1932

Abstract

Naturally occurring CD4+ regulatory T cells (Tregs), which specifically express the transcription factor FoxP3 in the nucleus and CD25 and CTLA-4 on the cell surface, are a functionally distinct T cell subpopulation actively engaged in the maintenance of immunological self-tolerance and homeostasis. Recent studies have facilitated our understanding of the cellular and molecular basis of their generation, function, phenotypic and functional stability, and adaptability. It is under investigation in humans how functional or numerical Treg anomalies, whether genetically determined or environmentally induced, contribute to immunological diseases such as autoimmune diseases. Also being addressed is how Tregs can be targeted to control physiological and pathological immune responses, for example, by depleting them to enhance tumor immunity or by expanding them to treat immunological diseases. This review discusses our current understanding of Treg immunobiology in normal and disease states, with a perspective on the realization of Treg-targeting therapies in the clinic.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-immunol-042718-041717
2020-04-26
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/immunol/38/1/annurev-immunol-042718-041717.html?itemId=/content/journals/10.1146/annurev-immunol-042718-041717&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Sakaguchi S. 2004. Naturally arising CD4+ regulatory T cells for immunologic self-tolerance and negative control of immune responses. Annu. Rev. Immunol. 22:531–62
    [Google Scholar]
  2. 2. 
    Josefowicz SZ, Lu LF, Rudensky AY 2012. Regulatory T cells: mechanisms of differentiation and function. Annu. Rev. Immunol. 30:531–64
    [Google Scholar]
  3. 3. 
    Shevach EM. 2000. Regulatory T cells in autoimmmunity. Annu. Rev. Immunol. 18:423–49
    [Google Scholar]
  4. 4. 
    Sakaguchi S, Sakaguchi N, Asano M, Itoh M, Toda M 1995. Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25): Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J. Immunol. 155:1151–64
    [Google Scholar]
  5. 5. 
    Itoh M, Takahashi T, Sakaguchi N, Kuniyasu Y, Shimizu J et al. 1999. Thymus and autoimmunity: production of CD25+CD4+ naturally anergic and suppressive T cells as a key function of the thymus in maintaining immunologic self-tolerance. J. Immunol. 162:5317–26
    [Google Scholar]
  6. 6. 
    Baecher-Allan C, Brown JA, Freeman GJ, Hafler DA 2001. CD4+CD25high regulatory cells in human peripheral blood. J. Immunol. 167:1245–53
    [Google Scholar]
  7. 7. 
    Dieckmann D, Plottner H, Berchtold S, Berger T, Schuler G 2001. Ex vivo isolation and characterization of CD4+CD25+ T cells with regulatory properties from human blood. J. Exp. Med. 193:1303–10
    [Google Scholar]
  8. 8. 
    Jonuleit H, Schmitt E, Stassen M, Tuettenberg A, Knop J, Enk AH 2001. Identification and functional characterization of human CD4+CD25+ T cells with regulatory properties isolated from peripheral blood. J. Exp. Med. 193:1285–94
    [Google Scholar]
  9. 9. 
    Levings MK, Sangregorio R, Roncarolo MG 2001. Human Cd25+Cd4+ T regulatory cells suppress naive and memory T cell proliferation and can be expanded in vitro without loss of function. J. Exp. Med. 193:1295–302
    [Google Scholar]
  10. 10. 
    Ng WF, Duggan PJ, Ponchel F, Matarese G, Lombardi G et al. 2001. Human CD4+CD25+ cells: a naturally occurring population of regulatory T cells. Blood 98:2736–44
    [Google Scholar]
  11. 11. 
    Stephens LA, Mottet C, Mason D, Powrie F 2001. Human CD4+CD25+ thymocytes and peripheral T cells have immune suppressive activity in vitro. Eur. J. Immunol. 31:1247–54
    [Google Scholar]
  12. 12. 
    Taams LS, Smith J, Rustin MH, Salmon M, Poulter LW, Akbar AN 2001. Human anergic/suppressive CD4+CD25+ T cells: a highly differentiated and apoptosis-prone population. Eur. J. Immunol. 31:1122–31
    [Google Scholar]
  13. 13. 
    Fontenot JD, Gavin MA, Rudensky AY 2003. Foxp3 programs the development and function of CD4+CD25+ regulatory T cells. Nat. Immunol. 4:330–36
    [Google Scholar]
  14. 14. 
    Khattri R, Cox T, Yasayko SA, Ramsdell F 2003. An essential role for Scurfin in CD4+CD25+ T regulatory cells. Nat. Immunol. 4:337–42
    [Google Scholar]
  15. 15. 
    Hori S, Nomura T, Sakaguchi S 2003. Control of regulatory T cell development by the transcription factor Foxp3. Science 299:1057–61
    [Google Scholar]
  16. 16. 
    Godfrey VL, Wilkinson JE, Rinchik EM, Russell LB 1991. Fatal lymphoreticular disease in the scurfy (sf) mouse requires T cells that mature in a sf thymic environment: potential model for thymic education. PNAS 88:5528–32
    [Google Scholar]
  17. 17. 
    Powell BR, Buist NR, Stenzel P 1982. An X-linked syndrome of diarrhea, polyendocrinopathy, and fatal infection in infancy. J. Pediatr. 100:731–37
    [Google Scholar]
  18. 18. 
    Bacchetta R, Barzaghi F, Roncarolo MG 2018. From IPEX syndrome to FOXP3 mutation: a lesson on immune dysregulation. Ann. N. Y. Acad. Sci. 1417:5–22
    [Google Scholar]
  19. 19. 
    Martin-Orozco E, Norte-Munoz M, Martinez-Garcia J 2017. Regulatory T cells in allergy and asthma. Front. Pediatr. 5:117
    [Google Scholar]
  20. 20. 
    Grant CR, Liberal R, Mieli-Vergani G, Vergani D, Longhi MS 2015. Regulatory T-cells in autoimmune diseases: challenges, controversies and—yet—unanswered questions. Autoimmun. Rev. 14:105–16
    [Google Scholar]
  21. 21. 
    Noval Rivas M, Chatila TA 2016. Regulatory T cells in allergic diseases. J. Allergy Clin. Immunol. 138:639–52
    [Google Scholar]
  22. 22. 
    Aluvihare VR, Kallikourdis M, Betz AG 2004. Regulatory T cells mediate maternal tolerance to the fetus. Nat. Immunol. 5:266–71
    [Google Scholar]
  23. 23. 
    Hansson GK, Hermansson A. 2011. The immune system in atherosclerosis. Nat. Immunol. 12:204–12
    [Google Scholar]
  24. 24. 
