholar]
  49. Rock EP, Sibbald PR, Davis MM, Chien YH. 49.  1994. CDR3 length in antigen-specific immune receptors. J. Exp. Med. 179:1323–28 [Google Scholar]
  50. Parra ZE, Ohta Y, Criscitiello MF, Flajnik MF, Miller RD. 50.  2010. The dynamic TCRδ: TCRδ chains in the amphibian Xenopus tropicalis utilize antibody-like V genes. Eur. J. Immunol. 40:82319–29 [Google Scholar]
  51. Parra ZE, Mitchell K, Dalloul RA, Miller RD. 51.  2012. A second TCRδ locus in Galliformes uses antibody-like V domains: insight into the evolution of TCRδ and TCRμ genes in tetrapods. J. Immunol. 188:83912–19 [Google Scholar]
  52. Parra ZE, Baker ML, Schwarz RS, Deakin JE, Lindblad-Toh K, Miller RD. 52.  2007. A unique T cell receptor discovered in marsupials. Proc. Natl. Acad. Sci. USA 104:239776–81 [Google Scholar]
  53. Parra ZE, Baker ML, Hathaway J, Lopez AM, Trujillo J. 53.  et al. 2008. Comparative genomic analysis and evolution of the T cell receptor loci in the opossum Monodelphis domestica. BMC Genomics 9:111 [Google Scholar]
  54. Criscitiello MF, Saltis M, Flajnik MF. 54.  2006. An evolutionarily mobile antigen receptor variable region gene: doubly rearranging NAR-TcR genes in sharks. Proc. Natl. Acad. Sci. USA 103:135036–41 [Google Scholar]
  55. Hirano M, Guo P, McCurley N, Schorpp M, Das S. 55.  et al. 2013. Evolutionary implications of a third lymphocyte lineage in lampreys. Nature 501:7467435–38 [Google Scholar]
  56. Deng L, Velikovsky CA, Xu G, Iyer LM, Tasumi S. 56.  et al. 2010. A structural basis for antigen recognition by the T cell–like lymphocytes of sea lamprey. Proc. Natl. Acad. Sci. USA 107:3013408–13 [Google Scholar]
  57. Matis LA, Fry AM, Cron RQ, Cotterman MM, Dick RF, Bluestone JA. 57.  1989. Structure and specificity of a class II MHC alloreactive γδ T cell receptor heterodimer. Science 245:4919746–49 [Google Scholar]
  58. Bluestone JA, Cron RQ, Cotterman M, Houlden BA, Matis LA. 58.  1988. Structure and specificity of T cell receptor γ/δ on major histocompatibility complex antigen-specific CD3+, CD4, CD8 T lymphocytes. J. Exp. Med. 168:51899–916 [Google Scholar]
  59. Houlden BA, Matis LA, Cron RQ, Widacki SM, Brown GD. 59.  et al. 1989. A TCR γδ cell recognizing a novel TL-encoded gene product. Cold Spring Harb. Symp. Quant. Biol. 54:Pt. 145–55 [Google Scholar]
  60. Wu J, Groh V, Spies T. 60.  2002. T cell antigen receptor engagement and specificity in the recognition of stress-inducible MHC class I-related chains by human epithelial γδ T cells. J. Immunol. 169:31236–40 [Google Scholar]
  61. Spada FM, Grant EP, Peters PJ, Sugita M, Melian A. 61.  et al. 2000. Self-recognition of CD1 by γ/δ T cells: implications for innate immunity. J. Exp. Med. 191:6937–48 [Google Scholar]
  62. Scotet E, Martinez LO, Grant E, Barbaras R, Jeno P. 62.  et al. 2005. Tumor recognition following Vγ9Vδ2 T cell receptor interactions with a surface F1-ATPase-related structure and apolipoprotein A-I. Immunity 22:71–80 [Google Scholar]
  63. Sciammas R, Bluestone JA. 63.  1998. HSV-1 glycoprotein I-reactive TCR γδ cells directly recognize the peptide backbone in a conformationally dependent manner. J. Immunol. 161:105187–92 [Google Scholar]
  64. Bukowski JF, Morita CT, Tanaka Y, Bloom BR, Brenner MB, Band H. 64.  1995. Vγ2Vδ2 TCR-dependent recognition of non-peptide antigens and Daudi cells analyzed by TCR gene transfer. J. Immunol. 154:3998–1006 [Google Scholar]
  65. Bukowski JF, Morita CT, Band H, Brenner MB. 65.  1998. Crucial role of TCR γ chain junctional region in prenyl pyrophosphate antigen recognition by γδ T cells. J. Immunol. 161:1286–93 [Google Scholar]
  66. Bukowski JF, Morita CT, Brenner MB. 66.  1999. Human γδ T cells recognize alkylamines derived from microbes, edible plants, and tea: implications for innate immunity. Immunity 11:157–65 [Google Scholar]
  67. Constant P, Davodeau F, Peyrat MA, Poquet Y, Puzo G. 67.  et al. 1994. Stimulation of human γδ T cells by nonpeptidic mycobacterial ligands. Science 264:5156267–70 [Google Scholar]
  68. Morita CT, Beckman EM, Bukowski JF, Tanaka Y, Band H. 68.  et al. 1995. Direct presentation of nonpeptide prenyl pyrophosphate antigens to human γδ T cells. Immunity 3:4495–507 [Google Scholar]
  69. Tanaka Y, Morita CT, Tanaka Y, Nieves E, Brenner MB, Bloom BR. 69.  1995. Natural and synthetic non-peptide antigens recognized by human γδ T cells. Nature 375:6527155–58 [Google Scholar]
  70. Bruder J, Siewert K, Obermeier B, Malotka J, Scheinert P. 70.  et al. 2012. Target specificity of an autoreactive pathogenic human γδ-T cell receptor in myositis. J. Biol. Chem. 287:2520986–95 [Google Scholar]
  71. Willcox CR, Pitard V, Netzer S, Couzi L, Salim M. 71.  et al. 2012. Cytomegalovirus and tumor stress surveillance by binding of a human γδ T cell antigen receptor to endothelial protein C receptor. Nat. Immunol. 13:9872–79 [Google Scholar]
  72. Dieudé M, Striegl H, Tyznik AJ, Wang J, Behar SM. 72.  et al. 2011. Cardiolipin binds to CD1d and stimulates CD1d-restricted γδ T cells in the normal murine repertoire. J. Immunol. 186:84771–81 [Google Scholar]
  73. Bai L, Picard D, Anderson B, Chaudhary V, Luoma A. 73.  et al. 2012. The majority of CD1d-sulfatide-specific T cells in human blood use a semiinvariant Vδ1 TCR. Eur. J. Immunol. 42:92505–10 [Google Scholar]
