1932

Abstract

Primary immunodeficiency diseases (PIDs) are a rapidly growing, heterogeneous group of genetically determined diseases characterized by defects in the immune system. While individually rare, collectively PIDs affect between 1/1,000 and 1/5,000 people worldwide. The clinical manifestations of PIDs vary from susceptibility to infections to autoimmunity and bone marrow failure. Our understanding of the human immune response has advanced by investigation and discovery of genetic mechanisms of PIDs. Studying patients with isolated genetic variants in proteins that participate in complex signaling pathways has led to an enhanced understanding of host response to infection, and mechanisms of autoimmunity and autoinflammation. Identifying genetic mechanisms of PIDs not only furthers immunological knowledge but also benefits patients by dictating targeted therapies or hematopoietic stem cell transplantation. Here, we highlight several of these areas in the field of primary immunodeficiency, with a focus on the most recent advances.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-immunol-093019-124513
2021-04-26
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/immunol/39/1/annurev-immunol-093019-124513.html?itemId=/content/journals/10.1146/annurev-immunol-093019-124513&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Tangye SG, Al-Herz W, Bousfiha A, Chatila T, Cunningham-Rundles C et al. 2020. Human inborn errors of immunity: 2019 update on the classification from the International Union of Immunological Societies Expert Committee. J. Clin. Immunol. 40:24–64 Erratum. 2020. J. Clin. Immunol. 40:65
    [Google Scholar]
  2. 2. 
    Bruton OC. 1952. Agammaglobulinemia. Pediatrics 9:6722–28
    [Google Scholar]
  3. 3. 
    Vetrie D, Vorechovský I, Sideras P, Holland J, Davies A et al. 1993. The gene involved in X-linked agammaglobulinaemia is a member of the src family of protein-tyrosine kinases. Nature 361:226–33
    [Google Scholar]
  4. 4. 
    Tsukada S, Saffran DC, Rawlings DJ, Parolini O, Allen RC et al. 1993. Deficient expression of a B cell cytoplasmic tyrosine kinase in human X-linked agammaglobulinemia. Cell 72:279–90
    [Google Scholar]
  5. 5. 
    Syllaba L. 1926. Contribution à l'independance de l'athétose double idiopathique et congenitale: atteinte familiale, syndrome dystrophique, signe du réseau vasculaire conjonctival, intégrité psychique. Rev. Neurol. 1:541–62
    [Google Scholar]
  6. 6. 
    Wiskott A. 1937. Familiarer, angeborener Morbus Werlhofli. Monatsschr. Kinderheilkd. 68:212–16
    [Google Scholar]
  7. 7. 
    Kostmann R. 1956. Infantile genetic agranulocytosis (agranulocytosis infantilis hereditaria): a new recessive lethal disease in man. Acta Paediatr 45:309–10
    [Google Scholar]
  8. 8. 
    Farquhar JW, Claireaux AE. 1952. Familial haemophagocytic reticulosis. Arch. Dis. Childhood 27:519–25
    [Google Scholar]
  9. 9. 
    Berendes H, Bridges RA, Good RA. 1957. A fatal granulomatosus of childhood: the clinical study of a new syndrome. Minnesota Med 40:309–12
    [Google Scholar]
  10. 10. 
    Hitzig WH, Biro Z, Bosch H, Huser HJ. 1958. Agammaglobulinämie und Alymphozytose mit Schwund des lymphatischen Gewebes. Helv. Paediatr. Acta 13:551–85
    [Google Scholar]
  11. 11. 
    Tobler R, Cottier H. 1958. Familial lymphopenia with agammaglobulinemia and severe moniliasis: the essential lymphocytophthisis as a special form of early childhood agammaglobulinemia. Helv. Paediatr. Acta 13:313–38
    [Google Scholar]
  12. 12. 
    Royer-Pokora B, Kunkel LM, Monaco AP, Goff SC, Newburger PE et al. 1986. Cloning the gene for an inherited human disorder—chronic granulomatous disease—on the basis of its chromosomal location. Nature 322:32–38
    [Google Scholar]
  13. 13. 
    Holland SM 2014. Chronic granulomatous disease—from a fatal disease to a curable one. Primary Immunodeficiency Disorders A Etzioni, HD Ochs 151–70 Amsterdam: Academic
    [Google Scholar]
  14. 14. 
    Giblett E, Anderson J, Cohen F, Pollara B, Meuwissen H. 1972. Adenosine-deaminase deficiency in two patients with severely impaired cellular immunity. Lancet 300:1067–69
    [Google Scholar]
  15. 15. 