    Feuerer M, Herrero L, Cipolletta D, Naaz A, Wong J et al. 2009. Lean, but not obese, fat is enriched for a unique population of regulatory T cells that affect metabolic parameters. Nat. Med. 15:930–39
    [Google Scholar]
  25. 25. 
    Burzyn D, Benoist C, Mathis D 2013. Regulatory T cells in nonlymphoid tissues. Nat. Immunol. 14:1007–13
    [Google Scholar]
  26. 26. 
    Ito M, Komai K, Mise-Omata S, Iizuka-Koga M, Noguchi Y et al. 2019. Brain regulatory T cells suppress astrogliosis and potentiate neurological recovery. Nature 565:246–50
    [Google Scholar]
  27. 27. 
    Dombrowski Y, O'Hagan T, Dittmer M, Penalva R, Mayoral SR et al. 2017. Regulatory T cells promote myelin regeneration in the central nervous system. Nat. Neurosci. 20:674–80
    [Google Scholar]
  28. 28. 
    Boer MC, Joosten SA, Ottenhoff TH 2015. Regulatory T-cells at the interface between human host and pathogens in infectious diseases and vaccination. Front. Immunol. 6:217
    [Google Scholar]
  29. 29. 
    Abbas AK, Benoist C, Bluestone JA, Campbell DJ, Ghosh S et al. 2013. Regulatory T cells: recommendations to simplify the nomenclature. Nat. Immunol. 14:307–8
    [Google Scholar]
  30. 30. 
    Hsieh CS, Lee HM, Lio CW 2012. Selection of regulatory T cells in the thymus. Nat. Rev. Immunol. 12:157–67
    [Google Scholar]
  31. 31. 
    Morikawa H, Sakaguchi S. 2014. Genetic and epigenetic basis of Treg cell development and function: from a FoxP3-centered view to an epigenome-defined view of natural Treg cells. Immunol. Rev. 259:192–205
    [Google Scholar]
  32. 32. 
    Takahashi T, Kuniyasu Y, Toda M, Sakaguchi N, Itoh M et al. 1998. Immunologic self-tolerance maintained by CD25+CD4+ naturally anergic and suppressive T cells: induction of autoimmune disease by breaking their anergic/suppressive state. Int. Immunol. 10:1969–80
    [Google Scholar]
  33. 33. 
    Nelson RW, Beisang D, Tubo NJ, Dileepan T, Wiesner DL et al. 2015. T cell receptor cross-reactivity between similar foreign and self peptides influences naive cell population size and autoimmunity. Immunity 42:95–107
    [Google Scholar]
  34. 34. 
    Kitagawa Y, Ohkura N, Kidani Y, Vandenbon A, Hirota K et al. 2017. Guidance of regulatory T cell development by Satb1-dependent super-enhancer establishment. Nat. Immunol. 18:173–83
    [Google Scholar]
  35. 35. 
    Placek K, Hu G, Cui K, Zhang D, Ding Y et al. 2017. MLL4 prepares the enhancer landscape for Foxp3 induction via chromatin looping. Nat. Immunol. 18:1035–45
    [Google Scholar]
  36. 36. 
    Ohkura N, Kitagawa Y, Sakaguchi S 2013. Development and maintenance of regulatory T cells. Immunity 38:414–23
    [Google Scholar]
  37. 37. 
    Asano M, Toda M, Sakaguchi N, Sakaguchi S 1996. Autoimmune disease as a consequence of developmental abnormality of a T cell subpopulation. J. Exp. Med. 184:387–96
    [Google Scholar]
  38. 38. 
    Kim JM, Rasmussen JP, Rudensky AY 2007. Regulatory T cells prevent catastrophic autoimmunity throughout the lifespan of mice. Nat. Immunol. 8:191–97
    [Google Scholar]
  39. 39. 
    Fisson S, Darrasse-Jeze G, Litvinova E, Septier F, Klatzmann D et al. 2003. Continuous activation of autoreactive CD4+ CD25+ regulatory T cells in the steady state. J. Exp. Med. 198:737–46
    [Google Scholar]
  40. 40. 
    Miyara M, Yoshioka Y, Kitoh A, Shima T, Wing K et al. 2009. Functional delineation and differentiation dynamics of human CD4+ T cells expressing the FoxP3 transcription factor. Immunity 30:899–911
    [Google Scholar]
  41. 41. 
    Polansky JK, Kretschmer K, Freyer J, Floess S, Garbe A et al. 2008. DNA methylation controls Foxp3 gene expression. Eur. J. Immunol. 38:1654–63
    [Google Scholar]
  42. 42. 
    Ohkura N, Hamaguchi M, Morikawa H, Sugimura K, Tanaka A et al. 2012. T cell receptor stimulation-induced epigenetic changes and Foxp3 expression are independent and complementary events required for Treg cell development. Immunity 37:785–99
    [Google Scholar]
  43. 43. 
    Floess S, Freyer J, Siewert C, Baron U, Olek S et al. 2007. Epigenetic control of the foxp3 locus in regulatory T cells. PLOS Biol 5:e38
    [Google Scholar]
  44. 44. 
    Barzaghi F, Passerini L, Bacchetta R 2012. Immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome: a paradigm of immunodeficiency with autoimmunity. Front. Immunol. 3:211
    [Google Scholar]
  45. 45. 
    Toker A, Engelbert D, Garg G, Polansky JK, Floess S et al. 2013. Active demethylation of the Foxp3 locus leads to the generation of stable regulatory T cells within the thymus. J. Immunol. 190:3180–88
    [Google Scholar]
  46. 46. 
    FANTOM Consort RIKEN PMI CLST, Forrest AR, Kawaji H, Rehli M, Baillie JK et al. 2014. A promoter-level mammalian expression atlas. Nature 507:462–70
    [Google Scholar]
  47. 47. 
    Samstein RM, Arvey A, Josefowicz SZ, Peng X, Reynolds A et al. 2012. Foxp3 exploits a pre-existent enhancer landscape for regulatory T cell lineage specification. Cell 151:153–66
    [Google Scholar]
  48. 48. 
    Morikawa H, Ohkura N, Vandenbon A, Itoh M, Nagao-Sato S et al. 2014. Differential roles of epigenetic changes and Foxp3 expression in regulatory T cell-specific transcriptional regulation. PNAS 111:5289–94
    [Google Scholar]
  49. 49. 
    Ono M, Yaguchi H, Ohkura N, Kitabayashi I, Nagamura Y et al. 2007. Foxp3 controls regulatory T-cell function by interacting with AML1/Runx1. Nature 446:685–89
    [Google Scholar]
  50. 50. 
    Lu L, Barbi J, Pan F 2017. The regulation of immune tolerance by FOXP3. Nat. Rev. Immunol. 17:703–17
    [Google Scholar]
  51. 51. 