  74. Uldrich AP, Le Nours J, Pellicci DG, Gherardin NA, McPherson KG. 74.  et al. 2013. CD1d-lipid antigen recognition by the γδ TCR. Nat. Immunol. 14:111137–45 [Google Scholar]
  75. Luoma AM, Castro CD, Mayassi T, Bembinster LA, Bai L. 75.  et al. 2013. Crystal structure of Vδ1 T cell receptor in complex with CD1d-sulfatide shows MHC-like recognition of a self-lipid by human γδ T cells. Immunity 3961032–42
  76. Zeng X, Wei Y-L, Huang J, Newell EW, Yu H. 76.  et al. 2012. γδ T cells recognize a microbial encoded B cell antigen to initiate a rapid antigen-specific interleukin-17 response. Immunity 37:3524–34 [Google Scholar]
  77. Hayakawa K, Ishii R, Yamasaki K, Kishimoto T, Hardy RR. 77.  1987. Isolation of high-affinity memory B cells: phycoerythrin as a probe for antigen-binding cells. Proc. Natl. Acad. Sci. USA 84:51379–83 [Google Scholar]
  78. Maruyama M, Lam KP, Rajewsky K. 78.  2000. Memory B-cell persistence is independent of persisting immunizing antigen. Nature 407:6804636–42 [Google Scholar]
  79. Pape KA, Taylor JJ, Maul RW, Gearhart PJ, Jenkins MK. 79.  2011. Different B cell populations mediate early and late memory during an endogenous immune response. Science 331:60211203–7 [Google Scholar]
  80. Born WK, Zhang L, Nakayama M, Jin N, Chain JL. 80.  et al. 2011. Peptide antigens for gamma/delta T cells. Cell. Mol. Life Sci. 68:142335–43 [Google Scholar]
  81. Andreu-Ballester JC, Tormo-Calandin C, Garcia-Ballesteros C, Pérez-Griera J, Amig ó V. 81.  et al. 2013. Association of γδ T cells with disease severity and mortality in septic patients. Clin. Vaccine Immunol. 20:5738–46 [Google Scholar]
  82. Schild H, Mavaddat N, Litzenberger C, Ehrich EW, Davis MM. 82.  et al. 1994. The nature of major histocompatibility complex recognition by γδ T cells. Cell 76:129–37 [Google Scholar]
  83. Hampl J, Schild H, Litzenberger C, Baron M, Crowley MP, Chien YH. 83.  1999. The specificity of a weak γδ TCR interaction can be modulated by the glycosylation of the ligand. J. Immunol. 163:1288–94 [Google Scholar]
  84. Honig B, Nicholls A. 84.  1995. Classical electrostatics in biology and chemistry. Science 268:52141144–49 [Google Scholar]
  85. van der Merwe PA, Davis SJ. 85.  2003. Molecular interactions mediating T cell antigen recognition. Annu. Rev. Immunol. 21:659–84 [Google Scholar]
  86. Newell EW, Ely LK, Kruse AC, Reay PA, Rodriguez SN. 86.  et al. 2011. Structural basis of specificity and cross-reactivity in T cell receptors specific for cytochrome c-I-Ek. J. Immunol. 186:105823–32 [Google Scholar]
  87. Rudolph MG, Wingren C, Crowley MP, Chien YH, Wilson IA. 87.  2004. Combined pseudo-merohedral twinning, non-crystallographic symmetry and pseudo-translation in a monoclinic crystal form of the γδ T-cell ligand T10. Acta Crystallogr. Biol. Crystallogr. 60:Pt. 4656–64 [Google Scholar]
  88. Wingren C, Crowley MP, Degano M, Chien Y, Wilson IA. 88.  2000. Crystal structure of a γδ T cell receptor ligand T22: a truncated MHC-like fold. Science 287:5451310–14 [Google Scholar]
  89. Crowley MP, Reich Z, Mavaddat N, Altman JD, Chien Y. 89.  1997. The recognition of the nonclassical major histocompatibility complex (MHC) class I molecule, T10, by the γδ T cell, G8. J. Exp. Med. 185:71223–30 [Google Scholar]
  90. Crowley MP, Fahrer AM, Baumgarth N, Hampl J, Gutgemann I. 90.  et al. 2000. A population of murine γδ T cells that recognize an inducible MHC class Ib molecule. Science 287:5451314–16 [Google Scholar]
  91. Li P, Morris DL, Willcox BE, Steinle A, Spies T, Strong RK. 91.  2001. Complex structure of the activating immunoreceptor NKG2D and its MHC class I-like ligand MICA. Nat. Immunol. 2:5443–51 [Google Scholar]
  92. Xu B, Pizarro JC, Holmes MA, McBeth C, Groh V. 92.  et al. 2011. Crystal structure of a γδ T-cell receptor specific for the human MHC class I homolog MICA. Proc. Natl. Acad. Sci. USA 108:62414–19 [Google Scholar]
  93. Bonneville M, Ito K, Krecko EG, Itohara S, Kappes D. 93.  et al. 1989. Recognition of a self major histocompatibility complex TL region product by γδ T-cell receptors. Proc. Natl. Acad. Sci. USA 86:155928–32 [Google Scholar]
  94. Ito K, Van Kaer L, Bonneville M, Hsu S, Murphy DB, Tonegawa S. 94.  1990. Recognition of the product of a novel MHC TL region gene (27b) by a mouse γδ T cell receptor. Cell 62:3549–61 [Google Scholar]
  95. Shin S, El-Diwany R, Schaffert S, Adams EJ, Garcia KC. 95.  et al. 2005. Antigen recognition determinants of γδ T cell receptors. Science 308:252–55 [Google Scholar]
  96. Adams EJ, Strop P, Shin S, Chien YH, Garcia KC. 96.  2008. An autonomous CDR3δ is sufficient for recognition of the nonclassical MHC class I molecules T10 and T22 by γδ T cells. Nat. Immunol. 9:7777–84 [Google Scholar]
  97. Janeway CA Jr, Jones B, Hayday A. 97.  1988. Specificity and function of T cells bearing γδ receptors. Immunol. Today 9:373–76 [Google Scholar]
  98. Quertermous T, Murre C, Dialynas D, Duby AD, Strominger JL. 98.  et al. 1986. Human T-cell γ chain genes: organization, diversity, and rearrangement. Science 231:4735252–55 [Google Scholar]
  99. Pfeffer K, Schoel B, Gulle H, Kaufmann SH, Wagner H. 99.  1990. Primary responses of human T cells to mycobacteria: a frequent set of γ/δ T cells are stimulated by protease-resistant ligands. Eur. J. Immunol. 20:51175–79 [Google Scholar]