    Noguchi M, Yi H, Rosenblatt HM, Filipovich AH, Adelstein S et al. 1993. Interleukin-2 receptor γ chain mutation results in X-linked severe combined immunodeficiency in humans. Cell 73:147–57
    [Google Scholar]
  16. 16. 
    Puck JM, Deschenes SM, Porter JC, Dutra AS, Brown CJ et al. 1993. The interleukin-2 receptor γ chain maps to Xq13.1 and is mutated in X-linked severe combined immunodeficiency, SCIDX1. Hum. Mol. Genet. 2:1099–104
    [Google Scholar]
  17. 17. 
    Bousfiha A, Jeddane L, Picard C, Al-Herz W, Ailal F et al. 2020. Human inborn errors of immunity: 2019 update of the IUIS phenotypical classification. J. Clin. Immunol. 40:66–81
    [Google Scholar]
  18. 18. 
    Powell BR, Buist NR, Stenzel P. 1982. An X-linked syndrome of diarrhea, polyendocrinopathy, and fatal infection in infancy. J. Pediatr. 100:731–37
    [Google Scholar]
  19. 19. 
    Russell WL, Russell LB, Gower JS. 1959. Exceptional inheritance of a sex-linked gene in the mouse explained on the basis that the X/O sex-chromosome constitution is female. PNAS 45:554–60
    [Google Scholar]
  20. 20. 
    Bennett CL, Yoshioka R, Kiyosawa H, Barker DF, Fain PR et al. 2000. X-linked syndrome of polyendocrinopathy, immune dysfunction, and diarrhea maps to Xp11.23-Xq13.3. Am. J. Hum. Genet. 66:461–68
    [Google Scholar]
  21. 21. 
    Ferguson PJ, Blanton SH, Saulsbury FT, McDuffie MJ, Lemahieu V et al. 2000. Manifestations and linkage analysis in X-linked autoimmunity-immunodeficiency syndrome. Am. J. Med. Genet. 90:390–97
    [Google Scholar]
  22. 22. 
    Brunkow ME, Jeffery EW, Hjerrild KA, Paeper B, Clark LB et al. 2001. Disruption of a new forkhead/winged-helix protein, scurfin, results in the fatal lymphoproliferative disorder of the scurfy mouse. Nat. Genet. 27:68–73
    [Google Scholar]
  23. 23. 
    Bennett CL, Christie J, Ramsdell F, Brunkow ME, Ferguson PJ et al. 2001. The immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome (IPEX) is caused by mutations of FOXP3. Nat. Genet. 27:20–21
    [Google Scholar]
  24. 24. 
    Chatila TA, Blaeser F, Ho N, Lederman HM, Voulgaropoulos C et al. 2000. JM2, encoding a fork head–related protein, is mutated in X-linked autoimmunity–allergic disregulation syndrome. J. Clin. Investig. 106:R75–81
    [Google Scholar]
  25. 25. 
    Wildin RS, Ramsdell F, Peake J, Faravelli F, Casanova J-L et al. 2001. X-linked neonatal diabetes mellitus, enteropathy and endocrinopathy syndrome is the human equivalent of mouse scurfy. Nat. Genet. 27:18–20
    [Google Scholar]
  26. 26. 
    Fontenot JD, Gavin MA, Rudensky AY. 2003. Foxp3 programs the development and function of CD4+CD25+ regulatory T cells. Nat. Immunol. 4:330–36
    [Google Scholar]
  27. 27. 
    Hori S, Nomura T, Sakaguchi S. 2003. Control of regulatory T cell development by the transcription factor Foxp3. . Science 299:1057–61
    [Google Scholar]
  28. 28. 
    Khattri R, Cox T, Yasayko S-A, Ramsdell F. 2003. An essential role for Scurfin in CD4+CD25+ T regulatory cells. Nat. Immunol. 4:337–42
    [Google Scholar]
  29. 29. 
    Ferre EMN, Rose SR, Rosenzweig SD, Burbelo PD, Romito KR et al. 2016. Redefined clinical features and diagnostic criteria in autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy. JCI Insight 1:13e88782
    [Google Scholar]
  30. 30. 
    Constantine GM, Lionakis MS. 2019. Lessons from primary immunodeficiencies: autoimmune regulator and autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy. Immunol. Rev. 287:103–20
    [Google Scholar]
  31. 31. 
    Aaltonen J, Björses P, Perheentupa J, Horelli–Kuitunen N, Palotie A et al. 1997. An autoimmune disease, APECED, caused by mutations in a novel gene featuring two PHD-type zinc-finger domains. Nat. Genet. 17:399–403
    [Google Scholar]
  32. 32. 
    Nagamine K, Peterson P, Scott HS, Kudoh J, Minoshima S et al. 1997. Positional cloning of the APECED gene. Nat. Genet. 17:393–98
    [Google Scholar]
  33. 33. 