    Baron U, Floess S, Wieczorek G, Baumann K, Grutzkau A et al. 2007. DNA demethylation in the human FOXP3 locus discriminates regulatory T cells from activated FOXP3+ conventional T cells. Eur. J. Immunol. 37:2378–89
    [Google Scholar]
  52. 52. 
    Schmidt A, Oberle N, Krammer PH 2012. Molecular mechanisms of Treg-mediated T cell suppression. Front. Immunol. 3:51
    [Google Scholar]
  53. 53. 
    Sakaguchi S, Wing K, Onishi Y, Prieto-Martin P, Yamaguchi T 2009. Regulatory T cells: How do they suppress immune responses. ? Int. Immunol. 21:1105–11
    [Google Scholar]
  54. 54. 
    Malek TR, Castro I. 2010. Interleukin-2 receptor signaling: at the interface between tolerance and immunity. Immunity 33:153–65
    [Google Scholar]
  55. 55. 
    Walker LSK, Sansom DM. 2011. The emerging role of CTLA4 as a cell-extrinsic regulator of T cell responses. Nat. Rev. Immunol. 11:852–63
    [Google Scholar]
  56. 56. 
    Setoguchi R, Hori S, Takahashi T, Sakaguchi S 2005. Homeostatic maintenance of natural Foxp3+ CD25+ CD4+ regulatory T cells by interleukin (IL)-2 and induction of autoimmune disease by IL-2 neutralization. J. Exp. Med. 201:723–35
    [Google Scholar]
  57. 57. 
    Fontenot JD, Rasmussen JP, Gavin MA, Rudensky AY 2005. A function for interleukin 2 in Foxp3-expressing regulatory T cells. Nat. Immunol. 6:1142–51
    [Google Scholar]
  58. 58. 
    Yamaguchi T, Kishi A, Osaki M, Morikawa H, Prieto-Martin P et al. 2013. Construction of self-recognizing regulatory T cells from conventional T cells by controlling CTLA-4 and IL-2 expression. PNAS 110:E2116–25
    [Google Scholar]
  59. 59. 
    Pandiyan P, Zheng L, Ishihara S, Reed J, Lenardo MJ 2007. CD4+CD25+Foxp3+ regulatory T cells induce cytokine deprivation-mediated apoptosis of effector CD4+ T cells. Nat. Immunol. 8:1353–62
    [Google Scholar]
  60. 60. 
    Chinen T, Kannan AK, Levine AG, Fan X, Klein U et al. 2016. An essential role for the IL-2 receptor in Treg cell function. Nat. Immunol. 17:1322–33
    [Google Scholar]
  61. 61. 
    Maeda Y, Nishikawa H, Sugiyama D, Ha D, Hamaguchi M et al. 2014. Detection of self-reactive CD8+ T cells with an anergic phenotype in healthy individuals. Science 346:1536–40
    [Google Scholar]
  62. 62. 
    Williams MA, Tyznik AJ, Bevan MJ 2006. Interleukin-2 signals during priming are required for secondary expansion of CD8+ memory T cells. Nature 441:890–93
    [Google Scholar]
  63. 63. 
    Sitrin J, Ring A, Garcia KC, Benoist C, Mathis D 2013. Regulatory T cells control NK cells in an insulitic lesion by depriving them of IL-2. J. Exp. Med. 210:1153–65
    [Google Scholar]
  64. 64. 
    Liu Z, Gerner MY, Van Panhuys N, Levine AG, Rudensky AY, Germain RN 2015. Immune homeostasis enforced by co-localized effector and regulatory T cells. Nature 528:225–30
    [Google Scholar]
  65. 65. 
    O'Gorman WE, Dooms H, Thorne SH, Kuswanto WF, Simonds EF et al. 2009. The initial phase of an immune response functions to activate regulatory T cells. J. Immunol. 183:332–39
    [Google Scholar]
  66. 66. 
    Sakaguchi S, Ono M, Setoguchi R, Yagi H, Hori S et al. 2006. Foxp3+ CD25+ CD4+ natural regulatory T cells in dominant self-tolerance and autoimmune disease. Immunol. Rev. 212:8–27
    [Google Scholar]
  67. 67. 
    Wing K, Onishi Y, Prieto-Martin P, Yamaguchi T, Miyara M et al. 2008. CTLA-4 control over Foxp3+ regulatory T cell function. Science 322:271–75
    [Google Scholar]
  68. 68. 
    Klocke K, Sakaguchi S, Holmdahl R, Wing K 2016. Induction of autoimmune disease by deletion of CTLA-4 in mice in adulthood. PNAS 113:E2383–92
    [Google Scholar]
  69. 69. 
    Paterson AM, Lovitch SB, Sage PT, Juneja VR, Lee Y et al. 2015. Deletion of CTLA-4 on regulatory T cells during adulthood leads to resistance to autoimmunity. J. Exp. Med. 212:1603–21
    [Google Scholar]
  70. 70. 
    Onishi Y, Fehervari Z, Yamaguchi T, Sakaguchi S 2008. Foxp3+ natural regulatory T cells preferentially form aggregates on dendritic cells in vitro and actively inhibit their maturation. PNAS 105:10113–18
    [Google Scholar]
  71. 71. 
    Wing JB, Ise W, Kurosaki T, Sakaguchi S 2014. Regulatory T cells control antigen-specific expansion of Tfh cell number and humoral immune responses via the coreceptor CTLA-4. Immunity 41:1013–25
    [Google Scholar]
  72. 72. 
    Sage PT, Paterson AM, Lovitch SB, Sharpe AH 2014. The coinhibitory receptor CTLA-4 controls B cell responses by modulating T follicular helper, T follicular regulatory, and T regulatory cells. Immunity 41:1026–39
    [Google Scholar]
  73. 73. 
    Qureshi OS, Zheng Y, Nakamura K, Attridge K, Manzotti C et al. 2011. Trans-endocytosis of CD80 and CD86: a molecular basis for the cell-extrinsic function of CTLA-4. Science 332:600–3
    [Google Scholar]
  74. 74. 
    Yamaguchi T, Wing JB, Sakaguchi S 2011. Two modes of immune suppression by Foxp3+ regulatory T cells under inflammatory or non-inflammatory conditions. Semin. Immunol. 23:424–30
    [Google Scholar]
  75. 75. 
    Rubtsov YP, Rasmussen JP, Chi EY, Fontenot J, Castelli L et al. 2008. Regulatory T cell-derived interleukin-10 limits inflammation at environmental interfaces. Immunity 28:546–58
    [Google Scholar]
  76. 76. 
