1932

Abstract

Coevolutionary adaptation between humans and helminths has developed a finely tuned balance between host immunity and chronic parasitism due to immunoregulation. Given that these reciprocal forces drive selection, experimental models of helminth infection are ideally suited for discovering how host protective immune responses adapt to the unique tissue niches inhabited by these large metazoan parasites. This review highlights the key discoveries in the immunology of helminth infection made over the last decade, from innate lymphoid cells to the emerging importance of neuroimmune connections. A particular emphasis is placed on the emerging areas within helminth immunology where the most growth is possible, including the advent of genetic manipulation of parasites to study immunology and the use of engineered T cells for therapeutic options. Lastly,we cover the status of human challenge trials with helminths as treatment for autoimmune disease, which taken together, stand to keep the study of parasitic worms at the forefront of immunology for years to come.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-immunol-093019-122827
2021-04-26
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/immunol/39/1/annurev-immunol-093019-122827.html?itemId=/content/journals/10.1146/annurev-immunol-093019-122827&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    An interview with Dr. Magda Azab. Trop. Parasitol. 2013. 3:170–74
    [Google Scholar]
  2. 2. 
    Sianto L, Chame M, Silva CS, Goncalves ML, Reinhard K, Fugassa M, Araujo A 2009. Animal helminths in human archaeological remains: a review of zoonoses in the past. Rev. Inst. Med. Trop. Sao Paulo 51:119–30
    [Google Scholar]
  3. 3. 
    Cox FE. 2002. History of human parasitology. Clin. Microbiol. Rev. 15:595–612
    [Google Scholar]
  4. 4. 
    Fumagalli M, Pozzoli U, Cagliani R, Comi GP, Riva S et al. 2009. Parasites represent a major selective force for interleukin genes and shape the genetic predisposition to autoimmune conditions. J. Exp. Med. 206:1395–408
    [Google Scholar]
  5. 5. 
    Hotez PJ, Brindley PJ, Bethony JM, King CH, Pearce EJ, Jacobson J. 2008. Helminth infections: the great neglected tropical diseases. J. Clin. Investig. 118:1311–21
    [Google Scholar]
  6. 6. 
    Smits HH, Yazdanbakhsh M. 2007. Chronic helminth infections modulate allergen-specific immune responses: protection against development of allergic disorders?. Ann. Med. 39:428–39
    [Google Scholar]
  7. 7. 
    Brindley PJ, Mitreva M, Ghedin E, Lustigman S. 2009. Helminth genomics: the implications for human health. PLOS Negl. Trop. Dis. 3:e538
    [Google Scholar]
  8. 8. 
    Weatherhead JE, Hotez PJ, Mejia R. 2017. The global state of helminth control and elimination in children. Pediatr. Clin. N. Am. 64:867–77
    [Google Scholar]
  9. 9. 
    Hedtke SM, Kuesel AC, Crawford KE, Graves PM, Boussinesq M et al. 2019. Genomic epidemiology in filarial nematodes: transforming the basis for elimination program decisions. Front. Genet. 10:1282
    [Google Scholar]
  10. 10. 
    Woolhouse ME, Gowtage-Sequeria S. 2005. Host range and emerging and reemerging pathogens. Emerg. Infect. Dis. 11:1842–47
    [Google Scholar]
  11. 11. 
    Ogilvie BM. 1964. Reagin-like antibodies in animals immune to helminth parasites. Nature 204:91–92
    [Google Scholar]
  12. 12. 
    Zakroff SG, Beck L, Platzer EG, Spiegelberg HL. 1989. The IgE and IgG subclass responses of mice to four helminth parasites. Cell Immunol 119:193–201
    [Google Scholar]
  13. 13. 
    Katona IM, Urban JF Jr., Finkelman FD. 1988. The role of L3T4+ and Lyt-2+ T cells in the IgE response and immunity to Nippostrongylus brasiliensis. J. Immunol. 140:3206–11
    [Google Scholar]
  14. 14. 
    Prowse SJ, Mitchell GF, Ey PL, Jenkin CR. 1978. Nematospiroides dubius: susceptibility to infection and the development of resistance in hypothymic (nude) BALB/c mice. Aust. J. Exp. Biol. Med. Sci. 56:561–70
    [Google Scholar]
  15. 15. 
    Urban JF Jr., Katona IM, Finkelman FD. 1991.. Heligmosomoides polygyrus: CD4+ but not CD8+ T cells regulate the IgE response and protective immunity in mice. Exp. Parasitol. 73:500–11
    [Google Scholar]
  16. 16. 
    McKay DM, Benjamin M, Baca-Estrada M, D'Inca R, Croitoru K, Perdue MH 1995. Role of T lymphocytes in secretory response to an enteric nematode parasite: studies in athymic rats. Dig. Dis. Sci. 40:331–37
    [Google Scholar]
  17. 17. 
    Grencis RK, Riedlinger J, Wakelin D. 1985. L3T4-positive T lymphoblasts are responsible for transfer of immunity to Trichinella spiralis in mice. Immunology 56:213–18
    [Google Scholar]
  18. 18. 
    Koyama K, Tamauchi H, Ito Y. 1995. The role of CD4+ and CD8+ T cells in protective immunity to the murine nematode parasite Trichuris muris. Parasite Immunol 17:161–65
    [Google Scholar]
  19. 19. 
    Moro K, Yamada T, Tanabe M, Takeuchi T, Ikawa T et al. 2010. Innate production of TH2 cytokines by adipose tissue-associated c-Kit+Sca-1+ lymphoid cells. Nature 463:540–44
    [Google Scholar]
  20. 20. 
    Fallon PG, Ballantyne SJ, Mangan NE, Barlow JL, Dasvarma A et al. 2006. Identification of an interleukin (IL)-25-dependent cell population that provides IL-4, IL-5, and IL-13 at the onset of helminth expulsion. J. Exp. Med. 203:1105–16
    [Google Scholar]
  21. 21. 
    Price AE, Liang HE, Sullivan BM, Reinhardt RL, Eisley CJ et al. 2010. Systemically dispersed innate IL-13-expressing cells in type 2 immunity. PNAS 107:11489–94
    [Google Scholar]
  22. 22. 
    Neill DR, Wong SH, Bellosi A, Flynn RJ, Daly M et al. 2010. Nuocytes represent a new innate effector leukocyte that mediates type-2 immunity. Nature 464:1367–70
    [Google Scholar]
  23. 23. 
    Herbert DR, Holscher C, Mohrs M, Arendse B, Schwegmann A et al. 2004. Alternative macrophage activation is essential for survival during schistosomiasis and downmodulates T helper 1 responses and immunopathology. Immunity 20:623–35
    [Google Scholar]
  24. 24. 
    Bancroft AJ, Grencis RK. 1998. Th1 and Th2 cells and immunity to intestinal helminths. Chem. Immunol. 71:192–208
    [Google Scholar]
  25. 25. 
    Bancroft AJ, McKenzie AN, Grencis RK. 1998. A critical role for IL-13 in resistance to intestinal nematode infection. J. Immunol. 160:3453–61
    [Google Scholar]
  26. 26. 