    Derbinski J, Schulte A, Kyewski B, Klein L. 2001. Promiscuous gene expression in medullary thymic epithelial cells mirrors the peripheral self. Nat. Immunol. 2:1032–39
    [Google Scholar]
  34. 34. 
    Anderson MS, Venanzi ES, Klein L, Chen Z, Berzins SP et al. 2002. Projection of an immunological self shadow within the thymus by the aire protein. Science 298:1395–401
    [Google Scholar]
  35. 35. 
    Bacchetta R, Barzaghi F, Roncarolo M-G. 2018. From IPEX syndrome to FOXP3 mutation: a lesson on immune dysregulation. Ann. N. Y. Acad. Sci. 1417:5–22
    [Google Scholar]
  36. 36. 
    Gambineri E, Ciullini Mannurita S, Hagin D, Vignoli M, Anover-Sombke S et al. 2018. Clinical, immunological, and molecular heterogeneity of 173 patients with the phenotype of Immune Dysregulation, Polyendocrinopathy, Enteropathy, X-linked (IPEX) Syndrome. Front. Immunol. 9:2411
    [Google Scholar]
  37. 37. 
    Lu HY, Bauman BM, Arjunaraja S, Dorjbal B, Milner JD et al. 2018. The CBM-opathies—a rapidly expanding spectrum of human inborn errors of immunity caused by mutations in the CARD11-BCL10-MALT1 complex. Front. Immunol. 9:2078
    [Google Scholar]
  38. 38. 
    Thaventhiran JED, Lango Allen H, Burren OS, Rae W, Greene D et al. 2020. Whole-genome sequencing of a sporadic primary immunodeficiency cohort. Nature 583:90–95 Erratum. 2020. Nature 584:E2
    [Google Scholar]
  39. 39. 
    Holzelova E, Vonarbourg C, Stolzenberg MC, Arkwright PD, Selz F et al. 2004. Autoimmune lymphoproliferative syndrome with somatic Fas mutations. N. Engl. J. Med. 351:1409–18
    [Google Scholar]
  40. 40. 
    Tanaka N, Izawa K, Saito MK, Sakuma M, Oshima K et al. 2011. High incidence of NLRP3 somatic mosaicism in patients with chronic infantile neurologic, cutaneous, articular syndrome: results of an international multicenter collaborative study. Arthritis Rheum 63:3625–32
    [Google Scholar]
  41. 41. 
    Saito M, Nishikomori R, Kambe N, Fujisawa A, Tanizaki H et al. 2008. Disease-associated CIAS1 mutations induce monocyte death, revealing low-level mosaicism in mutation-negative cryopyrin-associated periodic syndrome patients. Blood 111:2132–41
    [Google Scholar]
  42. 42. 
    Mensa-Vilaro A, Bravo Garcia-Morato M, de la Calle-Martin O, Franco-Jarava C, Martinez-Saavedra MT et al. 2019. Unexpected relevant role of gene mosaicism in patients with primary immunodeficiency diseases. J. Allergy Clin. Immunol. 143:359–68
    [Google Scholar]
  43. 43. 
    Lukhele S, Boukhaled GM, Brooks DG. 2019. Type I interferon signaling, regulation and gene stimulation in chronic virus infection. Semin. Immunol. 43:101277
    [Google Scholar]
  44. 44. 
    Ciancanelli MJ, Abel L, Zhang SY, Casanova JL. 2016. Host genetics of severe influenza: from mouse Mx1 to human IRF7. Curr. Opin. Immunol. 38:109–20
    [Google Scholar]
  45. 45. 
    Sologuren I, Martínez-Saavedra MT, Solé-Violán J, de Borges de Oliveira E Jr., Betancor E et al. 2018. Lethal influenza in two related adults with inherited GATA2 deficiency. J. Clin. Immunol. 38:513–26
    [Google Scholar]
  46. 46. 
    Ciancanelli MJ, Huang SXL, Luthra P, Garner H, Itan Y et al. 2015. Life-threatening influenza and impaired interferon amplification in human IRF7 deficiency. Science 348:448–53
    [Google Scholar]
  47. 47. 
    Hernandez N, Melki I, Jing H, Habib T, Huang SSY et al. 2018. Life-threatening influenza pneumonitis in a child with inherited IRF9 deficiency. J. Exp. Med. 215:2567–85
    [Google Scholar]
  48. 48. 
    Honda K, Yanai H, Negishi H, Asagiri M, Sato M et al. 2005. IRF-7 is the master regulator of type-I interferon-dependent immune responses. Nature 434:772–77
    [Google Scholar]
  49. 49. 