  100. Davodeau F, Peyrat MA, Hallet MM, Gaschet J, Houde I. 100.  et al. 1993. Close correlation between Daudi and mycobacterial antigen recognition by human γδ T cells and expression of V9JPC1γ/V2DJCδ-encoded T cell receptors. J. Immunol. 151:31214–23 [Google Scholar]
  101. Zhang Y, Song Y, Yin F, Broderick E, Siegel K. 101.  et al. 2006. Structural studies of Vγ2Vδ2 T cell phosphoantigens. Chem. Biol. 13:9985–92 [Google Scholar]
  102. Jomaa H, Feurle J, Lühs K, Kunzmann V, Tony HP. 102.  et al. 1999. Vγ9/Vδ2 T cell activation induced by bacterial low molecular mass compounds depends on the 1-deoxy-d-xylulose 5-phosphate pathway of isoprenoid biosynthesis. FEMS Immunol. Med. Microbiol. 25:4371–78 [Google Scholar]
  103. Davodeau F, Peyrat MA, Hallet MM, Houde I, Vie H, Bonneville M. 103.  1993. Peripheral selection of antigen receptor junctional features in a major human γδ subset. Eur. J. Immunol. 23:4804–8 [Google Scholar]
  104. Wang H, Fang Z, Morita CT. 104.  2010. Vγ2Vδ2 T cell receptor recognition of prenyl pyrophosphates is dependent on all CDRs. J. Immunol. 184:116209–22 [Google Scholar]
  105. McVay LD, Jaswal SS, Kennedy C, Hayday A, Carding SR. 105.  1998. The generation of human γδ T cell repertoires during fetal development. J. Immunol. 160:125851–60 [Google Scholar]
  106. Gober H-J, Kistowska M, Angman L, Jenö P, Mori L, De Libero G. 106.  2003. Human T cell receptor γδ cells recognize endogenous mevalonate metabolites in tumor cells. J. Exp. Med. 197:2163–68 [Google Scholar]
  107. Kistowska M, Rossy E, Sansano S, Gober H-J, Landmann R. 107.  et al. 2008. Dysregulation of the host mevalonate pathway during early bacterial infection activates human TCR γδ cells. Eur. J. Immunol. 38:82200–209 [Google Scholar]
  108. Allison TJ, Winter CC, Fournié JJ, Bonneville M, Garboczi DN. 108.  2001. Structure of a human γδ T-cell antigen receptor. Nature 411:6839820–24 [Google Scholar]
  109. Harly C, Guillaume Y, Nedellec S, Peigné C-M, Mönkkönen H. 109.  et al. 2012. Key implication of CD277/butyrophilin-3 (BTN3A) in cellular stress sensing by a major human γδ T-cell subset. Blood 120:112269–79 [Google Scholar]
  110. Palakodeti A, Sandstrom A, Sundaresan L, Harly C, Nedellec S. 110.  et al. 2012. The molecular basis for modulation of human Vγ9Vδ2 T cell responses by CD277/butyrophilin-3 (BTN3A)-specific antibodies. J. Biol. Chem. 287:3932780–90 [Google Scholar]
  111. Wang H, Henry O, Distefano MD, Wang YC, Räikkönen J. 111.  et al. 2013. Butyrophilin 3A1 plays an essential role in prenyl pyrophosphate stimulation of human Vγ2Vδ2 T cells. J. Immunol. 191:31029–42 [Google Scholar]
  112. Vavassori S, Kumar A, Wan GS, Ramanjaneyulu GS, Cavallari M. 112.  et al. 2013. Butyrophilin 3A1 binds phosphorylated antigens and stimulates human γδ T cells. Nat. Immunol. 14:9908–16 [Google Scholar]
  113. Wiendl H, Malotka J, Holzwarth B, Weltzien HU, Wekerle H. 113.  et al. 2002. An autoreactive γδ TCR derived from a polymyositis lesion. J. Immunol. 169:1515–21 [Google Scholar]
  114. Zampieri S, Ghirardello A, Iaccarino L, Tarricone E, Gambari PF, Doria A. 114.  2005. Anti-Jo-1 antibodies. Autoimmunity 38:173–78 [Google Scholar]
  115. Lafarge X, Pitard V, Ravet S, Roumanes D, Halary F. 115.  et al. 2005. Expression of MHC class I receptors confers functional intraclonal heterogeneity to a reactive expansion of γδ T cells. Eur. J. Immunol. 35:61896–905 [Google Scholar]
  116. Press JL, Klinman NR. 116.  1974. Frequency of hapten-specific B cells in neonatal and adult murine spleens. Eur. J. Immunol. 4:3155–59 [Google Scholar]
  117. Stashenko P, Klinman NR. 117.  1980. Analysis of the primary anti-(4-hydroxy-3-nitrophenyl) acetyl (NP) responsive B cells in BALB/C and B10.D2 mice. J. Immunol. 125:2531–37 [Google Scholar]
  118. Cohn M, Langman RE. 118.  1990. The protection: the unit of humoral immunity selected by evolution. Immunol. Rev. 115:11–147 [Google Scholar]
  119. Mims CA. 119.  1987. Pathogenesis of Infectious Disease London: Academic
  120. Zinkernagel RM. 120.  1996. Immunology taught by viruses. Science 271:5246173–78 [Google Scholar]
  121. Zinkernagel RM, Hengartner H. 121.  2001. Regulation of the immune response by antigen. Science 293:5528251–53 [Google Scholar]
  122. Itohara S, Mombaerts P, Lafaille J, Iacomini J, Nelson A. 122.  et al. 1993. T cell receptor δ gene mutant mice: independent generation of αβ T cells and programmed rearrangements of γδ TCR genes. Cell 72:3337–48 [Google Scholar]
  123. Lewis JM, Girardi M, Roberts SJ, Barbee SD, Hayday AC, Tigelaar RE. 123.  2006. Selection of the cutaneous intraepithelial γδ+ T cell repertoire by a thymic stromal determinant. Nat. Immunol. 7:8843–50 [Google Scholar]
  124. Mallick-Wood CA, Lewis JM, Richie LI, Owen MJ, Tigelaar RE, Hayday AC. 124.  1998. Conservation of T cell receptor conformation in epidermal γδ cells with disrupted primary Vγ gene usage. Science 279:53571729–33 [Google Scholar]
  125. Xiong N, Kang C, Raulet DH. 125.  2004. Positive selection of dendritic epidermal γδ T cell precursors in the fetal thymus determines expression of skin-homing receptors. Immunity 21:1121–31 [Google Scholar]
  126. Feeney AJ. 126.  1990. Lack of N regions in fetal and neonatal mouse immunoglobulin V-D-J junctional sequences. J. Exp. Med. 172:51377–90 [Google Scholar]
  127. Gu H, Förster I, Rajewsky K. 127.  1990. Sequence homologies, N sequence insertion and JH gene utilization in VHDJH joining: implications for the joining mechanism and the ontogenetic timing of Ly1 B cell and B-CLL progenitor generation. EMBO J. 9:72133–40 [Google Scholar]