    Bancroft AJ, Else KJ, Grencis RK. 1994. Low-level infection with Trichuris muris significantly affects the polarization of the CD4 response. Eur. J. Immunol. 24:3113–18
    [Google Scholar]
  27. 27. 
    Urban JF Jr., Katona IM, Paul WE, Finkelman FD. 1991. Interleukin 4 is important in protective immunity to a gastrointestinal nematode infection in mice. PNAS 88:5513–17
    [Google Scholar]
  28. 28. 
    Gagliani N, Magnani CF, Huber S, Gianolini ME, Pala M et al. 2013. Coexpression of CD49b and LAG-3 identifies human and mouse T regulatory type 1 cells. Nat. Med. 19:739–46
    [Google Scholar]
  29. 29. 
    von Moltke J, Ji M, Liang HE, Locksley RM 2016. Tuft-cell-derived IL-25 regulates an intestinal ILC2-epithelial response circuit. Nature 529:221–25
    [Google Scholar]
  30. 30. 
    Veldhoen M, Uyttenhove C, van Snick J, Helmby H, Westendorf A et al. 2008. Transforming growth factor-β ‘reprograms’ the differentiation of T helper 2 cells and promotes an interleukin 9-producing subset. Nat. Immunol. 9:1341–46
    [Google Scholar]
  31. 31. 
    Godinho-Silva C, Cardoso F, Veiga-Fernandes H. 2019. Neuro–immune cell units: a new paradigm in physiology. Annu. Rev. Immunol. 37:19–46
    [Google Scholar]
  32. 32. 
    Klose CS, Artis D. 2016. Innate lymphoid cells as regulators of immunity, inflammation and tissue homeostasis. Nat. Immunol. 17:765–74
    [Google Scholar]
  33. 33. 
    Cardoso V, Chesne J, Ribeiro H, Garcia-Cassani B, Carvalho T et al. 2017. Neuronal regulation of type 2 innate lymphoid cells via neuromedin U. Nature 549:277–81
    [Google Scholar]
  34. 34. 
    Chu C, Artis D, Chiu IM. 2020. Neuro-immune interactions in the tissues. Immunity 52:464–74
    [Google Scholar]
  35. 35. 
    Meixiong J, Basso L, Dong X, Gaudenzio N 2020. Nociceptor-mast cell sensory clusters as regulators of skin homeostasis. Trends Neurosci 43:130–32
    [Google Scholar]
  36. 36. 
    Talbot S, Abdulnour RE, Burkett PR, Lee S, Cronin SJ et al. 2015. Silencing nociceptor neurons reduces allergic airway inflammation. Neuron 87:341–54
    [Google Scholar]
  37. 37. 
    Nussbaum JC, Van Dyken SJ, von Moltke J, Cheng LE, Mohapatra A et al. 2013. Type 2 innate lymphoid cells control eosinophil homeostasis. Nature 502:245–48
    [Google Scholar]
  38. 38. 
    Wallrapp A, Riesenfeld SJ, Burkett PR, Abdulnour RE, Nyman J et al. 2017. The neuropeptide NMU amplifies ILC2-driven allergic lung inflammation. Nature 549:351–56
    [Google Scholar]
  39. 39. 
    Klose CSN, Mahlakoiv T, Moeller JB, Rankin LC, Flamar AL et al. 2017. The neuropeptide neuromedin U stimulates innate lymphoid cells and type 2 inflammation. Nature 549:282–86
    [Google Scholar]
  40. 40. 
    Sui P, Wiesner DL, Xu J, Zhang Y, Lee J et al. 2018. Pulmonary neuroendocrine cells amplify allergic asthma responses. Science 360:6393eaan8546
    [Google Scholar]
  41. 41. 
    Nagashima H, Mahlakoiv T, Shih HY, Davis FP, Meylan F et al. 2019. Neuropeptide CGRP limits group 2 innate lymphoid cell responses and constrains type 2 inflammation. Immunity 51:682–95.e6
    [Google Scholar]
  42. 42. 
    Xu H, Ding J, Porter CBM, Wallrapp A, Tabaka M et al. 2019. Transcriptional atlas of intestinal immune cells reveals that neuropeptide alpha-CGRP modulates group 2 innate lymphoid cell responses. Immunity 51:696–708.e9
    [Google Scholar]
  43. 43. 
    Jakob MO, Murugan S, Klose CSN. 2020. Neuro-immune circuits regulate immune responses in tissues and organ homeostasis. Front. Immunol. 11:308
    [Google Scholar]
  44. 44. 
    McGinty JW, von Moltke J. 2020. A three course menu for ILC and bystander T cell activation. Curr. Opin. Immunol. 62:15–21
    [Google Scholar]
  45. 45. 
    Wallrapp A, Burkett PR, Riesenfeld SJ, Kim SJ, Christian E et al. 2019. Calcitonin gene-related peptide negatively regulates alarmin-driven type 2 innate lymphoid cell responses. Immunity 51:709–23.e6
    [Google Scholar]
  46. 46. 
    Moriyama S, Brestoff JR, Flamar AL, Moeller JB, Klose CSN et al. 2018. β2-Adrenergic receptor-mediated negative regulation of group 2 innate lymphoid cell responses. Science 359:1056–61
    [Google Scholar]
  47. 47. 
    Galle-Treger L, Suzuki Y, Patel N, Sankaranarayanan I, Aron JL et al. 2016. Nicotinic acetylcholine receptor agonist attenuates ILC2-dependent airway hyperreactivity. Nat. Commun. 7:13202
    [Google Scholar]
  48. 48. 
    Robinson P, Garza A, Weinstock J, Serpa JA, Goodman JC et al. 2012. Substance P causes seizures in neurocysticercosis. PLOS Pathog 8:e1002489
    [Google Scholar]
  49. 49. 
    Garza A, Tweardy DJ, Weinstock J, Viswanathan B, Robinson P 2010. Substance P signaling contributes to granuloma formation in Taenia crassiceps infection, a murine model of cysticercosis. J. Biomed. Biotechnol. 2010:597086
    [Google Scholar]
  50. 50. 
    Stakenborg N, Viola MF, Boeckxstaens GE. 2020. Intestinal neuro-immune interactions: focus on macrophages, mast cells and innate lymphoid cells. Curr. Opin. Neurobiol. 62:68–75
    [Google Scholar]
  51. 51. 
    Gabanyi I, Muller PA, Feighery L, Oliveira TY, Costa-Pinto FA, Mucida D. 2016. Neuro-immune interactions drive tissue programming in intestinal macrophages. Cell 164:378–91
    [Google Scholar]
  52. 52. 
    Buhner S, Barki N, Greiter W, Giesbertz P, Demir IE et al. 2017. Calcium imaging of nerve-mast cell signaling in the human intestine. Front. Physiol. 8:971
    [Google Scholar]
  53. 53. 
    Kulka M, Sheen CH, Tancowny BP, Grammer LC, Schleimer RP. 2008. Neuropeptides activate human mast cell degranulation and chemokine production. Immunology 123:398–410
    [Google Scholar]
  54. 54. 