    Bravo García-Morato M, Calvo Apalategi A, Bravo-Gallego LY, Blázquez Moreno A, Simón-Fuentes M et al. 2019. Impaired control of multiple viral infections in a family with complete IRF9 deficiency. J. Allergy Clin. Immunol. 144:309–12.e10
    [Google Scholar]
  50. 50. 
    Huber M, Suprunenko T, Ashhurst T, Marbach F, Raifer H et al. 2017. IRF9 prevents CD8+ T cell exhaustion in an extrinsic manner during acute lymphocytic choriomeningitis virus infection. J. Virol. 91:e01219–17
    [Google Scholar]
  51. 51. 
    Boisson-Dupuis S, Kong X-F, Okada S, Cypowyj S, Puel A et al. 2012. Inborn errors of human STAT1: allelic heterogeneity governs the diversity of immunological and infectious phenotypes. Curr. Opin. Immunol. 24:364–78
    [Google Scholar]
  52. 52. 
    Hambleton S, Goodbourn S, Young DF, Dickinson P, Mohamad SMB et al. 2013. STAT2 deficiency and susceptibility to viral illness in humans. PNAS 110:3053–58
    [Google Scholar]
  53. 53. 
    Eletto D, Burns SO, Angulo I, Plagnol V, Gilmour KC et al. 2016. Biallelic JAK1 mutations in immunodeficient patient with mycobacterial infection. Nat. Commun. 7:13992
    [Google Scholar]
  54. 54. 
    Kreins AY, Ciancanelli MJ, Okada S, Kong X-F, Ramírez-Alejo N et al. 2015. Human TYK2 deficiency: mycobacterial and viral infections without hyper-IgE syndrome. J. Exp. Med. 212:1641–62
    [Google Scholar]
  55. 55. 
    Duncan CJA, Mohamad SMB, Young DF, Skelton AJ, Leahy TR et al. 2015. Human IFNAR2 deficiency: lessons for antiviral immunity. Sci. Transl. Med. 7:307ra154
    [Google Scholar]
  56. 56. 
    Zhang S-Y, Jouanguy E, Ugolini S, Smahi A, Elain G et al. 2007. TLR3 deficiency in patients with herpes simplex encephalitis. Science 317:1522–27
    [Google Scholar]
  57. 57. 
    Zhang SY, Herman M, Ciancanelli MJ, Pérez de Diego R, Sancho-Shimizu V et al. 2013. TLR3 immunity to infection in mice and humans. Curr. Opin. Immunol. 25:19–33
    [Google Scholar]
  58. 58. 
    Zhang S-Y, Casanova J-L. 2015. Inborn errors underlying herpes simplex encephalitis: from TLR3 to IRF3. J. Exp. Med. 212:1342–43
    [Google Scholar]
  59. 59. 
    Jing H, Su HC. 2019. New immunodeficiency syndromes that help us understand the IFN-mediated antiviral immune response. Curr. Opin. Pediatr. 31:815–20
    [Google Scholar]
  60. 60. 
    Lim HK, Huang SXL, Chen J, Kerner G, Gilliaux O et al. 2019. Severe influenza pneumonitis in children with inherited TLR3 deficiency. J. Exp. Med. 216:2038–56
    [Google Scholar]
  61. 61. 
    Manthiram K, Zhou Q, Aksentijevich I, Kastner DL. 2017. The monogenic autoinflammatory diseases define new pathways in human innate immunity and inflammation. Nat. Immunol. 18:832–42
    [Google Scholar]
  62. 62. 
    Crow YJ. 2011. Type I interferonopathies: a novel set of inborn errors of immunity. Ann. N. Y. Acad. Sci. 1238:91–98
    [Google Scholar]
  63. 63. 
    Crow YJ, Chase DS, Lowenstein Schmidt J, Szynkiewicz M, Forte GM et al. 2015. Characterization of human disease phenotypes associated with mutations in TREX1, RNASEH2A, RNASEH2B, RNASEH2C, SAMHD1, ADAR, and IFIH1. Am. J. Med. Genet. A 167A:296–312
    [Google Scholar]
  64. 64. 
    Reich NC. 2019. Too much of a good thing: detrimental effects of interferon. Semin. Immunol. 43:101282
    [Google Scholar]
  65. 65. 
    Behrendt R, Roers A. 2014. Mouse models for Aicardi-Goutières syndrome provide clues to the molecular pathogenesis of systemic autoimmunity. Clin. Exp. Immunol. 175:9–16
    [Google Scholar]
  66. 66. 
    Mannion NM, Greenwood SM, Young R, Cox S, Brindle J et al. 2014. The RNA-editing enzyme ADAR1 controls innate immune responses to RNA. Cell Rep 9:1482–94
    [Google Scholar]
  67. 67. 