    Rubtsov YP, Niec RE, Josefowicz S, Li L, Darce J et al. 2010. Stability of the regulatory T cell lineage in vivo. Science 329:1667–71
    [Google Scholar]
  77. 77. 
    Zhou X, Bailey-Bucktrout S, Jeker LT, Bluestone JA 2009. Plasticity of CD4+ FoxP3+ T cells. Curr. Opin. Immunol. 21:281–85
    [Google Scholar]
  78. 78. 
    Bailey-Bucktrout SL, Martinez-Llordella M, Zhou X, Anthony B, Rosenthal W et al. 2013. Self-antigen-driven activation induces instability of regulatory T cells during an inflammatory autoimmune response. Immunity 39:949–62
    [Google Scholar]
  79. 79. 
    Komatsu N, Okamoto K, Sawa S, Nakashima T, Oh-Hora M et al. 2014. Pathogenic conversion of Foxp3+ T cells into TH17 cells in autoimmune arthritis. Nat. Med. 20:62–68
    [Google Scholar]
  80. 80. 
    Hori S. 2014. Lineage stability and phenotypic plasticity of Foxp3+ regulatory T cells. Immunol. Rev. 259:159–72
    [Google Scholar]
  81. 81. 
    Koch MA, Tucker-Heard G, Perdue NR, Killebrew JR, Urdahl KB, Campbell DJ 2009. The transcription factor T-bet controls regulatory T cell homeostasis and function during type 1 inflammation. Nat. Immunol. 10:595–602
    [Google Scholar]
  82. 82. 
    Levine AG, Mendoza A, Hemmers S, Moltedo B, Niec RE et al. 2017. Stability and function of regulatory T cells expressing the transcription factor T-bet. Nature 546:421–25
    [Google Scholar]
  83. 83. 
    Wohlfert EA, Grainger JR, Bouladoux N, Konkel JE, Oldenhove G et al. 2011. GATA3 controls Foxp3+ regulatory T cell fate during inflammation in mice. J. Clin. Investig. 121:4503–15
    [Google Scholar]
  84. 84. 
    Cretney E, Xin A, Shi W, Minnich M, Masson F et al. 2011. The transcription factors Blimp-1 and IRF4 jointly control the differentiation and function of effector regulatory T cells. Nat. Immunol. 12:304–11
    [Google Scholar]
  85. 85. 
    Zheng Y, Chaudhry A, Kas A, deRoos P, Kim JM et al. 2009. Regulatory T-cell suppressor program co-opts transcription factor IRF4 to control TH2 responses. Nature 458:351–56
    [Google Scholar]
  86. 86. 
    Sefik E, Geva-Zatorsky N, Oh S, Konnikova L, Zemmour D et al. 2015. Individual intestinal symbionts induce a distinct population of RORγ+ regulatory T cells. Science 349:993–97
    [Google Scholar]
  87. 87. 
    Ohnmacht C, Park JH, Cording S, Wing JB, Atarashi K et al. 2015. The microbiota regulates type 2 immunity through RORγ+ T cells. Science 349:989–93
    [Google Scholar]
  88. 88. 
    Chaudhry A, Rudra D, Treuting P, Samstein RM, Liang Y et al. 2009. CD4+ regulatory T cells control TH17 responses in a Stat3-dependent manner. Science 326:986–91
    [Google Scholar]
  89. 89. 
    Chung Y, Tanaka S, Chu F, Nurieva RI, Martinez GJ et al. 2011. Follicular regulatory T cells expressing Foxp3 and Bcl-6 suppress germinal center reactions. Nat. Med. 17:983–88
    [Google Scholar]
  90. 90. 
    Wollenberg I, Agua-Doce A, Hernandez A, Almeida C, Oliveira VG et al. 2011. Regulation of the germinal center reaction by Foxp3+ follicular regulatory T cells. J. Immunol. 187:4553–60
    [Google Scholar]
  91. 91. 
    Linterman MA, Pierson W, Lee SK, Kallies A, Kawamoto S et al. 2011. Foxp3+ follicular regulatory T cells control the germinal center response. Nat. Med. 17:975–82
    [Google Scholar]
  92. 92. 
    Wing JB, Sakaguchi S. 2012. Multiple Treg suppressive modules and their adaptability. Front. Immunol. 3:178
    [Google Scholar]
  93. 93. 
    Burzyn D, Kuswanto W, Kolodin D, Shadrach JL, Cerletti M et al. 2013. A special population of regulatory T cells potentiates muscle repair. Cell 155:1282–95
    [Google Scholar]
  94. 94. 
    Cipolletta D, Feuerer M, Li A, Kamei N, Lee J et al. 2012. PPAR-γ is a major driver of the accumulation and phenotype of adipose tissue Treg cells. Nature 486:549–53
    [Google Scholar]
  95. 95. 
    Ali N, Zirak B, Rodriguez RS, Pauli ML, Truong HA et al. 2017. Regulatory T cells in skin facilitate epithelial stem cell differentiation. Cell 169:1119–29.e11
    [Google Scholar]
  96. 96. 
    Schiering C, Krausgruber T, Chomka A, Frohlich A, Adelmann K et al. 2014. The alarmin IL-33 promotes regulatory T-cell function in the intestine. Nature 513:564–68
    [Google Scholar]
  97. 97. 
    Kim KS, Hong SW, Han D, Yi J, Jung J et al. 2016. Dietary antigens limit mucosal immunity by inducing regulatory T cells in the small intestine. Science 351:858–63
    [Google Scholar]
  98. 98. 
    Wang J, Ioan-Facsinay A, van der Voort EI, Huizinga TW, Toes RE 2007. Transient expression of FOXP3 in human activated nonregulatory CD4+ T cells. Eur. J. Immunol. 37:129–38
    [Google Scholar]
  99. 99. 
    Valmori D, Merlo A, Souleimanian NE, Hesdorffer CS, Ayyoub M 2005. A peripheral circulating compartment of natural naive CD4 Tregs. J. Clin. Investig. 115:1953–62
    [Google Scholar]
  100. 100. 
    Seddiki N, Santner-Nanan B, Tangye SG, Alexander SI, Solomon M et al. 2006. Persistence of naive CD45RA+ regulatory T cells in adult life. Blood 107:2830–38
    [Google Scholar]
  101. 101. 
    Kimmig S, Przybylski GK, Schmidt CA, Laurisch K, Mowes B et al. 2002. Two subsets of naive T helper cells with distinct T cell receptor excision circle content in human adult peripheral blood. J. Exp. Med. 195:789–94
    [Google Scholar]
  102. 102. 