    Serhan N, Basso L, Sibilano R, Petitfils C, Meixiong J et al. 2019. House dust mites activate nociceptor-mast cell clusters to drive type 2 skin inflammation. Nat. Immunol. 20:1435–43
    [Google Scholar]
  55. 55. 
    Kin NW, Sanders VM. 2006. It takes nerve to tell T and B cells what to do. J. Leukoc. Biol. 79:1093–104
    [Google Scholar]
  56. 56. 
    Kohm AP, Sanders VM. 2001. Norepinephrine and β2-adrenergic receptor stimulation regulate CD4+ T and B lymphocyte function in vitro and in vivo. Pharmacol. Rev. 53:487–525
    [Google Scholar]
  57. 57. 
    Kohm AP, Sanders VM. 1999. Suppression of antigen-specific Th2 cell-dependent IgM and IgG1 production following norepinephrine depletion in vivo. J. Immunol. 162:5299–308
    [Google Scholar]
  58. 58. 
    Nakai A, Hayano Y, Furuta F, Noda M, Suzuki K. 2014. Control of lymphocyte egress from lymph nodes through β2-adrenergic receptors. J. Exp. Med. 211:2583–98
    [Google Scholar]
  59. 59. 
    Flamar AL, Klose CSN, Moeller JB, Mahlakoiv T, Bessman NJ et al. 2020. Interleukin-33 induces the enzyme tryptophan hydroxylase 1 to promote inflammatory group 2 innate lymphoid cell-mediated immunity. Immunity 52:606–19.e6
    [Google Scholar]
  60. 60. 
    Miller RJ, Jung H, Bhangoo SK, White FA 2009. Cytokine and chemokine regulation of sensory neuron function. Sensory Nerves BJ Canning, D Spina 417–49 Handb. Exp. Pharmacol . Vol. 194 Berlin: Springer
    [Google Scholar]
  61. 61. 
    Gupta K, Harvima IT. 2018. Mast cell-neural interactions contribute to pain and itch. Immunol. Rev. 282:168–87
    [Google Scholar]
  62. 62. 
    Wagner RG, Newton CR. 2009. Do helminths cause epilepsy?. Parasite Immunol 31:697–705
    [Google Scholar]
  63. 63. 
    McManus DP, Dunne DW, Sacko M, Utzinger J, Vennervald BJ, Zhou XN. 2018. Schistosomiasis. Nat. Rev. Dis. Primers 4:13
    [Google Scholar]
  64. 64. 
    Jourdan PM, Lamberton PHL, Fenwick A, Addiss DG. 2018. Soil-transmitted helminth infections. Lancet 391:252–65
    [Google Scholar]
  65. 65. 
    Oeser K, Schwartz C, Voehringer D. 2015. Conditional IL-4/IL-13-deficient mice reveal a critical role of innate immune cells for protective immunity against gastrointestinal helminths. Mucosal Immunol 8:672–82
    [Google Scholar]
  66. 66. 
    Nadjsombati MS, McGinty JW, Lyons-Cohen MR, Jaffe JB, DiPeso L et al. 2018. Detection of succinate by intestinal tuft cells triggers a type 2 innate immune circuit. Immunity 49:33–41.e7
    [Google Scholar]
  67. 67. 
    Schneider C, Lee J, Koga S, Ricardo-Gonzalez RR, Nussbaum JC et al. 2019. Tissue-resident group 2 innate lymphoid cells differentiate by layered ontogeny and in situ perinatal priming. Immunity 50:1425–38.e5
    [Google Scholar]
  68. 68. 
    Schneider C, O'Leary CE, von Moltke J, Liang HE, Ang QY et al. 2018. A metabolite-triggered tuft cell-ILC2 circuit drives small intestinal remodeling. Cell 174:271–84.e14
    [Google Scholar]
  69. 69. 
    Ricardo-Gonzalez RR, Van Dyken SJ, Schneider C, Lee J, Nussbaum JC et al. 2018. Tissue signals imprint ILC2 identity with anticipatory function. Nat. Immunol. 19:1093–99
    [Google Scholar]
  70. 70. 
    Mahlakoiv T, Flamar AL, Johnston LK, Moriyama S, Putzel GG et al. 2019. Stromal cells maintain immune cell homeostasis in adipose tissue via production of interleukin-33. Sci. Immunol. 4:35eaax0416
    [Google Scholar]
  71. 71. 
    Rana BMJ, Jou E, Barlow JL, Rodriguez-Rodriguez N, Walker JA et al. 2019. A stromal cell niche sustains ILC2-mediated type-2 conditioning in adipose tissue. J. Exp. Med. 216:1999–2009
    [Google Scholar]
  72. 72. 
    Spallanzani RG, Zemmour D, Xiao T, Jayewickreme T, Li C et al. 2019. Distinct immunocyte-promoting and adipocyte-generating stromal components coordinate adipose tissue immune and metabolic tenors. Sci. Immunol. 4:35eaaw3658
    [Google Scholar]
  73. 73. 
    Gerbe F, Sidot E, Smyth DJ, Ohmoto M, Matsumoto I et al. 2016. Intestinal epithelial tuft cells initiate type 2 mucosal immunity to helminth parasites. Nature 529:226–30
    [Google Scholar]
  74. 74. 
    Howitt MR, Lavoie S, Michaud M, Blum AM, Tran SV et al. 2016. Tuft cells, taste-chemosensory cells, orchestrate parasite type 2 immunity in the gut. Science 351:1329–33
    [Google Scholar]
  75. 75. 
    Luo XC, Chen ZH, Xue JB, Zhao DX, Lu C et al. 2019. Infection by the parasitic helminth Trichinella spiralis activates a Tas2r-mediated signaling pathway in intestinal tuft cells. PNAS 116:5564–69
    [Google Scholar]
  76. 76. 
    McGinty JW, Ting HA, Billipp TE, Nadjsombati MS, Khan DM et al. 2020. Tuft-cell-derived leukotrienes drive rapid anti-helminth immunity in the small intestine but are dispensable for anti-protist immunity. Immunity 52:528–41.e7
    [Google Scholar]
  77. 77. 
    Huang Y, Guo L, Qiu J, Chen X, Hu-Li J et al. 2015. IL-25-responsive lineage-negative KLRG1hi cells are multipotential ‘inflammatory’ type 2 innate lymphoid cells. Nat. Immunol. 16:161–69
    [Google Scholar]
  78. 78. 
    Mao K, Baptista AP, Tamoutounour S, Zhuang L, Bouladoux N et al. 2018. Innate and adaptive lymphocytes sequentially shape the gut microbiota and lipid metabolism. Nature 554:255–59
    [Google Scholar]
  79. 79. 
    Campbell L, Hepworth MR, Whittingham-Dowd J, Thompson S, Bancroft AJ et al. 2019. ILC2s mediate systemic innate protection by priming mucus production at distal mucosal sites. J. Exp. Med. 216:2714–23
    [Google Scholar]
  80. 80. 