  128. Ichihara Y, Hayashida H, Miyazawa S, Kurosawa Y. 128.  1989. Only Dfl16, Dsp2, and Dq52 gene families exist in mouse immunoglobulin heavy chain diversity gene loci, of which Dfl16 and Dsp2 originate from the same primordial DH gene. Eur. J. Immunol. 19:101849–54 [Google Scholar]
  129. Bonneville M, Ishida I, Itohara S, Verbeek S, Berns A. 129.  et al. 1990. Self-tolerance to transgenic γδ T cells by intrathymic inactivation. Nature 344:6262163–65 [Google Scholar]
  130. Dent AL, Matis LA, Hooshmand F, Widacki SM, Bluestone JA, Hedrick SM. 130.  1990. Self-reactive γδ T cells are eliminated in the thymus. Nature 343:6260714–19 [Google Scholar]
  131. Pereira P, Zijlstra M, McMaster J, Loring JM, Jaenisch R, Tonegawa S. 131.  1992. Blockade of transgenic γδ T cell development in β2-microglobulin deficient mice. EMBO J. 11:125–31 [Google Scholar]
  132. Wells FB, Gahm S-J, Hedrick SM, Bluestone JA, Dent A, Matis LA. 132.  1991. Requirement for positive selection of γδ receptor-bearing T cells. Science 253:5022903–5 [Google Scholar]
  133. Schweighoffer E, Fowlkes BJ. 133.  1996. Positive selection is not required for thymic maturation of transgenic γδ T cells. J. Exp. Med. 183:52033–41 [Google Scholar]
  134. Prinz I, Sansoni A, Kissenpfennig A, Ardouin L, Malissen M, Malissen B. 134.  2006. Visualization of the earliest steps of γδ T cell development in the adult thymus. Nat. Immunol. 7:9995–1003 [Google Scholar]
  135. Hayes SM, Li L, Love PE. 135.  2005. TCR signal strength influences αβ/γδ lineage fate. Immunity 22:5583–93 [Google Scholar]
  136. Cheroutre H, Lambolez F. 136.  2008. The thymus chapter in the life of gut-specific intra epithelial lymphocytes. Curr. Opin. Immunol. 20:2185–91 [Google Scholar]
  137. Jensen KD, Shin S, Chien YH. 137.  2009. Cutting edge: γδ intraepithelial lymphocytes of the small intestine are not biased toward thymic antigens. J. Immunol. 182:127348–51 [Google Scholar]
  138. Bandeira A, Mota-Santos T, Itohara S, Degermann S, Heusser C. 138.  et al. 1990. Localization of γ/δ T cells to the intestinal epithelium is independent of normal microbial colonization. J. Exp. Med. 172:1239–44 [Google Scholar]
  139. Helgeland L, Vaage JT, Rolstad B, Halstensen TS, Midtvedt T, Brandtzaeg P. 139.  1997. Regional phenotypic specialization of intraepithelial lymphocytes in the rat intestine does not depend on microbial colonization. Scand. J. Immunol. 46:4349–57 [Google Scholar]
  140. Kawaguchi-Miyashita M, Shimizu K, Nanno M, Shimada S, Watanabe T. 140.  et al. 1996. Development and cytolytic function of intestinal intraepithelial T lymphocytes in antigen-minimized mice. Immunology 89:2268–73 [Google Scholar]
  141. Umesaki Y, Setoyama H, Matsumoto S, Okada Y. 141.  1993. Expansion of αβ T-cell receptor-bearing intestinal intraepithelial lymphocytes after microbial colonization in germ-free mice and its independence from thymus. Immunology 79:132–37 [Google Scholar]
  142. Kisielow J, Kopf M, Karjalainen K. 142.  2008. SCART scavenger receptors identify a novel subset of adult γδ T cells. J. Immunol. 181:31710–16 [Google Scholar]
  143. Ribot JC, deBarros A, Pang DJ, Neves JF, Peperzak V. 143.  et al. 2009. CD27 is a thymic determinant of the balance between interferon-γ- and interleukin 17-producing γδ T cell subsets. Nat. Immunol. 10:4427–36 [Google Scholar]
  144. Turchinovich G, Hayday AC. 144.  2011. Skint-1 identifies a common molecular mechanism for the development of interferon-γ-secreting versus interleukin-17-secreting γδ T cells. Immunity 35:159–68 [Google Scholar]
  145. Azuara V, Levraud JP, Lembezat MP, Pereira P. 145.  1997. A novel subset of adult γδ thymocytes that secretes a distinct pattern of cytokines and expresses a very restricted T cell receptor repertoire. Eur. J. Immunol. 27:2544–53 [Google Scholar]
  146. Gerber DJ, Azuara V, Levraud JP, Huang SY, Lembezat MP, Pereira P. 146.  1999. IL-4-producing γδ T cells that express a very restricted TCR repertoire are preferentially localized in liver and spleen. J. Immunol. 163:63076–82 [Google Scholar]
  147. Yin CC, Cho OH, Sylvia KE, Narayan K, Prince AL. 147.  et al. 2013. The Tec kinase ITK regulates thymic expansion, emigration, and maturation of γδ NKT cells. J. Immunol. 190:62659–69 [Google Scholar]
  148. Felices M, Yin CC, Kosaka Y, Kang J, Berg LJ. 148.  2009. Tec kinase Itk in γδ T cells is pivotal for controlling IgE production in vivo. Proc. Natl. Acad. Sci. USA 106:208308–13 [Google Scholar]
  149. Kreslavsky T, Savage AK, Hobbs R, Gounari F, Bronson R. 149.  et al. 2009. TCR-inducible PLZF transcription factor required for innate phenotype of a subset of γδ T cells with restricted TCR diversity. Proc. Natl. Acad. Sci. USA 106:3012453–58 [Google Scholar]
  150. Nuñez-Cruz S, Aguado E, Richelme S, Chetaille B, Mura A-M. 150.  et al. 2003. LAT regulates γδ T cell homeostasis and differentiation. Nat. Immunol. 4:10999–1008 [Google Scholar]
  151. Fahrer AM, Konigshofer Y, Kerr EM, Ghandour G, Mack DH. 151.  et al. 2001. Attributes of γδ intraepithelial lymphocytes as suggested by their transcriptional profile. Proc. Natl. Acad. Sci. USA 98:1810261–66 [Google Scholar]