    Miyara M, Chader D, Sage E, Sugiyama D, Nishikawa H et al. 2015. Sialyl Lewis x (CD15s) identifies highly differentiated and most suppressive FOXP3high regulatory T cells in humans. PNAS 112:7225–30
    [Google Scholar]
  103. 103. 
    Baecher-Allan C, Wolf E, Hafler DA 2006. MHC class II expression identifies functionally distinct human regulatory T cells. J. Immunol. 176:4622–31
    [Google Scholar]
  104. 104. 
    Ito T, Hanabuchi S, Wang YH, Park WR, Arima K et al. 2008. Two functional subsets of FOXP3+ regulatory T cells in human thymus and periphery. Immunity 28:870–80
    [Google Scholar]
  105. 105. 
    Gautron AS, Dominguez-Villar M, de Marcken M, Hafler DA 2014. Enhanced suppressor function of TIM-3+ FoxP3+ regulatory T cells. Eur. J. Immunol. 44:2703–11
    [Google Scholar]
  106. 106. 
    Golding A, Hasni S, Illei G, Shevach EM 2013. The percentage of FoxP3+Helios+ Treg cells correlates positively with disease activity in systemic lupus erythematosus. Arthritis Rheum 65:2898–906
    [Google Scholar]
  107. 107. 
    Cuadrado E, van den Biggelaar M, de Kivit S, Chen YY, Slot M et al. 2018. Proteomic analyses of human regulatory T cells reveal adaptations in signaling pathways that protect cellular identity. Immunity 48:1046–59.e6
    [Google Scholar]
  108. 108. 
    Wing JB, Kitagawa Y, Locci M, Hume H, Tay C et al. 2017. A distinct subpopulation of CD25 T-follicular regulatory cells localizes in the germinal centers. PNAS 114:E6400–9
    [Google Scholar]
  109. 109. 
    Ferreira RC, Simons HZ, Thompson WS, Rainbow DB, Yang X et al. 2017. Cells with Treg-specific FOXP3 demethylation but low CD25 are prevalent in autoimmunity. J. Autoimmun. 84:75–86
    [Google Scholar]
  110. 110. 
    Liu C, Wang D, Lu S, Xu Q, Zhao L et al. 2018. Increased circulating follicular Treg cells are associated with lower levels of autoantibodies in patients with rheumatoid arthritis in stable remission. Arthritis Rheumatol 70:711–21
    [Google Scholar]
  111. 111. 
    Fonseca VR, Agua-Doce A, Maceiras AR, Pierson W, Ribeiro F et al. 2017. Human blood Tfr cells are indicators of ongoing humoral activity not fully licensed with suppressive function. Sci. Immunol. 2:eaan1487
    [Google Scholar]
  112. 112. 
    Hayatsu N, Miyao T, Tachibana M, Murakami R, Kimura A et al. 2017. Analyses of a mutant Foxp3 allele reveal BATF as a critical transcription factor in the differentiation and accumulation of tissue regulatory T cells. Immunity 47:268–83.e9
    [Google Scholar]
  113. 113. 
    Darrasse-Jeze G, Marodon G, Salomon BL, Catala M, Klatzmann D 2005. Ontogeny of CD4+CD25+ regulatory/suppressor T cells in human fetuses. Blood 105:4715–21
    [Google Scholar]
  114. 114. 
    Danke NA, Koelle DM, Yee C, Beheray S, Kwok WW 2004. Autoreactive T cells in healthy individuals. J. Immunol. 172:5967–72
    [Google Scholar]
  115. 115. 
    Yu W, Jiang N, Ebert PJ, Kidd BA, Muller S et al. 2015. Clonal deletion prunes but does not eliminate self-specific αβ CD8+ T lymphocytes. Immunity 42:929–41
    [Google Scholar]
  116. 116. 
    Caudy AA, Reddy ST, Chatila T, Atkinson JP, Verbsky JW 2007. CD25 deficiency causes an immune dysregulation, polyendocrinopathy, enteropathy, X-linked-like syndrome, and defective IL-10 expression from CD4 lymphocytes. J. Allergy Clin. Immunol. 119:482–87
    [Google Scholar]
  117. 117. 
    Schubert D, Bode C, Kenefeck R, Hou TZ, Wing JB et al. 2014. Autosomal dominant immune dysregulation syndrome in humans with CTLA4 mutations. Nat. Med. 20:1410–16
    [Google Scholar]
  118. 118. 
    Kuehn HS, Ouyang W, Lo B, Deenick EK, Niemela JE et al. 2014. Immune dysregulation in human subjects with heterozygous germline mutations in CTLA4. Science 345:1623–27
    [Google Scholar]
  119. 119. 
    Lo B, Zhang K, Lu W, Zheng L, Zhang Q et al. 2015. Patients with LRBA deficiency show CTLA4 loss and immune dysregulation responsive to abatacept therapy. Science 349:436–40
    [Google Scholar]
  120. 120. 
    Lopez-Herrera G, Tampella G, Pan-Hammarstrom Q, Herholz P, Trujillo-Vargas CM et al. 2012. Deleterious mutations in LRBA are associated with a syndrome of immune deficiency and autoimmunity. Am. J. Hum. Genet. 90:986–1001
    [Google Scholar]
  121. 121. 
    Cepika AM, Sato Y, Liu JM, Uyeda MJ, Bacchetta R, Roncarolo MG 2018. Tregopathies: monogenic diseases resulting in regulatory T-cell deficiency. J. Allergy Clin. Immunol. 142:1679–95
    [Google Scholar]
  122. 122. 
    Notarangelo LD. 2014. Combined immunodeficiencies with nonfunctional T lymphocytes. Adv. Immunol. 121:121–90
    [Google Scholar]
  123. 123. 
    Kekalainen E, Tuovinen H, Joensuu J, Gylling M, Franssila R et al. 2007. A defect of regulatory T cells in patients with autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy. J. Immunol. 178:1208–15
    [Google Scholar]
  124. 124. 
    Laakso SM, Laurinolli TT, Rossi LH, Lehtoviita A, Sairanen H et al. 2010. Regulatory T cell defect in APECED patients is associated with loss of naive FOXP3+ precursors and impaired activated population. J. Autoimmun. 35:351–57
    [Google Scholar]
  125. 125. 
    Yang S, Fujikado N, Kolodin D, Benoist C, Mathis D 2015. Immune tolerance: Regulatory T cells generated early in life play a distinct role in maintaining self-tolerance. Science 348:589–94
    [Google Scholar]
  126. 126. 
    Cooper GS, Bynum ML, Somers EC 2009. Recent insights in the epidemiology of autoimmune diseases: improved prevalence estimates and understanding of clustering of diseases. J. Autoimmun. 33:197–207
    [Google Scholar]
  127. 127. 