    Ricardo-Gonzalez RR, Schneider C, Liao C, Lee J, Liang HE, Locksley RM. 2020. Tissue-specific pathways extrude activated ILC2s to disseminate type 2 immunity. J. Exp. Med. 217:4e20191172
    [Google Scholar]
  81. 81. 
    Wojno ED, Monticelli LA, Tran SV, Alenghat T, Osborne LC et al. 2015. The prostaglandin D2 receptor CRTH2 regulates accumulation of group 2 innate lymphoid cells in the inflamed lung. Mucosal Immunol 8:1313–23
    [Google Scholar]
  82. 82. 
    Oyesola OO, Duque C, Huang LC, Larson EM, Fruh SP et al. 2020. The prostaglandin D2 receptor CRTH2 promotes IL-33-induced ILC2 accumulation in the lung. J. Immunol. 204:1001–11
    [Google Scholar]
  83. 83. 
    Hams E, Locksley RM, McKenzie AN, Fallon PG. 2013. Cutting edge: IL-25 elicits innate lymphoid type 2 and type II NKT cells that regulate obesity in mice. J. Immunol. 191:5349–53
    [Google Scholar]
  84. 84. 
    Brestoff JR, Kim BS, Saenz SA, Stine RR, Monticelli LA et al. 2015. Group 2 innate lymphoid cells promote beiging of white adipose tissue and limit obesity. Nature 519:242–46
    [Google Scholar]
  85. 85. 
    Shimokawa C, Obi S, Shibata M, Olia A, Imai T et al. 2019. Suppression of obesity by an intestinal helminth through interactions with intestinal microbiota. Infect. Immun. 87:6e00042–19
    [Google Scholar]
  86. 86. 
    Lee MW, Odegaard JI, Mukundan L, Qiu Y, Molofsky AB et al. 2015. Activated type 2 innate lymphoid cells regulate beige fat biogenesis. Cell 160:74–87
    [Google Scholar]
  87. 87. 
    Molofsky AB, Nussbaum JC, Liang HE, Van Dyken SJ, Cheng LE et al. 2013. Innate lymphoid type 2 cells sustain visceral adipose tissue eosinophils and alternatively activated macrophages. J. Exp. Med. 210:535–49
    [Google Scholar]
  88. 88. 
    Hussaarts L, Garcia-Tardon N, van Beek L, Heemskerk MM, Haeberlein S et al. 2015. Chronic helminth infection and helminth-derived egg antigens promote adipose tissue M2 macrophages and improve insulin sensitivity in obese mice. FASEB J 29:3027–39
    [Google Scholar]
  89. 89. 
    Wu D, Molofsky AB, Liang HE, Ricardo-Gonzalez RR, Jouihan HA et al. 2011. Eosinophils sustain adipose alternatively activated macrophages associated with glucose homeostasis. Science 332:243–47
    [Google Scholar]
  90. 90. 
    Morimoto M, Azuma N, Kadowaki H, Abe T, Suto Y 2017. Regulation of type 2 diabetes by helminth-induced Th2 immune response. J. Vet. Med. Sci. 78:1855–64
    [Google Scholar]
  91. 91. 
    Aravindhan V, Anand G. 2017. Cell type-specific immunomodulation induced by helminthes: effect on metainflammation, insulin resistance and type-2 diabetes. Am. J. Trop. Med. Hyg. 97:1650–61
    [Google Scholar]
  92. 92. 
    Hays R, Esterman A, McDermott R. 2015. Type 2 diabetes mellitus is associated with Strongyloides stercoralis treatment failure in Australian Aboriginals. PLOS Negl. Trop. Dis. 9:e0003976
    [Google Scholar]
  93. 93. 
    Chen F, Wu W, Millman A, Craft JF, Chen E et al. 2014. Neutrophils prime a long-lived effector macrophage phenotype that mediates accelerated helminth expulsion. Nat. Immunol. 15:938–46
    [Google Scholar]
  94. 94. 
    Tracey ML, Gilmartin M, O'Neill K, Fitzgerald AP, McHugh SM et al. 2016. Epidemiology of diabetes and complications among adults in the Republic of Ireland 1998–2015: a systematic review and meta-analysis. BMC Public Health 16:132
    [Google Scholar]
  95. 95. 
    Tahapary DL, de Ruiter K, Martin I, Brienen EAT, van Lieshout L et al. 2017. Effect of anthelmintic treatment on insulin resistance: a cluster-randomized, placebo-controlled trial in Indonesia. Clin. Infect. Dis. 65:764–71
    [Google Scholar]
  96. 96. 
    de Ruiter K, Tahapary DL, Sartono E, Soewondo P, Supali T et al. 2017. Helminths, hygiene hypothesis and type 2 diabetes. Parasite Immunol 39:e12404
    [Google Scholar]
  97. 97. 
    Sanya RE, Webb EL, Zziwa C, Kizindo R, Sewankambo M et al. 2020. The effect of helminth infections and their treatment on metabolic outcomes: results of a cluster-randomized trial. Clin. Infect. Dis. 71:601–13
    [Google Scholar]
  98. 98. 
    Muthukumar AK, Stork T, Freeman MR. 2014. Activity-dependent regulation of astrocyte GAT levels during synaptogenesis. Nat. Neurosci. 17:1340–50
    [Google Scholar]
  99. 99. 
    Rajamanickam A, Munisankar S, Dolla C, Menon PA, Nutman TB, Babu S. 2020. Helminth coinfection alters monocyte activation, polarization, and function in latent Mycobacterium tuberculosis infection. J. Immunol. 204:1274–86
    [Google Scholar]
  100. 100. 
    Tang CL, Zou JN, Zhang RH, Liu ZM, Mao CL. 2019. Helminths protect against type 1 diabetes: effects and mechanisms. Parasitol. Res. 118:1087–94
    [Google Scholar]
  101. 101. 
    Moyat M, Velin D. 2014. Immune responses to Helicobacter pylori infection. World J. Gastroenterol. 20:5583–93
    [Google Scholar]
  102. 102. 
    Pierce D, Merone L, Lewis C, Rahman T, Croese J et al. 2019. Safety and tolerability of experimental hookworm infection in humans with metabolic disease: study protocol for a phase 1b randomised controlled clinical trial. BMC Endocr. Disord. 19:136
    [Google Scholar]
  103. 103. 
    Knudsen NH, Stanya KJ, Hyde AL, Chalom MM, Alexander RK et al. 2020. Interleukin-13 drives metabolic conditioning of muscle to endurance exercise. Science 368:6490eaat3987
    [Google Scholar]
  104. 104. 
    de Ruiter K, Jochems SP, Tahapary DL, Stam KA, Konig M et al. 2020. Helminth infections drive heterogeneity in human type 2 and regulatory cells. Sci. Transl. Med. 12:524eaaw3703
    [Google Scholar]
  105. 105. 
    Zaph C, Cooper PJ, Harris NL. 2014. Mucosal immune responses following intestinal nematode infection. Parasite Immunol 36:439–52
    [Google Scholar]
  106. 106. 