  152. Lefrancois L, Goodman T. 152.  1989. In vivo modulation of cytolytic activity and Thy-1 expression in TCR-γδ+ intraepithelial lymphocytes. Science 243:48991716–18 [Google Scholar]
  153. Haas JD, Ravens S, Düber S, Sandrock I, Oberdörfer L. 153.  et al. 2012. Development of interleukin-17-producing γδ T cells is restricted to a functional embryonic wave. Immunity 37:148–59 [Google Scholar]
  154. Shibata K, Yamada H, Nakamura R, Sun X, Itsumi M, Yoshikai Y. 154.  2008. Identification of CD25+ γ/δ T cells as fetal thymus-derived naturally occurring IL-17 producers. J. Immunol. 181:95940–47 [Google Scholar]
  155. DeFranco AL, Locksley RM, Robertson M. 155.  2007. Immunity: The Immune Response in Infectious and Inflammatory Disease London: New Science
  156. Chang WLW, Coro ES, Rau FC, Xiao Y, Erle DJ, Baumgarth N. 156.  2007. Influenza virus infection causes global respiratory tract B cell response modulation via innate immune signals. J. Immunol. 178:31457–67 [Google Scholar]
  157. Smith E, von Vietinghoff S, Stark MA, Zarbock A, Sanders JM. 157.  et al. 2009. T-lineage cells require the thymus but not VDJ recombination to produce IL-17A and regulate granulopoiesis in vivo. J. Immunol. 183:95685–93 [Google Scholar]
  158. Grigoriadou K, Boucontet L, Pereira P. 158.  2003. Most IL-4-producing γδ thymocytes of adult mice originate from fetal precursors. J. Immunol. 171:52413–20 [Google Scholar]
  159. Narayan K, Sylvia KE, Malhotra N, Yin CC, Martens G. 159.  et al. 2012. Intrathymic programming of effector fates in three molecularly distinct γδ T cell subtypes. Nat. Immunol. 13:5511–18 [Google Scholar]
  160. Malhotra N, Narayan K, Cho OH, Sylvia KE, Yin C. 160.  et al. 2013. A network of high-mobility group box transcription factors programs innate interleukin-17 production. Immunity 38:4681–93 [Google Scholar]
  161. Jojic V, Shay T, Sylvia K, Zuk O, Sun X. 161.  et al. 2013. Identification of transcriptional regulators in the mouse immune system. Nat. Immunol. 14:6633–43 [Google Scholar]
  162. Garman RD, Doherty PJ, Raulet DH. 162.  1986. Diversity, rearrangement, and expression of murine T cell gamma genes. Cell 45:5733–42 [Google Scholar]
  163. Gray EE, Ramírez-Valle F, Xu Y, Wu S, Wu Z. 163.  et al. 2013. Deficiency in IL-17-committed Vγ4+ γδ T cells in a spontaneous Sox13-mutant CD45.1+ congenic mouse substrain provides protection from dermatitis. Nat. Immunol. 14:6584–92 [Google Scholar]
  164. Powolny-Budnicka I, Riemann M, Tänzer S, Schmid RM, Hehlgans T, Weih F. 164.  2011. RelA and RelB transcription factors in distinct thymocyte populations control lymphotoxin-dependent interleukin-17 production in γδ T cells. Immunity 34:3364–74 [Google Scholar]
  165. Laird RM, Laky K, Hayes SM. 165.  2010. Unexpected role for the B cell–specific Src family kinase B lymphoid kinase in the development of IL-17-producing γδ T cells. J. Immunol. 185:116518–27 [Google Scholar]
  166. Shibata K, Yamada H, Sato T, Dejima T, Nakamura M. 166.  et al. 2011. Notch-Hes1 pathway is required for the development of IL-17-producing γδ T cells. Blood 118:3586–93 [Google Scholar]
  167. Do J, Fink PJ, Li L, Spolski R, Robinson J. 167.  et al. 2010. Cutting edge: spontaneous development of IL-17-producing γδ T cells in the thymus occurs via a TGF-β1-dependent mechanism. J. Immunol. 184:41675–79 [Google Scholar]
  168. Jaffar Z, Ferrini ME, Shaw PK, FitzGerald GA, Roberts K. 168.  2011. Prostaglandin I2 promotes the development of IL-17-producing γδ T cells that associate with the epithelium during allergic lung inflammation. J. Immunol. 187:105380–91 [Google Scholar]
  169. Hayes SM, Laird RM. 169.  2012. Genetic requirements for the development and differentiation of interleukin-17-producing γδ T cells. Crit. Rev. Immunol. 32:181–95 [Google Scholar]
  170. Raifer H, Mahiny AJ, Bollig N, Petermann F, Hellhund A. 170.  et al. 2012. Unlike αβ T cells, γδ T cells, LTi cells and NKT cells do not require IRF4 for the production of IL-17A and IL-22. Eur. J. Immunol. 42:123189–201 [Google Scholar]
  171. Düber S, Hafner M, Krey M, Lienenklaus S, Roy B. 171.  et al. 2009. Induction of B-cell development in adult mice reveals the ability of bone marrow to produce B-1a cells. Blood 114:244960–67 [Google Scholar]
  172. Kimura MY, Pobezinsky LA, Guinter TI, Thomas J, Adams A. 172.  et al. 2013. IL-7 signaling must be intermittent, not continuous, during CD8+ T cell homeostasis to promote cell survival instead of cell death. Nat. Immunol. 14:2143–51 [Google Scholar]
  173. Sprent J, Surh CD. 173.  2011. Normal T cell homeostasis: the conversion of naive cells into memory-phenotype cells. Nat. Immunol. 12:6478–84 [Google Scholar]
  174. Swat W, Xavier R, Mizoguchi A, Mizoguchi E, Fredericks J. 174.  et al. 2003. Essential role for Vav1 in activation, but not development, of γδ T cells. Int. Immunol. 15:2215–21 [Google Scholar]
  175. Duan J, Chung H, Troy E, Kasper DL. 175.  2010. Microbial colonization drives expansion of IL-1 receptor 1-expressing and IL-17-producing γ/δ T cells. Cell Host Microbe 7:2140–50 [Google Scholar]
  176. Martin B, Hirota K, Cua DJ, Stockinger B, Veldhoen M. 176.  2009. Interleukin-17-producing γδ T cells selectively expand in response to pathogen products and environmental signals. Immunity 31:2321–30 [Google Scholar]
  177. Sutton CE, Lalor SJ, Sweeney CM, Brereton CF, Lavelle EC, Mills KH. 177.  2009. Interleukin-1 and IL-23 induce innate IL-17 production from γδ T cells, amplifying Th17 responses and autoimmunity. Immunity 31:2331–41 [Google Scholar]