    Dominguez-Villar M, Hafler DA. 2018. Regulatory T cells in autoimmune disease. Nat. Immunol. 19:665–73
    [Google Scholar]
  128. 128. 
    Long SA, Buckner JH. 2011. CD4+FOXP3+ T regulatory cells in human autoimmunity: more than a numbers game. J. Immunol. 187:2061–66
    [Google Scholar]
  129. 129. 
    Wing JB, Tanaka A, Sakaguchi S 2019. Human FOXP3+ regulatory T cell heterogeneity and function in autoimmunity and cancer. Immunity 50:302–16
    [Google Scholar]
  130. 130. 
    Arvey A, van der Veeken J, Plitas G, Rich SS, Concannon P, Rudensky AY 2015. Genetic and epigenetic variation in the lineage specification of regulatory T cells. eLife 4:e07571
    [Google Scholar]
  131. 131. 
    Vahedi G, Kanno Y, Furumoto Y, Jiang K, Parker SC et al. 2015. Super-enhancers delineate disease-associated regulatory nodes in T cells. Nature 520:558–62
    [Google Scholar]
  132. 132. 
    Hnisz D, Abraham BJ, Lee TI, Lau A, Saint-Andre V et al. 2013. Super-enhancers in the control of cell identity and disease. Cell 155:934–47
    [Google Scholar]
  133. 133. 
    Ziller MJ, Gu H, Muller F, Donaghey J, Tsai LT et al. 2013. Charting a dynamic DNA methylation landscape of the human genome. Nature 500:477–81
    [Google Scholar]
  134. 134. 
    Trynka G, Sandor C, Han B, Xu H, Stranger BEet al. 2013. Chromatin marks identify critical cell types for fine mapping complex trait variants. Nat. Genet 45:124–30
    [Google Scholar]
  135. 135. 
    Todd JA, Walker NM, Cooper JD, Smyth DJ, Downes K et al. 2007. Robust associations of four new chromosome regions from genome-wide analyses of type 1 diabetes. Nat. Genet. 39:857–64
    [Google Scholar]
  136. 136. 
    Farh KK, Marson A, Zhu J, Kleinewietfeld M, Housley WJ et al. 2015. Genetic and epigenetic fine mapping of causal autoimmune disease variants. Nature 518:337–43
    [Google Scholar]
  137. 137. 
    Okada Y, Wu D, Trynka G, Raj T, Terao C et al. 2014. Genetics of rheumatoid arthritis contributes to biology and drug discovery. Nature 506:376–81
    [Google Scholar]
  138. 138. 
    Ooi JD, Petersen J, Tan YH, Huynh M, Willett ZJ et al. 2017. Dominant protection from HLA-linked autoimmunity by antigen-specific regulatory T cells. Nature 545:243–47
    [Google Scholar]
  139. 139. 
    Sasazuki T, Inoko H, Morishima S, Morishima Y 2016. Gene map of the HLA region, Graves’ disease and Hashimoto thyroiditis, and hematopoietic stem cell transplantation. Adv. Immunol. 129:175–249
    [Google Scholar]
  140. 140. 
    Nishikawa H, Sakaguchi S. 2014. Regulatory T cells in cancer immunotherapy. Curr. Opin. Immunol. 27:1–7
    [Google Scholar]
  141. 141. 
    Sugiyama D, Nishikawa H, Maeda Y, Nishioka M, Tanemura A et al. 2013. Anti-CCR4 mAb selectively depletes effector-type FoxP3+CD4+ regulatory T cells, evoking antitumor immune responses in humans. PNAS 110:17945–50
    [Google Scholar]
  142. 142. 
    Azizi E, Carr AJ, Plitas G, Cornish AE, Konopacki C et al. 2018. Single-cell map of diverse immune phenotypes in the breast tumor microenvironment. Cell 174:1293–308.e36
    [Google Scholar]
  143. 143. 
    De Simone M, Arrigoni A, Rossetti G, Gruarin P, Ranzani V et al. 2016. Transcriptional landscape of human tissue lymphocytes unveils uniqueness of tumor-infiltrating T regulatory cells. Immunity 45:1135–47
    [Google Scholar]
  144. 144. 
    Plitas G, Konopacki C, Wu K, Bos PD, Morrow M et al. 2016. Regulatory T cells exhibit distinct features in human breast cancer. Immunity 45:1122–34
    [Google Scholar]
  145. 145. 
    Saito T, Nishikawa H, Wada H, Nagano Y, Sugiyama D et al. 2016. Two FOXP3+CD4+ T cell subpopulations distinctly control the prognosis of colorectal cancers. Nat. Med. 22:679–84
    [Google Scholar]
  146. 146. 
    Sasada T, Kimura M, Yoshida Y, Kanai M, Takabayashi A 2003. CD4+CD25+ regulatory T cells in patients with gastrointestinal malignancies: possible involvement of regulatory T cells in disease progression. Cancer 98:1089–99
    [Google Scholar]
  147. 147. 
    Curiel TJ, Coukos G, Zou L, Alvarez X, Cheng P et al. 2004. Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival. Nat. Med. 10:942–49
    [Google Scholar]
  148. 148. 
    Sato E, Olson SH, Ahn J, Bundy B, Nishikawa H et al. 2005. Intraepithelial CD8+ tumor-infiltrating lymphocytes and a high CD8+/regulatory T cell ratio are associated with favorable prognosis in ovarian cancer. PNAS 102:18538–43
    [Google Scholar]
  149. 149. 
    Bates GJ, Fox SB, Han C, Leek RD, Garcia JF et al. 2006. Quantification of regulatory T cells enables the identification of high-risk breast cancer patients and those at risk of late relapse. J. Clin. Oncol. 24:5373–80
    [Google Scholar]
  150. 150. 
    Shang B, Liu Y, Jiang SJ, Liu Y 2015. Prognostic value of tumor-infiltrating FoxP3+ regulatory T cells in cancers: a systematic review and meta-analysis. Sci. Rep. 5:15179
    [Google Scholar]
  151. 151. 
    Tanaka A, Sakaguchi S. 2017. Regulatory T cells in cancer immunotherapy. Cell Res 27:109–18
    [Google Scholar]
  152. 152. 
    deLeeuw RJ, Kost SE, Kakal JA, Nelson BH 2012. The prognostic value of FoxP3+ tumor-infiltrating lymphocytes in cancer: a critical review of the literature. Clin. Cancer Res. 18:3022–29
    [Google Scholar]
  153. 153. 
    Salama P, Phillips M, Grieu F, Morris M, Zeps N et al. 2009. Tumor-infiltrating FOXP3+ T regulatory cells show strong prognostic significance in colorectal cancer. J. Clin. Oncol. 27:186–92
    [Google Scholar]
  154. 154. 