    Sanchez GAM, Reinhardt A, Ramsey S, Wittkowski H, Hashkes PJ et al. 2018. JAK1/2 inhibition with baricitinib in the treatment of autoinflammatory interferonopathies. J. Clin. Investig. 128:3041–52
    [Google Scholar]
  68. 68. 
    Barrat FJ, Crow MK, Ivashkiv LB. 2019. Interferon target-gene expression and epigenomic signatures in health and disease. Nat. Immunol. 20:1574–83
    [Google Scholar]
  69. 69. 
    de Jesus AA, Hou Y, Brooks S, Malle L, Biancotto A et al. 2020. Distinct interferon signatures and cytokine patterns define additional systemic autoinflammatory diseases. J. Clin. Investig. 130:1669–82
    [Google Scholar]
  70. 70. 
    Duncan CJA, Thompson BJ, Chen R, Rice GI, Gothe F et al. 2019. Severe type I interferonopathy and unrestrained interferon signaling due to a homozygous germline mutation in STAT2. . Sci. Immunol 4:eaav7501
    [Google Scholar]
  71. 71. 
    Meuwissen MEC, Schot R, Buta S, Oudesluijs G, Tinschert S et al. 2016. Human USP18 deficiency underlies type 1 interferonopathy leading to severe pseudo-TORCH syndrome. J. Exp. Med. 213:1163–74
    [Google Scholar]
  72. 72. 
    Zhang X, Bogunovic D, Payelle-Brogard B, Francois-Newton V, Speer SD et al. 2015. Human intracellular ISG15 prevents interferon-α/β over-amplification and auto-inflammation. Nature 517:89–93
    [Google Scholar]
  73. 73. 
    Bogunovic D, Byun M, Durfee LA, Abhyankar A, Sanal O et al. 2012. Mycobacterial disease and impaired IFN-γ immunity in humans with inherited ISG15 deficiency. Science 337:1684–88
    [Google Scholar]
  74. 74. 
    Morales DJ, Lenschow DJ. 2013. The antiviral activities of ISG15. J. Mol. Biol. 425:4995–5008
    [Google Scholar]
  75. 75. 
    Navon Elkan P, Pierce SB, Segel R, Walsh T, Barash J et al. 2014. Mutant adenosine deaminase 2 in a polyarteritis nodosa vasculopathy. N. Engl. J. Med. 370:921–31
    [Google Scholar]
  76. 76. 
    Zhou Q, Yang D, Ombrello AK, Zavialov AV, Toro C et al. 2014. Early-onset stroke and vasculopathy associated with mutations in ADA2. N. Engl. J. Med. 370:911–20
    [Google Scholar]
  77. 77. 
    Meyts I, Aksentijevich I. 2018. Deficiency of adenosine deaminase 2 (DADA2): updates on the phenotype, genetics, pathogenesis, and treatment. J. Clin. Immunol. 38:569–78
    [Google Scholar]
  78. 78. 
    Moens L, Hershfield M, Arts K, Aksentijevich I, Meyts I. 2019. Human adenosine deaminase 2 deficiency: a multi-faceted inborn error of immunity. Immunol. Rev. 287:62–72
    [Google Scholar]
  79. 79. 
    Lee PY, Kellner ES, Huang Y, Furutani E, Huang Z et al. 2020. Genotype and functional correlates of disease phenotype in deficiency of adenosine deaminase 2 (DADA2). J. Allergy Clin. Immunol. 145:1664–72.e10
    [Google Scholar]
  80. 80. 
    Rice GI, Melki I, Frémond ML, Briggs TA, Rodero MP et al. 2017. Assessment of type I interferon signaling in pediatric inflammatory disease. J. Clin. Immunol. 37:123–32
    [Google Scholar]
  81. 81. 
    Insalaco A, Moneta GM, Pardeo M, Caiello I, Messia V et al. 2019. Variable clinical phenotypes and relation of interferon signature with disease activity in ADA2 deficiency. J. Rheumatol. 46:523–26
    [Google Scholar]
  82. 82. 
    Aksentijevich I, Masters SL, Ferguson PJ, Dancey P, Frenkel J et al. 2009. An autoinflammatory disease with deficiency of the interleukin-1-receptor antagonist. N. Engl. J. Med. 360:2426–37
    [Google Scholar]
  83. 83. 
    Reddy S, Jia S, Geoffrey R, Lorier R, Suchi M et al. 2009. An autoinflammatory disease due to homozygous deletion of the IL1RN locus. N. Engl. J. Med. 360:2438–44
    [Google Scholar]
  84. 84. 