  178. Flanagan WM, Corthésy B, Bram RJ, Crabtree GR. 178.  1991. Nuclear association of a T-cell transcription factor blocked by FK-506 and cyclosporin A. Nature 352:6338803–7 [Google Scholar]
  179. Blattman JN, Antia R, Sourdive DJD, Wang X, Kaech SM. 179.  et al. 2002. Estimating the precursor frequency of naive antigen-specific CD8 T cells. J. Exp. Med. 195:5657–64 [Google Scholar]
  180. Marzo AL, Klonowski KD, Le Bon A, Borrow P, Tough DF, Lefrançois L. 180.  2005. Initial T cell frequency dictates memory CD8+ T cell lineage commitment. Nat. Immunol. 6:8793–99 [Google Scholar]
  181. Moon JJ, Chu HH, Pepper M, McSorley SJ, Jameson SC. 181.  et al. 2007. Naive CD4+ T cell frequency varies for different epitopes and predicts repertoire diversity and response magnitude. Immunity 27:2203–13 [Google Scholar]
  182. Barbee SD, Woodward MJ, Turchinovich G, Mention J-J, Lewis JM. 182.  et al. 2011. Skint-1 is a highly specific, unique selecting component for epidermal T cells. Proc. Natl. Acad. Sci. USA 108:83330–35 [Google Scholar]
  183. Korn T, Petermann F. 183.  2012. Development and function of interleukin 17-producing γδ T cells. Ann. N.Y. Acad. Sci. 1247:34–45 [Google Scholar]
  184. Wesch D, Peters C, Oberg H-H, Pietschmann K, Kabelitz D. 184.  2011. Modulation of γδ T cell responses by TLR ligands. Cell. Mol. Life Sci. 68:142357–70 [Google Scholar]
  185. Ribot JC, deBarros A, Silva-Santos B. 185.  2011. Searching for “signal 2”: costimulation requirements of γδ T cells. Cell. Mol. Life Sci. 68:142345–55 [Google Scholar]
  186. Correia DV, Fogli M, Hudspeth K, da Silva MG, Mavilio D, Silva-Santos B. 186.  2011. Differentiation of human peripheral blood Vδ1+ T cells expressing the natural cytotoxicity receptor NKp30 for recognition of lymphoid leukemia cells. Blood 118:4992–1001 [Google Scholar]
  187. Lanier LL, Kipps TJ, Phillips JH. 187.  1985. Functional properties of a unique subset of cytotoxic CD3+ T lymphocytes that express Fc receptors for IgG (CD16/Leu-11 antigen). J. Exp. Med. 162:62089–106 [Google Scholar]
  188. Braakman E, van de Winkel JG, van Krimpen BA, Jansze M, Bolhuis RL. 187a.  1992. CD16 on human γδ T lymphocytes: expression, function, and specificity for mouse IgG isotypes. Cell Immunol. 143:197–107 [Google Scholar]
  189. Couzi L, Pitard V, Sicard X, Garrigue I, Hawchar O. 188.  et al. 2012. Antibody-dependent anti-cytomegalovirus activity of human γδ T cells expressing CD16 (FcγRIIIa). Blood 119:61418–27 [Google Scholar]
  190. Witherden DA, Verdino P, Rieder SE, Garijo O, Mills RE. 189.  et al. 2010. The junctional adhesion molecule JAML is a costimulatory receptor for epithelial γδ T cell activation. Science 329:59961205–10 [Google Scholar]
  191. Mombaerts P, Arnoldi J, Russ F, Tonegawa S, Kaufmann SH. 190.  1993. Different roles of αβ and γδ T cells in immunity against an intracellular bacterial pathogen. Nature 365:644153–56 [Google Scholar]
  192. Ramsburg E, Tigelaar R, Craft J, Hayday A. 191.  2003. Age-dependent requirement for γδ T cells in the primary but not secondary protective immune response against an intestinal parasite. J. Exp. Med. 198:91403–14 [Google Scholar]
  193. Sheridan BS, Romagnoli PA, Pham QM, Fu HH, Alonzo F 3rd. 192.  et al. 2013. γδ T cells exhibit multifunctional and protective memory in intestinal tissues. Immunity 39:1184–95 [Google Scholar]
  194. Shen Y, Zhou D, Qiu L, Lai X, Simon M. 193.  et al. 2002. Adaptive immune response of Vγ2Vδ2+ T cells during mycobacterial infections. Science 295:55632255–58 [Google Scholar]
  195. Ryan-Payseur B, Frencher J, Shen L, Chen CY, Huang D, Chen ZW. 194.  2012. Multieffector-functional immune responses of HMBPP-specific Vγ2Vδ2 T cells in nonhuman primates inoculated with Listeria monocytogenes δactA prfA*. J. Immunol. 189:31285–93 [Google Scholar]
  196. Hoft DF, Brown RM, Roodman ST. 195.  1998. Bacille Calmette-Guérin vaccination enhances human γδ T cell responsiveness to mycobacteria suggestive of a memory-like phenotype. J. Immunol. 161:21045–54 [Google Scholar]
  197. Déchanet J, Merville P, Lim A, Retière C, Pitard V. 196.  et al. 1999. Implication of γδ T cells in the human immune response to cytomegalovirus. J. Clin. Investig. 103:101437–49 [Google Scholar]
  198. Pitard V, Roumanes D, Lafarge X, Couzi L, Garrigue I. 197.  et al. 2008. Long-term expansion of effector/memory Vδ2-γδ T cells is a specific blood signature of CMV infection. Blood 112:41317–24 [Google Scholar]
  199. Couzi L, Levaillant Y, Jamai A, Pitard V, Lassalle R. 198.  et al. 2010. Cytomegalovirus-induced γδ T cells associate with reduced cancer risk after kidney transplantation. J. Am. Soc. Nephrol. 21:1181–88 [Google Scholar]
  200. Kabelitz D, Wesch D, Pitters E, Zöller M. 199.  2004. Characterization of tumor reactivity of human Vγ9Vδ2 γδ T cells in vitro and in SCID mice in vivo. J. Immunol. 173:116767–76 [Google Scholar]
  201. Bonneville M, O'Brien RL, Born WK. 200.  2010. γδ T cell effector functions: a blend of innate programming and acquired plasticity. Nat. Rev. Immunol. 10:7467–78 [Google Scholar]
  202. Vantourout P, Hayday A. 201.  2013. Six-of-the-best: unique contributions of γδ T cells to immunology. Nat. Rev. Immunol. 13:288–100 [Google Scholar]