    Nausch N, Appleby LJ, Sparks AM, Midzi N, Mduluza T, Mutapi F. 2015. Group 2 innate lymphoid cell proportions are diminished in young helminth infected children and restored by curative anti-helminthic treatment. PLOS Negl. Trop. Dis. 9:e0003627
    [Google Scholar]
  107. 107. 
    Maizels RM, McSorley HJ. 2016. Regulation of the host immune system by helminth parasites. J. Allergy Clin. Immunol. 138:666–75
    [Google Scholar]
  108. 108. 
    Maizels RM, Smits HH, McSorley HJ. 2018. Modulation of host immunity by helminths: the expanding repertoire of parasite effector molecules. Immunity 49:801–18
    [Google Scholar]
  109. 109. 
    Sobotkova K, Parker W, Leva J, Ruzkova J, Lukes J, Jirku Pomajbikova K 2019. Helminth therapy—from the parasite perspective. Trends Parasitol 35:501–15
    [Google Scholar]
  110. 110. 
    Gaze S, McSorley HJ, Daveson J, Jones D, Bethony JM et al. 2012. Characterising the mucosal and systemic immune responses to experimental human hookworm infection. PLOS Pathog 8:e1002520
    [Google Scholar]
  111. 111. 
    Roestenberg M, Mordmuller B, Ockenhouse C, Mo A, Yazdanbakhsh M, Kremsner PG. 2017. The frontline of controlled human malaria infections: a report from the controlled human infection models Workshop in Leiden University Medical Centre 5 May 2016. Vaccine 35:7065–69
    [Google Scholar]
  112. 112. 
    Diemert D, Campbell D, Brelsford J, Leasure C, Li G et al. 2018. Controlled human hookworm infection: accelerating human hookworm vaccine development. Open Forum Infect. Dis. 5:ofy083
    [Google Scholar]
  113. 113. 
    Maxwell C, Hussain R, Nutman TB, Poindexter RW, Little MD et al. 1987. The clinical and immunologic responses of normal human volunteers to low dose hookworm (Necator americanus) infection. Am. J. Trop. Med. Hyg. 37:126–34
    [Google Scholar]
  114. 114. 
    Blount D, Hooi D, Feary J, Venn A, Telford G et al. 2009. Immunologic profiles of persons recruited for a randomized, placebo-controlled clinical trial of hookworm infection. Am. J. Trop. Med. Hyg. 81:911–16
    [Google Scholar]
  115. 115. 
    Diemert DJ, Bottazzi ME, Plieskatt J, Hotez PJ, Bethony JM. 2018. Lessons along the critical path: developing vaccines against human helminths. Trends Parasitol 34:747–58
    [Google Scholar]
  116. 116. 
    Ryan SM, Eichenberger RM, Ruscher R, Giacomin PR, Loukas A. 2020. Harnessing helminth-driven immunoregulation in the search for novel therapeutic modalities. PLOS Pathog 16:e1008508
    [Google Scholar]
  117. 117. 
    Beer RJ. 1971. Experimental infection of man with pig whipworm. Br. Med. J. 2:44
    [Google Scholar]
  118. 118. 
    Huang X, Zeng LR, Chen FS, Zhu JP, Zhu MH. 2018. Trichuris suis ova therapy in inflammatory bowel disease: a meta-analysis. Medicine 97:e12087
    [Google Scholar]
  119. 119. 
    Croese J, O'Neil J, Masson J, Cooke S, Melrose W et al. 2006. A proof of concept study establishing Necator americanus in Crohn's patients and reservoir donors. Gut 55:136–37
    [Google Scholar]
  120. 120. 
    Daveson AJ, Jones DM, Gaze S, McSorley H, Clouston A et al. 2011. Effect of hookworm infection on wheat challenge in celiac disease—a randomised double-blinded placebo controlled trial. PLOS ONE 6:e17366
    [Google Scholar]
  121. 121. 
    Croese J, Giacomin P, Navarro S, Clouston A, McCann L et al. 2015. Experimental hookworm infection and gluten microchallenge promote tolerance in celiac disease. J. Allergy Clin. Immunol. 135:508–16
    [Google Scholar]
  122. 122. 
    Fleming JO, Isaak A, Lee JE, Luzzio CC, Carrithers MD et al. 2011. Probiotic helminth administration in relapsing-remitting multiple sclerosis: a phase 1 study. Mult. Scler. 17:743–54
    [Google Scholar]
  123. 123. 
    Tanasescu R, Tench CR, Constantinescu CS, Telford G, Singh S et al. 2020. Hookworm treatment for relapsing multiple sclerosis: a randomized double-blinded placebo-controlled trial. JAMA Neurol 77:91089–98
    [Google Scholar]
  124. 124. 
    Feary JR, Venn AJ, Mortimer K, Brown AP, Hooi D et al. 2010. Experimental hookworm infection: a randomized placebo-controlled trial in asthma. Clin. Exp. Allergy 40:299–306
    [Google Scholar]
  125. 125. 
    Croft AM, Bager P, Kumar S. 2012. Helminth therapy (worms) for allergic rhinitis. Cochrane Database Syst. Rev. 2012:4CD009238
    [Google Scholar]
  126. 126. 
    Strober W, Fuss IJ. 2011. Proinflammatory cytokines in the pathogenesis of inflammatory bowel diseases. Gastroenterology 140:1756–67
    [Google Scholar]
  127. 127. 
    Mankertz J, Schulzke JD. 2007. Altered permeability in inflammatory bowel disease: pathophysiology and clinical implications. Curr. Opin. Gastroenterol. 23:379–83
    [Google Scholar]
  128. 128. 
    Neurath MF. 2019. Targeting immune cell circuits and trafficking in inflammatory bowel disease. Nat. Immunol. 20:970–79
    [Google Scholar]
  129. 129. 
    Summers RW, Elliott DE, Qadir K, Urban JF Jr., Thompson R, Weinstock JV. 2003. Trichuris suis seems to be safe and possibly effective in the treatment of inflammatory bowel disease. Am. J. Gastroenterol 98:2034–41
    [Google Scholar]
  130. 130. 
    Summers RW, Elliott DE, Urban JF Jr., Thompson RA, Weinstock JV. 2005. Trichuris suis therapy for active ulcerative colitis: a randomized controlled trial. Gastroenterology 128:825–32
    [Google Scholar]
  131. 131. 
    Scholmerich J, Fellermann K, Seibold FW, Rogler G, Langhorst J et al. 2017. A randomised, double-blind, placebo-controlled trial of Trichuris suis ova in active Crohn's disease. J. Crohn's Colitis 11:390–99
    [Google Scholar]
  132. 132. 
    Broadhurst MJ, Leung JM, Kashyap V, McCune JM, Mahadevan U et al. 2010. IL-22+ CD4+ T cells are associated with therapeutic Trichuris trichiura infection in an ulcerative colitis patient. Sci. Transl. Med. 2:60ra88
    [Google Scholar]
  133. 133. 