    Hoadley KA, Yau C, Hinoue T, Wolf DM, Lazar AJ et al. 2018. Cell-of-origin patterns dominate the molecular classification of 10,000 tumors from 33 types of cancer. Cell 173:291–304.e6
    [Google Scholar]
  155. 155. 
    Thorsson V, Gibbs DL, Brown SD, Wolf D, Bortone DS et al. 2018. The immune landscape of cancer. Immunity 48:812–30.e14
    [Google Scholar]
  156. 156. 
    Yu A, Zhu L, Altman NH, Malek TR 2009. A low interleukin-2 receptor signaling threshold supports the development and homeostasis of T regulatory cells. Immunity 30:204–17
    [Google Scholar]
  157. 157. 
    Perdigoto AL, Chatenoud L, Bluestone JA, Herold KC 2015. Inducing and administering Tregs to treat human disease. Front. Immunol. 6:654
    [Google Scholar]
  158. 158. 
    Trotta E, Bessette PH, Silveria SL, Ely LK, Jude KM et al. 2018. A human anti-IL-2 antibody that potentiates regulatory T cells by a structure-based mechanism. Nat. Med. 24:1005–14
    [Google Scholar]
  159. 159. 
    Spence A, Klementowicz JE, Bluestone JA, Tang Q 2015. Targeting Treg signaling for the treatment of autoimmune diseases. Curr. Opin. Immunol. 37:11–20
    [Google Scholar]
  160. 160. 
    Chen X, Baumel M, Mannel DN, Howard OM, Oppenheim JJ 2007. Interaction of TNF with TNF receptor type 2 promotes expansion and function of mouse CD4+CD25+ T regulatory cells. J. Immunol. 179:154–61
    [Google Scholar]
  161. 161. 
    Zou H, Li R, Hu H, Hu Y, Chen X 2018. Modulation of regulatory T cell activity by TNF receptor type II-targeting pharmacological agents. Front. Immunol. 9:594
    [Google Scholar]
  162. 162. 
    Yamazaki S, Bonito AJ, Spisek R, Dhodapkar M, Inaba K, Steinman RM 2007. Dendritic cells are specialized accessory cells along with TGF-β for the differentiation of Foxp3+ CD4+ regulatory T cells from peripheral Foxp3 precursors. Blood 110:4293–302
    [Google Scholar]
  163. 163. 
    Hippen KL, Merkel SC, Schirm DK, Sieben CM, Sumstad D et al. 2011. Massive ex vivo expansion of human natural regulatory T cells (Tregs) with minimal loss of in vivo functional activity. Sci. Transl. Med. 3:83ra41
    [Google Scholar]
  164. 164. 
    Brunstein CG, Miller JS, McKenna DH, Hippen KL, DeFor TE et al. 2016. Umbilical cord blood-derived T regulatory cells to prevent GVHD: kinetics, toxicity profile, and clinical effect. Blood 127:1044–51
    [Google Scholar]
  165. 165. 
    Bluestone JA, Buckner JH, Fitch M, Gitelman SE, Gupta S et al. 2015. Type 1 diabetes immunotherapy using polyclonal regulatory T cells. Sci. Transl. Med. 7:315ra189
    [Google Scholar]
  166. 166. 
    Tang Q, Vincenti F. 2017. Transplant trials with Tregs: perils and promises. J. Clin. Investig. 127:2505–12
    [Google Scholar]
  167. 167. 
    Hoffmann P, Eder R, Boeld TJ, Doser K, Piseshka B et al. 2006. Only the CD45RA+ subpopulation of CD4+CD25high T cells gives rise to homogeneous regulatory T-cell lines upon in vitro expansion. Blood 108:4260–67
    [Google Scholar]
  168. 168. 
    Arroyo Hornero R, Betts GJ, Sawitzki B, Vogt K, Harden PN, Wood KJ 2017. CD45RA distinguishes CD4+CD25+CD127−/low TSDR demethylated regulatory T cell subpopulations with differential stability and susceptibility to tacrolimus-mediated inhibition of suppression. Transplantation 101:302–9
    [Google Scholar]
  169. 169. 
    MacDonald KG, Hoeppli RE, Huang Q, Gillies J, Luciani DS et al. 2016. Alloantigen-specific regulatory T cells generated with a chimeric antigen receptor. J. Clin. Investig. 126:1413–24
    [Google Scholar]
  170. 170. 
    Boardman DA, Philippeos C, Fruhwirth GO, Ibrahim MA, Hannen RF et al. 2017. Expression of a chimeric antigen receptor specific for donor HLA class I enhances the potency of human regulatory T cells in preventing human skin transplant rejection. Am. J. Transplant. 17:931–43
    [Google Scholar]
  171. 171. 
    Noyan F, Zimmermann K, Hardtke-Wolenski M, Knoefel A, Schulde E et al. 2017. Prevention of allograft rejection by use of regulatory T cells with an MHC-specific chimeric antigen receptor. Am. J. Transplant. 17:917–30
    [Google Scholar]
  172. 172. 
    Chen W, Jin W, Hardegen N, Lei KJ, Li L et al. 2003. Conversion of peripheral CD4+CD25 naive T cells to CD4+CD25+ regulatory T cells by TGF-β induction of transcription factor Foxp3. J. Exp. . Med 198:1875–86
    [Google Scholar]
  173. 173. 
    Kanamori M, Nakatsukasa H, Okada M, Lu Q, Yoshimura A 2016. Induced regulatory T cells: their development, stability, and applications. Trends Immunol 37:803–11
    [Google Scholar]
  174. 174. 
    Sauer S, Bruno L, Hertweck A, Finlay D, Leleu M et al. 2008. T cell receptor signaling controls Foxp3 expression via PI3K, Akt, and mTOR. PNAS 105:7797–802
    [Google Scholar]
  175. 175. 
    Haxhinasto S, Mathis D, Benoist C 2008. The AKT-mTOR axis regulates de novo differentiation of CD4+Foxp3+ cells. J. Exp. Med. 205:565–74
    [Google Scholar]
  176. 176. 
    Akamatsu M, Mikami N, Ohkura N, Kawakami R, Kitagawa Y et al. 2019. Conversion of antigen-specific effector/memory T cells into Foxp3-expressing Treg cells by inhibition of CDK8/19. Sci. Immunol. 4:eaaw2707
    [Google Scholar]
  177. 177. 
    Shimizu J, Yamazaki S, Sakaguchi S 1999. Induction of tumor immunity by removing CD25+CD4+ T cells: a common basis between tumor immunity and autoimmunity. J. Immunol. 163:5211–18
    [Google Scholar]
  178. 178. 