  203. Witherden DA, Havran WL. 202.  2013. Cross-talk between intraepithelial γδ T cells and epithelial cells. J. Leukoc. Biol. 94:69–76 [Google Scholar]
  204. Spencer CT, Abate G, Sakala IG, Xia M, Truscott SM. 203.  et al. 2013. Granzyme A produced by γ9δ2 T cells induces human macrophages to inhibit growth of an intracellular pathogen. PLoS Pathog. 9:1e1003119 [Google Scholar]
  205. Brandes M, Willimann K, Moser B. 204.  2005. Professional antigen-presentation function by human γδ T cells. Science 309:5732264–68 [Google Scholar]
  206. Brandes M, Willimann K, Bioley G, Lévy N, Eberl M. 205.  et al. 2009. Cross-presenting human γδ T cells induce robust CD8+ αβ T cell responses. Proc. Natl. Acad. Sci. USA 106:72307–12 [Google Scholar]
  207. Meuter S, Eberl M, Moser B. 206.  2010. Prolonged antigen survival and cytosolic export in cross-presenting human γδ T cells. Proc. Natl. Acad. Sci. USA 107:198730–35 [Google Scholar]
  208. Peng G, Wang HY, Peng W, Kiniwa Y, Seo KH, Wang R-F. 207.  2007. Tumor-infiltrating γδ T cells suppress T and dendritic cell function via mechanisms controlled by a unique Toll-like receptor signaling pathway. Immunity 27:334–48 [Google Scholar]
  209. Ye J, Ma C, Hsueh EC, Eickhoff CS, Zhang Y. 208.  et al. 2013. Tumor-derived γδ regulatory T cells suppress innate and adaptive immunity through the induction of immunosenescence. J. Immunol. 190:52403–14 [Google Scholar]
  210. Vaishnava S, Yamamoto M, Severson KM, Ruhn KA, Yu X. 209.  et al. 2011. The antibacterial lectin RegIIIγ promotes the spatial segregation of microbiota and host in the intestine. Science 334:6053255–58 [Google Scholar]
  211. Laggner U, Di Meglio P, Perera GK, Hundhausen C, Lacy KE. 210.  et al. 2011. Identification of a novel proinflammatory human skin-homing Vγ9Vδ2 T cell subset with a potential role in psoriasis. J. Immunol. 187:52783–93 [Google Scholar]
  212. Ebert LM, Meuter S, Moser B. 211.  2006. Homing and function of human skin γδ T cells and NK cells: relevance for tumor surveillance. J. Immunol. 176:74331–36 [Google Scholar]
  213. Park S-G, Mathur R, Long M, Hosh N, Hao L. 212.  et al. 2010. T regulatory cells maintain intestinal homeostasis by suppressing γδ T cells. Immunity 33:5791–803 [Google Scholar]
  214. Dalton JE, Cruickshank SM, Egan CE, Mears R, Newton DJ. 213.  et al. 2006. Intraepithelial γδ+ lymphocytes maintain the integrity of intestinal epithelial tight junctions in response to infection. Gastroenterology 131:3818–29 [Google Scholar]
  215. Ismail AS, Severson KM, Vaishnava S, Behrendt CL, Yu X. 214.  et al. 2011. γδ intraepithelial lymphocytes are essential mediators of host-microbial homeostasis at the intestinal mucosal surface. Proc. Natl. Acad. Sci. USA 108:218743–48 [Google Scholar]
  216. Shui J-W, Larange A, Kim G, Vela JL, Zahner S. 215.  et al. 2012. HVEM signalling at mucosal barriers provides host defence against pathogenic bacteria. Nature 488:7410222–25 [Google Scholar]
  217. Edelblum KL, Shen L, Weber CR, Marchiando AM, Clay BS. 216.  et al. 2012. Dynamic migration of γδ intraepithelial lymphocytes requires occludin. Proc. Natl. Acad. Sci. USA 109:187097–102 [Google Scholar]
  218. Nathan C. 217.  2006. Neutrophils and immunity: challenges and opportunities. Nat. Rev. Immunol. 6:3173–82 [Google Scholar]
  219. Maggi L, Santarlasci V, Capone M, Peired A, Frosali F. 218.  et al. 2010. CD161 is a marker of all human IL-17-producing T-cell subsets and is induced by RORC. Eur. J. Immunol. 40:82174–81 [Google Scholar]
  220. Belles C, Kuhl AK, Donoghue AJ, Sano Y, O'Brien RL. 219.  et al. 1996. Bias in the γδ T cell response to Listeria monocytogenes. Vδ6.3+ cells are a major component of the γδ T cell response to Listeria monocytogenes. J. Immunol. 156:114280–89 [Google Scholar]
  221. Dodd J, Riffault S, Kodituwakku JS, Hayday AC, Openshaw PJM. 220.  2009. Pulmonary Vγ4+ γδ T cells have proinflammatory and antiviral effects in viral lung disease. J. Immunol. 182:21174–81 [Google Scholar]
  222. Egan PJ, Carding SR. 221.  2000. Downmodulation of the inflammatory response to bacterial infection by γδ T cells cytotoxic for activated macrophages. J. Exp. Med. 191:122145–58 [Google Scholar]
  223. Kirby AC, Newton DJ, Carding SR, Kaye PM. 222.  2007. Evidence for the involvement of lung-specific γδ T cell subsets in local responses to Streptococcus pneumoniae infection. Eur. J. Immunol. 37:123404–13 [Google Scholar]
  224. Kirby AC, Newton DJ, Carding SR, Kaye PM. 223.  2007. Pulmonary dendritic cells and alveolar macrophages are regulated by γδ T cells during the resolution of S. pneumoniae-induced inflammation. J. Pathol. 212:129–37 [Google Scholar]
  225. Li C, Mannoor K, Inafuku M, Taniguchi T, Inamine Y. 224.  et al. 2012. Protective function of an unconventional γδ T cell subset against malaria infection in apoptosis inhibitor deficient mice. Cell. Immunol. 279:2151–59 [Google Scholar]
  226. Skeen MJ, Ziegler HK. 225.  1993. Induction of murine peritoneal γ/δ T cells and their role in resistance to bacterial infection. J. Exp. Med. 178:3971–84 [Google Scholar]
  227. Skeen MJ, Freeman MM, Ziegler HK. 226.  2004. Changes in peritoneal myeloid populations and their proinflammatory cytokine expression during infection with Listeria monocytogenes are altered in the absence of γ/δ T cells. J. Leukoc. Biol. 76:1104–15 [Google Scholar]