    Hirsch E, Irikura VM, Paul SM, Hirsh D. 1996. Functions of interleukin 1 receptor antagonist in gene knockout and overproducing mice. PNAS 93:11008–13
    [Google Scholar]
  85. 85. 
    Horai R, Saijo S, Tanioka H, Nakae S, Sudo K et al. 2000. Development of chronic inflammatory arthropathy resembling rheumatoid arthritis in interleukin 1 receptor antagonist-deficient mice. J. Exp. Med. 191:313–20
    [Google Scholar]
  86. 86. 
    Nicklin MJ, Hughes DE, Barton JL, Ure JM, Duff GW. 2000. Arterial inflammation in mice lacking the interleukin 1 receptor antagonist gene. J. Exp. Med. 191:303–12
    [Google Scholar]
  87. 87. 
    Shepherd J, Little MC, Nicklin MJ. 2004. Psoriasis-like cutaneous inflammation in mice lacking interleukin-1 receptor antagonist. J. Investig. Dermatol. 122:665–69
    [Google Scholar]
  88. 88. 
    Altiok E, Aksoy F, Perk Y, Taylan F, Kim PW et al. 2012. A novel mutation in the interleukin-1 receptor antagonist associated with intrauterine disease onset. Clin. Immunol. 145:77–81
    [Google Scholar]
  89. 89. 
    Marrakchi S, Guigue P, Renshaw BR, Puel A, Pei X-Y et al. 2011. Interleukin-36–receptor antagonist deficiency and generalized pustular psoriasis. N. Engl. J. Med. 365:620–28
    [Google Scholar]
  90. 90. 
    Carrier Y, Ma H-L, Ramon HE, Napierata L, Small C et al. 2011. Inter-regulation of Th17 cytokines and the IL-36 cytokines in vitro and in vivo: implications in psoriasis pathogenesis. J. Investig. Dermatol. 131:2428–37
    [Google Scholar]
  91. 91. 
    Blumberg H, Dinh H, Trueblood ES, Pretorius J, Kugler D et al. 2007. Opposing activities of two novel members of the IL-1 ligand family regulate skin inflammation. J. Exp. Med. 204:2603–14
    [Google Scholar]
  92. 92. 
    Tortola L, Rosenwald E, Abel B, Blumberg H, Schäfer M et al. 2012. Psoriasiform dermatitis is driven by IL-36–mediated DC-keratinocyte crosstalk. J. Clin. Investig. 122:3965–76
    [Google Scholar]
  93. 93. 
    Hospach T, Glowatzki F, Blankenburg F, Conzelmann D, Stirnkorb C et al. 2019. Scoping review of biological treatment of deficiency of interleukin-36 receptor antagonist (DITRA) in children and adolescents. Pediatr. Rheumatol. 17:37
    [Google Scholar]
  94. 94. 
    Watkin LB, Jessen B, Wiszniewski W, Vece TJ, Jan M et al. 2015. COPA mutations impair ER-Golgi transport and cause hereditary autoimmune-mediated lung disease and arthritis. Nat. Genet. 47:654–60
    [Google Scholar]
  95. 95. 
    Deng Z, Law CS, Ho FO, Wang KM, Jones KD et al. 2020. A defect in thymic tolerance causes T cell–mediated autoimmunity in a murine model of COPA syndrome. J. Immunol. 204:2360–73
    [Google Scholar]
  96. 96. 
    Chandrakasan S, Chandra S, Davila Saldana BJ, Torgerson TR, Buchbinder D 2019. Primary immune regulatory disorders for the pediatric hematologist and oncologist: a case-based review. Pediatr. Blood Cancer 66:e27619
    [Google Scholar]
  97. 97. 
    Chan AY, Leiding JW, Liu X, Logan BR, Burroughs LM et al. 2020. Hematopoietic cell transplantation in patients with Primary Immune Regulatory Disorders (PIRD): a Primary Immune Deficiency Treatment Consortium (PIDTC) survey. Front. Immunol. 11:239
    [Google Scholar]
  98. 98. 
    Flanagan SE, Haapaniemi E, Russell MA, Caswell R, Allen HL et al. 2014. Activating germline mutations in STAT3 cause early-onset multi-organ autoimmune disease. Nat. Genet. 46:812–14
    [Google Scholar]
  99. 99. 
    Haapaniemi EM, Kaustio M, Rajala HLM, van Adrichem AJ, Kainulainen L et al. 2015. Autoimmunity, hypogammaglobulinemia, lymphoproliferation, and mycobacterial disease in patients with activating mutations in STAT3. Blood 125:639–48
    [Google Scholar]
  100. 100. 
    Milner JD, Vogel TP, Forbes L, Ma CA, Stray-Pedersen A et al. 2015. Early-onset lymphoproliferation and autoimmunity caused by germline STAT3 gain-of-function mutations. Blood 125:591–99
    [Google Scholar]
  101. 101. 