    Williams AR, Dige A, Rasmussen TK, Hvas CL, Dahlerup JF et al. 2017. Immune responses and parasitological observations induced during probiotic treatment with medicinal Trichuris suis ova in a healthy volunteer. Immunol. Lett. 188:32–37
    [Google Scholar]
  134. 134. 
    Elliott DE, Weinstock JV. 2017. Nematodes and human therapeutic trials for inflammatory disease. Parasite Immunol 39: https://doi.org/10.1111/pim.12407
    [Crossref] [Google Scholar]
  135. 135. 
    McCarville JL, Caminero A, Verdu EF. 2015. Pharmacological approaches in celiac disease. Curr. Opin. Pharmacol. 25:7–12
    [Google Scholar]
  136. 136. 
    McSorley HJ, Gaze S, Daveson J, Jones D, Anderson RP et al. 2011. Suppression of inflammatory immune responses in celiac disease by experimental hookworm infection. PLOS ONE 6:e24092
    [Google Scholar]
  137. 137. 
    Croese J, Miller GC, Marquart L, Llewellyn S, Gupta R. 2020. Randomized, placebo controlled trial of experimental hookworm infection for improving gluten tolerance in celiac disease. Clin. Transl. Gastroenterol. 11:12e00274
    [Google Scholar]
  138. 138. 
    van den Biggelaar AH, van Ree R, Rodrigues LC, Lell B, Deelder AM et al. 2000. Decreased atopy in children infected with Schistosoma haematobium: a role for parasite-induced interleukin-10. Lancet 356:1723–27
    [Google Scholar]
  139. 139. 
    Rodrigues LC, Newcombe PJ, Cunha SS, Alcantara-Neves NM, Genser B et al. 2008. Early infection with Trichuris trichiura and allergen skin test reactivity in later childhood. Clin. Exp. Allergy 38:1769–77
    [Google Scholar]
  140. 140. 
    Medeiros M Jr., Figueiredo JP, Almeida MC, Matos MA, Araujo MI et al. 2003. Schistosoma mansoni infection is associated with a reduced course of asthma. J. Allergy Clin. Immunol. 111:947–51
    [Google Scholar]
  141. 141. 
    van den Biggelaar AH, Rodrigues LC, van Ree R, van der Zee JS, Hoeksma-Kruize YC et al. 2004. Long-term treatment of intestinal helminths increases mite skin-test reactivity in Gabonese schoolchildren. J. Infect. Dis. 189:892–900
    [Google Scholar]
  142. 142. 
    Flohr C, Tuyen LN, Quinnell RJ, Lewis S, Minh TT et al. 2010. Reduced helminth burden increases allergen skin sensitization but not clinical allergy: a randomized, double-blind, placebo-controlled trial in Vietnam. Clin. Exp. Allergy 40:131–42
    [Google Scholar]
  143. 143. 
    Bager P, Kapel C, Roepstorff A, Thamsborg S, Arnved J et al. 2011. Symptoms after ingestion of pig whipworm Trichuris suis eggs in a randomized placebo-controlled double-blind clinical trial. PLOS ONE 6:e22346
    [Google Scholar]
  144. 144. 
    Bager P, Arnved J, Ronborg S, Wohlfahrt J, Poulsen LK et al. 2010. Trichuris suis ova therapy for allergic rhinitis: a randomized, double-blind, placebo-controlled clinical trial. J. Allergy Clin. Immunol. 125:123–30.e1–3
    [Google Scholar]
  145. 145. 
    Zaiss MM, Rapin A, Lebon L, Dubey LK, Mosconi I et al. 2015. The intestinal microbiota contributes to the ability of helminths to modulate allergic inflammation. Immunity 43:998–1010
    [Google Scholar]
  146. 146. 
    Navarro S, Pickering DA, Ferreira IB, Jones L, Ryan S et al. 2016. Hookworm recombinant protein promotes regulatory T cell responses that suppress experimental asthma. Sci. Transl. Med. 8:362ra143
    [Google Scholar]
  147. 147. 
    Osbourn M, Soares DC, Vacca F, Cohen ES, Scott IC et al. 2017. HpARI protein secreted by a helminth parasite suppresses interleukin-33. Immunity 47:739–51.e5
    [Google Scholar]
  148. 148. 
    de Los Reyes, Jimenez M, Lechner A, Alessandrini F, Bohnacker S, Schindela S et al. 2020. An anti-inflammatory eicosanoid switch mediates the suppression of type-2 inflammation by helminth larval products. Sci. Transl. Med. 12:540eaay0605
    [Google Scholar]
  149. 149. 
    Brosschot TP, Reynolds LA. 2018. The impact of a helminth-modified microbiome on host immunity. Mucosal Immunol 11:1039–46
    [Google Scholar]
  150. 150. 
    Filippi M, Bar-Or A, Piehl F, Preziosa P, Solari A et al. 2018. Multiple sclerosis. Nat. Rev. Dis. Primers 4:43
    [Google Scholar]
  151. 151. 
    Correale J, Farez M. 2007. Association between parasite infection and immune responses in multiple sclerosis. Ann. Neurol. 61:97–108
    [Google Scholar]
  152. 152. 
    Correale J, Farez MF. 2011. The impact of parasite infections on the course of multiple sclerosis. J. Neuroimmunol. 233:6–11
    [Google Scholar]
  153. 153. 
    Voldsgaard A, Bager P, Garde E, Akeson P, Leffers AM et al. 2015. Trichuris suis ova therapy in relapsing multiple sclerosis is safe but without signals of beneficial effect. Mult. Scler. 21:1723–29
    [Google Scholar]
  154. 154. 
    Fleming J, Hernandez G, Hartman L, Maksimovic J, Nace S et al. 2019. Safety and efficacy of helminth treatment in relapsing-remitting multiple sclerosis: results of the HINT 2 clinical trial. Mult. Scler. 25:81–91
    [Google Scholar]
  155. 155. 
    Hollander E, Uzunova G, Taylor BP, Noone R, Racine E et al. 2020. Randomized crossover feasibility trial of helminthic Trichuris suis ova versus placebo for repetitive behaviors in adult autism spectrum disorder. World J. Biol. Psychiatry 21:291–99
    [Google Scholar]
  156. 156. 
    Pape K, Tamouza R, Leboyer M, Zipp F. 2019. Immunoneuropsychiatry—novel perspectives on brain disorders. Nat. Rev. Neurol. 15:6317–28
    [Google Scholar]
  157. 157. 
    Guedan S, Calderon H, Posey AD Jr., Maus MV. 2019. Engineering and design of chimeric antigen receptors. Mol. Ther. Methods Clin. Dev. 12:145–56
    [Google Scholar]
  158. 158. 
    Liu E, Marin D, Banerjee P, Macapinlac HA, Thompson P et al. 2020. Use of CAR-transduced natural killer cells in CD19-positive lymphoid tumors. N. Engl. J. Med. 382:545–53
    [Google Scholar]
  159. 159. 
    Klichinsky M, Ruella M, Shestova O, Lu XM, Best A et al. 2020. Human chimeric antigen receptor macrophages for cancer immunotherapy. Nat. Biotechnol. 38:8947–53
    [Google Scholar]
  160. 160. 