  228. Fu YX, Roark CE, Kelly K, Drevets D, Campbell P. 227.  et al. 1994. Immune protection and control of inflammatory tissue necrosis by γδ T cells. J. Immunol. 153:73101–15 [Google Scholar]
  229. Rhodes KA, Andrew EM, Newton DJ, Tramonti D, Carding SR. 228.  2008. A subset of IL-10-producing γδ T cells protect the liver from Listeria-elicited, CD8+ T cell-mediated injury. Eur. J. Immunol. 38:82274–83 [Google Scholar]
  230. Medzhitov R, Schneider DS, Soares MP. 229.  2012. Disease tolerance as a defense strategy. Science 335:6071936–41 [Google Scholar]
  231. Zhang L, Jin N, Nakayama M, O'Brien RL, Eisenbarth GS, Born WK. 230.  2010. γδ T cell receptors confer autonomous responsiveness to the insulin-peptide B:9–23. J. Autoimmun. 34:4478–84 [Google Scholar]
  232. Johnson RM, Lancki DW, Sperling AI, Dick RF, Spear PG. 231.  et al. 1992. A murine CD4, CD8 T cell receptor-γδ T lymphocyte clone specific for herpes simplex virus glycoprotein I. J. Immunol. 148:4983–88 [Google Scholar]
  233. O'Brien RL, Fu YX, Cranfill R, Dallas A, Ellis C. 232.  et al. 1992. Heat shock protein Hsp60-reactive γδ cells: a large, diversified T-lymphocyte subset with highly focused specificity. Proc. Natl. Acad. Sci. USA 89:104348–52 [Google Scholar]
  234. Havran WL, Chien YH, Allison JP. 233.  1991. Recognition of self antigens by skin-derived T cells with invariant γδ antigen receptors. Science 252:50111430–32 [Google Scholar]
  235. Vidović D, Roglić M, McKune K, Guerder S, MacKay C, Dembić Z. 234.  1989. Qa-1 restricted recognition of foreign antigen by a γδ T-cell hybridoma. Nature 340:6235646–50 [Google Scholar]
  236. Born WK, Vollmer M, Reardon C, Matsuura E, Voelker DR. 235.  et al. 2003. Hybridomas expressing γδ T-cell receptors respond to cardiolipin and β2-glycoprotein 1 (apolipoprotein H). Scand. J. Immunol. 58:3374–81 [Google Scholar]
  237. Happ MP, Kubo RT, Palmer E, Born WK, O'Brien RL. 236.  1989. Limited receptor repertoire in a mycobacteria-reactive subset of γδ T lymphocytes. Nature 342:6250696–98 [Google Scholar]
  238. Dai Y, Chen H, Mo C, Cui L, He W. 237.  2012. Ectopically expressed human tumor biomarker MutS homologue 2 is a novel endogenous ligand that is recognized by human γδ T cells to induce innate anti-tumor/virus immunity. J. Biol. Chem. 287:2016812–19 [Google Scholar]
  239. Kong Y, Cao W, Xi X, Ma C, Cui L, He W. 238.  2009. The NKG2D ligand ULBP4 binds to TCRγ9/δ2 and induces cytotoxicity to tumor cells through both TCRγδ and NKG2D. Blood 114:2310–17 [Google Scholar]
  240. Halary F, Pitard V, Dlubek D, Krzysiek R, de la Salle H. 239.  et al. 2005. Shared reactivity of Vδ2 γ/δ T cells against cytomegalovirus-infected cells and tumor intestinal epithelial cells. J. Exp. Med. 201:101567–78 [Google Scholar]
  241. Groh V, Steinle A, Bauer S, Spies T. 240.  1998. Recognition of stress-induced MHC molecules by intestinal epithelial γδ T cells. Science 279:53571737–40 [Google Scholar]
  242. Das H, Wang L, Kamath A, Bukowski JF. 241.  2001. Vγ2Vδ2 T-cell receptor-mediated recognition of aminobisphosphonates. Blood 98:51616–18 [Google Scholar]
  243. Wang H, Sarikonda G, Puan K-J, Tanaka Y, Feng J. 242.  et al. 2011. Indirect stimulation of human Vγ2Vδ2 T cells through alterations in isoprenoid metabolism. J. Immunol. 187:105099–113 [Google Scholar]
  244. Kunzmann V, Bauer E, Wilhelm M. 243.  1999. γ/δ T-cell stimulation by pamidronate. N. Engl. J. Med. 340:9737–38 [Google Scholar]
  245. Miyagawa F, Tanaka Y, Yamashita S, Mikami B, Danno K. 244.  et al. 2001. Essential contribution of germline-encoded lysine residues in Jγ1.2 segment to the recognition of nonpeptide antigens by human γδ T cells. J. Immunol. 167:126773–79 [Google Scholar]
  246. Tanaka Y, Sano S, Nieves E, De Libero G, Rosa D. 245.  et al. 1994. Nonpeptide ligands for human γδ T cells. Proc. Natl. Acad. Sci. USA 91:178175–79 [Google Scholar]
  247. Guo Y, Ziegler HK, Safley SA, Niesel DW, Vaidya S, Klimpel GR. 246.  1995. Human T-cell recognition of Listeria monocytogenes: recognition of listeriolysin O by TcRαβ+ and TcRγδ+ T cells. Infect. Immun. 63:62288–94 [Google Scholar]
  248. De Libero G, Casorati G, Giachino C, Carbonara C, Migone N. 247.  et al. 1991. Selection by two powerful antigens may account for the presence of the major population of human peripheral γ/δ T cells. J. Exp. Med. 173:61311–22 [Google Scholar]
  249. Sturm E, Braakman E, Fisch P, Vreugdenhil RJ, Sondel P, Bolhuis RL. 248.  1990. Human Vγ9-Vδ2 T cell receptor-γδ lymphocytes show specificity to Daudi Burkitt's lymphoma cells. J. Immunol. 145:103202–8 [Google Scholar]
  250. Rust CJ, Verreck F, Vietor H, Koning F. 249.  1990. Specific recognition of staphylococcal enterotoxin A by human T cells bearing receptors with the Vγ9 region. Nature 346:6284572–74 [Google Scholar]
  251. Kozbor D, Trinchieri G, Monos DS, Isobe M, Russo G. 250.  et al. 1989. Human TCR-γ++, CD8+ T lymphocytes recognize tetanus toxoid in an MHC-restricted fashion. J. Exp. Med. 169:51847–51 [Google Scholar]
  252. Kozbor D, Cassatella MA, Lessin S, Kagan J, Finver S. 251.  et al. 1990. Expression and function of γδ- and αβ-T cell receptor heterodimers on human somatic T cell hybrids. J. Immunol. 144:103677–83 [Google Scholar]
/content/journals/10.1146/annurev-immunol-032713-120216
Loading
/content/journals/10.1146/annurev-immunol-032713-120216
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error