    Fabre A, Marchal S, Barlogis V, Mari B, Barbry P et al. 2019. Clinical aspects of STAT3 gain-of-function germline mutations: a systematic review. J. Allergy Clin. Immunol. 7:1958–69.e9
    [Google Scholar]
  102. 102. 
    Gutiérrez M, Scaglia P, Keselman A, Martucci L, Karabatas L et al. 2018. Partial growth hormone insensitivity and dysregulatory immune disease associated with de novo germline activating STAT3 mutations. Mol. Cell Endocrinol. 473:166–77
    [Google Scholar]
  103. 103. 
    Jägle S, Heeg M, Grün S, Rensing-Ehl A, Maccari ME et al. 2020. Distinct molecular response patterns of activating STAT3 mutations associate with penetrance of lymphoproliferation and autoimmunity. Clin. Immunol. 210:108316
    [Google Scholar]
  104. 104. 
    Yao Z, Kanno Y, Kerenyi M, Stephens G, Durant L et al. 2007. Nonredundant roles for Stat5a/b in directly regulating Foxp3. Blood 109:4368–75
    [Google Scholar]
  105. 105. 
    Yang XP, Ghoreschi K, Steward-Tharp SM, Rodriguez-Canales J, Zhu J et al. 2011. Opposing regulation of the locus encoding IL-17 through direct, reciprocal actions of STAT3 and STAT5. Nat. Immunol. 12:247–54
    [Google Scholar]
  106. 106. 
    Pillemer BBL, Xu H, Oriss TB, Qi Z, Ray A. 2007. Deficient SOCS3 expression in CD4+CD25+FoxP3+ regulatory T cells and SOCS3-mediated suppression of Treg function. Eur. J. Immunol. 37:2082–89
    [Google Scholar]
  107. 107. 
    Vogel TP, Milner JD, Cooper MA. 2015. The ying and yang of STAT3 in human disease. J. Clin. Immunol. 35:615–23
    [Google Scholar]
  108. 108. 
    O'Shea JJ, Schwartz DM, Villarino AV, Gadina M, McInnes IB, Laurence A 2015. The JAK-STAT pathway: impact on human disease and therapeutic intervention. Annu. Rev. Med. 66:311–28
    [Google Scholar]
  109. 109. 
    Del Bel KL, Ragotte RJ, Saferali A, Lee S, Vercauteren SM et al. 2017. JAK1 gain-of-function causes an autosomal dominant immune dysregulatory and hypereosinophilic syndrome. J. Allergy Clin. Immunol. 139:2016–20.e5
    [Google Scholar]
  110. 110. 
    Delmonte OM, Schuetz C, Notarangelo LD. 2018. RAG deficiency: two genes, many diseases. J. Clin. Immunol. 38:646–55
    [Google Scholar]
  111. 111. 
    Lee YN, Frugoni F, Dobbs K, Tirosh I, Du L et al. 2016. Characterization of T and B cell repertoire diversity in patients with RAG deficiency. Sci. Immunol. 1:6eaah6109
    [Google Scholar]
  112. 112. 
    Farmer JR, Foldvari Z, Ujhazi B, De Ravin SS, Chen K et al. 2019. Outcomes and treatment strategies for autoimmunity and hyperinflammation in patients with RAG deficiency. J. Allergy Clin. Immunol. Pract. 7:1970–85.e4
    [Google Scholar]
  113. 113. 
    Villa A, Notarangelo LD. 2019. RAG gene defects at the verge of immunodeficiency and immune dysregulation. Immunol. Rev. 287:73–90
    [Google Scholar]
  114. 114. 
    Heimall JR, Hagin D, Hajjar J, Henrickson SE, Hernandez-Trujillo HS et al. 2018. Use of genetic testing for primary immunodeficiency patients. J. Clin. Immunol. 38:320–29
    [Google Scholar]
  115. 115. 
    Lenardo M, Lo B, Lucas CL. 2016. Genomics of immune diseases and new therapies. Annu. Rev. Immunol. 34:121–49
    [Google Scholar]
  116. 116. 
    Casanova JL, Conley ME, Seligman SJ, Abel L, Notarangelo LD 2014. Guidelines for genetic studies in single patients: lessons from primary immunodeficiencies. J. Exp. Med. 211:2137–49
    [Google Scholar]
  117. 117. 
    Kuehn HS, Ouyang W, Lo B, Deenick EK, Niemela JE et al. 2014. Immune dysregulation in human subjects with heterozygous germline mutations in CTLA4. Science 345:1623–27
    [Google Scholar]
  118. 118. 