    Blat D, Zigmond E, Alteber Z, Waks T, Eshhar Z. 2014. Suppression of murine colitis and its associated cancer by carcinoembryonic antigen-specific regulatory T cells. Mol. Ther. 22:1018–28
    [Google Scholar]
  161. 161. 
    Fransson M, Piras E, Burman J, Nilsson B, Essand M et al. 2012. CAR/FoxP3-engineered T regulatory cells target the CNS and suppress EAE upon intranasal delivery. J. Neuroinflamm. 9:112
    [Google Scholar]
  162. 162. 
    Dawson NA, Lamarche C, Hoeppli RE, Bergqvist P, Fung VC et al. 2019. Systematic testing and specificity mapping of alloantigen-specific chimeric antigen receptors in regulatory T cells. JCI Insight 4:6e123672
    [Google Scholar]
  163. 163. 
    Ellebrecht CT, Bhoj VG, Nace A, Choi EJ, Mao X et al. 2016. Reengineering chimeric antigen receptor T cells for targeted therapy of autoimmune disease. Science 353:179–84
    [Google Scholar]
  164. 164. 
    Amor C, Feucht J, Leibold J, Ho YJ, Zhu C et al. 2020. Senolytic CAR T cells reverse senescence-associated pathologies. Nature 583:127–32
    [Google Scholar]
  165. 165. 
    Liu B, Zou F, Lu L, Chen C, He D et al. 2016. Chimeric antigen receptor T cells guided by the single-chain Fv of a broadly neutralizing antibody specifically and effectively eradicate virus reactivated from latency in CD4+ T lymphocytes isolated from HIV-1-infected individuals receiving suppressive combined antiretroviral therapy. J. Virol. 90:9712–24
    [Google Scholar]
  166. 166. 
    Ali A, Kitchen SG, Chen ISY, Ng HL, Zack JA, Yang OO. 2016. HIV-1-specific chimeric antigen receptors based on broadly neutralizing antibodies. J. Virol. 90:6999–7006
    [Google Scholar]
  167. 167. 
    Leibman RS, Richardson MW, Ellebrecht CT, Maldini CR, Glover JA et al. 2017. Supraphysiologic control over HIV-1 replication mediated by CD8 T cells expressing a re-engineered CD4-based chimeric antigen receptor. PLOS Pathog 13:e1006613
    [Google Scholar]
  168. 168. 
    Kumaresan PR, Manuri PR, Albert ND, Maiti S, Singh H et al. 2014. Bioengineering T cells to target carbohydrate to treat opportunistic fungal infection. PNAS 111:10660–65
    [Google Scholar]
  169. 169. 
    Stinchcomb DT, Shaw JE, Carr SH, Hirsh D. 1985. Extrachromosomal DNA transformation of Caenorhabditis elegans. Mol. Cell. Biol. 5:3484–96
    [Google Scholar]
  170. 170. 
    Grant WN, Skinner SJ, Newton-Howes J, Grant K, Shuttleworth G et al. 2006. Heritable transgenesis of Parastrongyloides trichosuri: a nematode parasite of mammals. Int. J. Parasitol. 36:475–83
    [Google Scholar]
  171. 171. 
    Lok JB, Massey HC Jr. 2002. Transgene expression in Strongyloides stercoralis following gonadal microinjection of DNA constructs. Mol. Biochem. Parasitol. 119:279–84
    [Google Scholar]
  172. 172. 
    Correnti JM, Jung E, Freitas TC, Pearce EJ. 2007. Transfection of Schistosoma mansoni by electroporation and the description of a new promoter sequence for transgene expression. Int. J. Parasitol. 37:1107–15
    [Google Scholar]
  173. 173. 
    Correnti JM, Brindley PJ, Pearce EJ. 2005. Long-term suppression of cathepsin B levels by RNA interference retards schistosome growth. Mol. Biochem. Parasitol. 143:209–15
    [Google Scholar]
  174. 174. 
    Kines KJ, Rinaldi G, Okatcha TI, Morales ME, Mann VH et al. 2010. Electroporation facilitates introduction of reporter transgenes and virions into schistosome eggs. PLOS Negl. Trop. Dis. 4:e593
    [Google Scholar]
  175. 175. 
    Issa Z, Grant WN, Stasiuk S, Shoemaker CB. 2005. Development of methods for RNA interference in the sheep gastrointestinal parasite, Trichostrongylus colubriformis. Int. J. Parasitol. 35:935–40
    [Google Scholar]
  176. 176. 
    Skelly PJ, Da'dara A, Harn DA 2003. Suppression of cathepsin B expression in Schistosoma mansoni by RNA interference. Int. J. Parasitol. 33:363–69
    [Google Scholar]
  177. 177. 
    Collins JN, Collins JJ 3rd. 2016. Tissue degeneration following loss of Schistosoma mansoni cbp1 is associated with increased stem cell proliferation and parasite death in vivo. PLOS Pathog 12:e1005963
    [Google Scholar]
  178. 178. 
    Valentim CL, Cioli D, Chevalier FD, Cao X, Taylor AB et al. 2013. Genetic and molecular basis of drug resistance and species-specific drug action in schistosome parasites. Science 342:1385–89
    [Google Scholar]
  179. 179. 
    Wendt GR, Collins JN, Pei J, Pearson MS, Bennett HM et al. 2018. Flatworm-specific transcriptional regulators promote the specification of tegumental progenitors in Schistosoma mansoni. eLife 7:e33221
    [Google Scholar]
  180. 180. 
    Rinaldi G, Eckert SE, Tsai IJ, Suttiprapa S, Kines KJ et al. 2012. Germline transgenesis and insertional mutagenesis in Schistosoma mansoni mediated by murine leukemia virus. PLOS Pathog 8:e1002820
    [Google Scholar]
  181. 181. 
    Shao H, Li X, Nolan TJ, Massey HC Jr., Pearce EJ, Lok JB. 2012. Transposon-mediated chromosomal integration of transgenes in the parasitic nematode Strongyloides ratti and establishment of stable transgenic lines. PLOS Pathog 8:e1002871
    [Google Scholar]
  182. 182. 
    Gang SS, Castelletto ML, Bryant AS, Yang E, Mancuso N et al. 2017. Targeted mutagenesis in a human-parasitic nematode. PLOS Pathog 13:e1006675
    [Google Scholar]
  183. 183. 
    Ittiprasert W, Mann VH, Karinshak SE, Coghlan A, Rinaldi G et al. 2019. Programmed genome editing of the omega-1 ribonuclease of the blood fluke, Schistosoma mansoni. eLife 8:e41337
    [Google Scholar]
  184. 184. 
    Arunsan P, Ittiprasert W, Smout MJ, Cochran CJ, Mann VH et al. 2019. Programmed knockout mutation of liver fluke granulin attenuates virulence of infection-induced hepatobiliary morbidity. eLife 8:e41463
    [Google Scholar]
  185. 185. 