    Bulliard Y, Jolicoeur R, Windman M, Rue SM, Ettenberg S et al. 2013. Activating Fc γ receptors contribute to the antitumor activities of immunoregulatory receptor-targeting antibodies. J. Exp. Med. 210:1685–93
    [Google Scholar]
  179. 179. 
    Arce Vargas F, Furness AJS, Solomon I, Joshi K, Mekkaoui L et al. 2017. Fc-optimized anti-CD25 depletes tumor-infiltrating regulatory T cells and synergizes with PD-1 blockade to eradicate established tumors. Immunity 46:577–86
    [Google Scholar]
  180. 180. 
    Ha D, Tanaka A, Kibayashi T, Tanemura A, Sugiyama D et al. 2019. Differential control of human Treg and effector T cells in tumor immunity by Fc-engineered anti-CTLA-4 antibody. PNAS 116:609–18
    [Google Scholar]
  181. 181. 
    Simpson TR, Li F, Montalvo-Ortiz W, Sepulveda MA, Bergerhoff K et al. 2013. Fc-dependent depletion of tumor-infiltrating regulatory T cells co-defines the efficacy of anti-CTLA-4 therapy against melanoma. J. Exp. Med. 210:1695–710
    [Google Scholar]
  182. 182. 
    Selby MJ, Engelhardt JJ, Quigley M, Henning KA, Chen T et al. 2013. Anti-CTLA-4 antibodies of IgG2a isotype enhance antitumor activity through reduction of intratumoral regulatory T cells. Cancer Immunol. Res. 1:32–42
    [Google Scholar]
  183. 183. 
    Romano E, Kusio-Kobialka M, Foukas PG, Baumgaertner P, Meyer C et al. 2015. Ipilimumab-dependent cell-mediated cytotoxicity of regulatory T cells ex vivo by nonclassical monocytes in melanoma patients. PNAS 112:6140–45
    [Google Scholar]
  184. 184. 
    Arce Vargas F, Furness AJS, Litchfield K, Joshi K, Rosenthal R et al. 2018. Fc effector function contributes to the activity of human anti-CTLA-4 antibodies. Cancer Cell 33:649–63.e4
    [Google Scholar]
  185. 185. 
    Wei SC, Levine JH, Cogdill AP, Zhao Y, Anang NAS et al. 2017. Distinct cellular mechanisms underlie anti-CTLA-4 and anti-PD-1 checkpoint blockade. Cell 170:1120–33.e17
    [Google Scholar]
  186. 186. 
    Kamada T, Togashi Y, Tay C, Ha D, Sasaki A et al. 2019. PD-1+ regulatory T cells amplified by PD-1 blockade promote hyperprogression of cancer. PNAS 116:9999–10008
    [Google Scholar]
  187. 187. 
    Champiat S, Ferrara R, Massard C, Besse B, Marabelle A et al. 2018. Hyperprogressive disease: recognizing a novel pattern to improve patient management. Nat. Rev. Clin. Oncol. 15:748–62
    [Google Scholar]
  188. 188. 
    Molldrem JJ, Lee PP, Wang C, Felio K, Kantarjian HM et al. 2000. Evidence that specific T lymphocytes may participate in the elimination of chronic myelogenous leukemia. Nat. Med. 6:1018–23
    [Google Scholar]
  189. 189. 
    Gannage M, Abel M, Michallet AS, Delluc S, Lambert M et al. 2005. Ex vivo characterization of multiepitopic tumor-specific CD8 T cells in patients with chronic myeloid leukemia: implications for vaccine development and adoptive cellular immunotherapy. J. Immunol. 174:8210–18
    [Google Scholar]
  190. 190. 
    Chen CI, Maecker HT, Lee PP 2008. Development and dynamics of robust T-cell responses to CML under imatinib treatment. Blood 111:5342–49
    [Google Scholar]
  191. 191. 
    Tanaka A, Nishikawa H, Noguchi S, Sugiyama D, Morikawa H et al. 2020. Tyrosine kinase inhibitor imatinib augments tumor immunity by depleting effector regulatory T cells. J. Exp. Med. 217:e20191009
    [Google Scholar]
  192. 192. 
    Ali K, Soond DR, Pineiro R, Hagemann T, Pearce W et al. 2014. Inactivation of PI(3)K p110δ breaks regulatory T-cell-mediated immune tolerance to cancer. Nature 510:407–11 Corrigendum. 2016. Nature 535:580
    [Google Scholar]
  193. 193. 
    Grinberg-Bleyer Y, Oh H, Desrichard A, Bhatt DM, Caron R et al. 2017. NF-κB c-Rel is crucial for the regulatory T cell immune checkpoint in cancer. Cell 170:1096–108.e13
    [Google Scholar]
  194. 194. 
    Di Pilato M, Kim EY, Cadilha BL, Prussmann JN, Nasrallah MN et al. 2019. Targeting the CBM complex causes Treg cells to prime tumours for immune checkpoint therapy. Nature 570:112–16
    [Google Scholar]
  195. 195. 
    Ko K, Yamazaki S, Nakamura K, Nishioka T, Hirota K et al. 2005. Treatment of advanced tumors with agonistic anti-GITR mAb and its effects on tumor-infiltrating Foxp3+CD25+CD4+ regulatory T cells. J. Exp. Med. 202:885–91
    [Google Scholar]
  196. 196. 
    Fransen MF, van der Sluis TC, Ossendorp F, Arens R, Melief CJ 2013. Controlled local delivery of CTLA-4 blocking antibody induces CD8+ T-cell-dependent tumor eradication and decreases risk of toxic side effects. Clin. Cancer Res. 19:5381–89
    [Google Scholar]
  197. 197. 
    Sato K, Sato N, Xu B, Nakamura Y, Nagaya T et al. 2016. Spatially selective depletion of tumor-associated regulatory T cells with near-infrared photoimmunotherapy. Sci. Transl. Med. 8:352ra110
    [Google Scholar]
  198. 198. 
    Romano M, Fanelli G, Albany CJ, Giganti G, Lombardi G 2019. Past, present, and future of regulatory T cell therapy in transplantation and autoimmunity. Front. Immunol. 10:43
    [Google Scholar]
  199. 199. 
    Uhlig HH, Powrie F. 2018. Translating immunology into therapeutic concepts for inflammatory bowel disease. Annu. Rev. Immunol. 36:755–81
    [Google Scholar]
  200. 200. 
    Honda K, Littman DR. 2012. The microbiome in infectious disease and inflammation. Annu. Rev. Immunol. 30:759–95
    [Google Scholar]
/content/journals/10.1146/annurev-immunol-042718-041717
Loading
/content/journals/10.1146/annurev-immunol-042718-041717
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error