    Schwab C, Gabrysch A, Olbrich P, Patiño V, Warnatz K et al. 2018. Phenotype, penetrance, and treatment of 133 cytotoxic T-lymphocyte antigen 4–insufficient subjects. J. Allergy Clin. Immunol. 142:1932–46
    [Google Scholar]
  119. 119. 
    Lopez-Herrera G, Tampella G, Pan-Hammarström Q, Herholz P, Trujillo-Vargas CM et al. 2012. Deleterious mutations in LRBA are associated with a syndrome of immune deficiency and autoimmunity. Am. J. Hum. Genet. 90:986–1001
    [Google Scholar]
  120. 120. 
    Gámez-Díaz L, August D, Stepensky P, Revel-Vilk S, Seidel MG et al. 2016. The extended phenotype of LPS-responsive beige-like anchor protein (LRBA) deficiency. J. Allergy Clin. Immunol. 137:223–30
    [Google Scholar]
  121. 121. 
    Lo B, Zhang K, Lu W, Zheng L, Zhang Q et al. 2015. Patients with LRBA deficiency show CTLA4 loss and immune dysregulation responsive to abatacept therapy. Science 349:436–40
    [Google Scholar]
  122. 122. 
    Lee S, Moon JS, Lee C-R, Kim H-E, Baek S-M et al. 2016. Abatacept alleviates severe autoimmune symptoms in a patient carrying a de novo variant in CTLA-4. J. Allergy Clin. Immunol. 137:327–30
    [Google Scholar]
  123. 123. 
    Leiding JW, Forbes LR. 2019. Mechanism-based precision therapy for the treatment of primary immunodeficiency and primary immunodysregulatory diseases. J. Allergy Clin. Immunol. 7:761–73
    [Google Scholar]
  124. 124. 
    Castagnoli R, Delmonte OM, Calzoni E, Notarangelo LD. 2019. Hematopoietic stem cell transplantation in primary immunodeficiency diseases: current status and future perspectives. Front. Pediatr. 7:295
    [Google Scholar]
  125. 125. 
    Uhlig HH, Schwerd T, Koletzko S, Shah N, Kammermeier J et al. 2014. The diagnostic approach to monogenic very early onset inflammatory bowel disease. Gastroenterology 147:990–1007.e3
    [Google Scholar]
  126. 126. 
    Charbit-Henrion F, Parlato M, Hanein S, Duclaux-Loras R, Nowak J et al. 2018. Diagnostic yield of next-generation sequencing in very early-onset inflammatory bowel diseases: a multicentre study. J. Crohn's Colitis 12:1104–12
    [Google Scholar]
  127. 127. 
    Glocker E-O, Frede N, Perro M, Sebire N, Elawad M et al. 2010. Infant colitis—it's in the genes. Lancet 376:1272
    [Google Scholar]
  128. 128. 
    Glocker EO, Kotlarz D, Boztug K, Gertz EM, Schäffer AA et al. 2009. Inflammatory bowel disease and mutations affecting the interleukin-10 receptor. N. Engl. J. Med. 361:2033–45
    [Google Scholar]
  129. 129. 
    Engelhardt KR, Shah N, Faizura-Yeop I, Kocacik Uygun DF, Frede N et al. 2013. Clinical outcome in IL-10– and IL-10 receptor–deficient patients with or without hematopoietic stem cell transplantation. J. Allergy Clin. Immunol. 131:825–30.e9
    [Google Scholar]
  130. 130. 
    Stray-Pedersen A, Sorte HS, Samarakoon P, Gambin T, Chinn IK et al. 2017. Primary immunodeficiency diseases: Genomic approaches delineate heterogeneous Mendelian disorders. J. Allergy Clin. Immunol. 139:232–45
    [Google Scholar]
  131. 131. 
    Lee H, Deignan JL, Dorrani N, Strom SP, Kantarci S et al. 2014. Clinical exome sequencing for genetic identification of rare Mendelian disorders. JAMA 312:1880–87
    [Google Scholar]
  132. 132. 
    Deng Q, Yoo SK, Cavnar PJ, Green JM, Huttenlocher A. 2011. Dual roles for Rac2 in neutrophil motility and active retention in zebrafish hematopoietic tissue. Dev. Cell 21:735–45
    [Google Scholar]
  133. 133. 
    Bifsha P, Leiding JW, Pai SY, Colamartino ABL, Hartog N et al. 2020. Diagnostic assay to assist clinical decisions for unclassified severe combined immune deficiency. Blood Adv 4:2606–10
    [Google Scholar]
/content/journals/10.1146/annurev-immunol-093019-124513
Loading
/content/journals/10.1146/annurev-immunol-093019-124513
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error