    Pepper M, Dzierszinski F, Crawford A, Hunter CA, Roos D. 2004. Development of a system to study CD4+-T-cell responses to transgenic ovalbumin-expressing Toxoplasma gondii during toxoplasmosis. Infect. Immun. 72:7240–46
    [Google Scholar]
  186. 186. 
    Ertelt JM, Rowe JH, Johanns TM, Lai JC, McLachlan JB, Way SS. 2009. Selective priming and expansion of antigen-specific Foxp3 CD4+ T cells during Listeria monocytogenes infection. J. Immunol. 182:3032–38
    [Google Scholar]
  187. 187. 
    Mooney JP, Lee SJ, Lokken KL, Nanton MR, Nuccio SP et al. 2015. Transient loss of protection afforded by a live attenuated non-typhoidal Salmonella vaccine in mice co-infected with malaria. PLOS Negl. Trop. Dis. 9:e0004027
    [Google Scholar]
  188. 188. 
    Williams MJ. 2007. Drosophila hemopoiesis and cellular immunity. J. Immunol. 178:4711–16
    [Google Scholar]
  189. 189. 
    Boman HG, Nilsson I, Rasmuson B. 1972. Inducible antibacterial defence system in Drosophila. Nature 237:232–35
    [Google Scholar]
  190. 190. 
    Wu Q, Patocka J, Kuca K. 2018. Insect antimicrobial peptides, a mini review. Toxins 10:11461
    [Google Scholar]
  191. 191. 
    Shokal U, Eleftherianos I. 2017. Evolution and function of thioester-containing proteins and the complement system in the innate immune response. Front. Immunol. 8:759
    [Google Scholar]
  192. 192. 
    Valanne S, Wang JH, Ramet M. 2011. The Drosophila Toll signaling pathway. J. Immunol. 186:649–56
    [Google Scholar]
  193. 193. 
    Yadav S, Shokal U, Forst S, Eleftherianos I. 2015. An improved method for generating axenic entomopathogenic nematodes. BMC Res. Notes 8:461
    [Google Scholar]
  194. 194. 
    Castillo JC, Shokal U, Eleftherianos I. 2012. A novel method for infecting Drosophila adult flies with insect pathogenic nematodes. Virulence 3:339–47
    [Google Scholar]
  195. 195. 
    Eleftherianos I, Joyce S, Ffrench-Constant RH, Clarke DJ, Reynolds SE. 2010. Probing the tri-trophic interaction between insects, nematodes and Photorhabdus. Parasitology 137:1695–706
    [Google Scholar]
  196. 196. 
    Lowenberger CA, Ferdig MT, Bulet P, Khalili S, Hoffmann JA, Christensen BM. 1996. Aedes aegypti: Induced antibacterial proteins reduce the establishment and development of Brugia malayi. Exp. Parasitol. 83:191–201
    [Google Scholar]
  197. 197. 
    Brivio MF, Pagani M, Restelli S. 2002. Immune suppression of Galleria mellonella (Insecta, Lepidoptera) humoral defenses induced by Steinernema feltiae (Nematoda, Rhabditida): involvement of the parasite cuticle. Exp. Parasitol. 101:149–56
    [Google Scholar]
  198. 198. 
    Brivio MF, Mastore M, Nappi AJ. 2010. A pathogenic parasite interferes with phagocytosis of insect immunocompetent cells. Dev. Comp. Immunol. 34:991–98
    [Google Scholar]
  199. 199. 
    Gratacap RL, Wheeler RT. 2014. Utilization of zebrafish for intravital study of eukaryotic pathogen-host interactions. Dev. Comp. Immunol. 46:108–15
    [Google Scholar]
  200. 200. 
    Balla KM, Lugo-Villarino G, Spitsbergen JM, Stachura DL, Hu Y et al. 2010. Eosinophils in the zebrafish: prospective isolation, characterization, and eosinophilia induction by helminth determinants. Blood 116:3944–54
    [Google Scholar]
  201. 201. 
    Mitra S, Alnabulsi A, Secombes CJ, Bird S. 2010. Identification and characterization of the transcription factors involved in T-cell development, t-bet, stat6 and foxp3, within the zebrafish, Danio rerio. FEBS J 277:128–47
    [Google Scholar]
  202. 202. 
    Zhu LY, Pan PP, Fang W, Shao JZ, Xiang LX. 2012. Essential role of IL-4 and IL-4Rα interaction in adaptive immunity of zebrafish: insight into the origin of Th2-like regulatory mechanism in ancient vertebrates. J. Immunol. 188:5571–84
    [Google Scholar]
  203. 203. 
    Oosterhof N, Boddeke E, van Ham TJ. 2015. Immune cell dynamics in the CNS: learning from the zebrafish. Glia 63:719–35
    [Google Scholar]
  204. 204. 
    White RM, Sessa A, Burke C, Bowman T, LeBlanc J et al. 2008. Transparent adult zebrafish as a tool for in vivo transplantation analysis. Cell Stem Cell 2:183–89
    [Google Scholar]
  205. 205. 
    Kim E, Jeong I, Chung AY, Kim S, Kwon SH et al. 2019. Distribution and neuronal circuit of spexin 1/2 neurons in the zebrafish CNS. Sci. Rep. 9:5025
    [Google Scholar]
  206. 206. 
    Palanca AM, Lee SL, Yee LE, Joe-Wong C, Trinh LA et al. 2013. New transgenic reporters identify somatosensory neuron subtypes in larval zebrafish. Dev. Neurobiol. 73:152–67
    [Google Scholar]
  207. 207. 
    Hoogerwerf MA, Koopman JPR, Janse JJ, Langenberg MCC, van Schuijlenburg R et al. 2021. A randomized controlled trial to investigate safety and variability of egg excretion after repeated controlled human hookworm infection. J. Infect. Dis. 223:5905–13 https://doi.org/10.1093/infdis/jiaa414
    [Crossref] [Google Scholar]
  208. 208. 
    Nogami H, Tachibana T. 1993. Dexamethasone induces advanced growth hormone expression in the fetal rat pituitary gland in vivo. Endocrinology 132:517–23
    [Google Scholar]
  209. 209. 
    Beer RJ, Taffs LF, Jacobs DE, Lean IJ, Curran MK. 1971. Evaluation of dichlorvos (V3 formulation) against larval and adult Trichuris suis and observations on experimental infection in growing pigs. Vet. Rec 88:436–41
    [Google Scholar]
  210. 210. 
    Summers RW, Elliott DE, Urban JF Jr., Thompson R, Weinstock JV. 2005. Trichuris suis therapy in Crohn's disease. Gut 54:87–90
    [Google Scholar]
  211. 211. 
    Langenberg MCC, Hoogerwerf MA, Koopman JPR, Janse JJ, Kos-van Oosterhoud J et al. 2020. A controlled human Schistosoma mansoni infection model to advance novel drugs, vaccines and diagnostics. Nat. Med 26:326–32
    [Google Scholar]
/content/journals/10.1146/annurev-immunol-093019-122827
Loading
/content/journals/10.1146/annurev-immunol-093019-122827
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error