1932

Abstract

The immune system employs recognition tools to communicate with its microbial evolutionary partner. Among all the methods of microbial perception, T cells enable the widest spectrum of microbial recognition resolution, ranging from the crudest detection of whole groups of microbes to the finest detection of specific antigens. The application of this recognition capability to the crucial task of combatting infections has been the focus of classical immunology. We now appreciate that the coevolution of the immune system and the microbiota has led to development of a lush immunological decision tree downstream of microbial recognition, of which an inflammatory response is but one branch. In this review we discuss known T cell–microbe interactions in the gut and place them in the context of an algorithmic framework of recognition, context-dependent interpretation, and response circuits across multiple levels of microbial recognition resolution. The malleability of T cells in response to the microbiota presents an opportunity to edit immune response cellularity, identity, and functionality by utilizing microbiota-controlled pathways to promote human health.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-immunol-101320-011829
2022-04-26
2024-04-24
Loading full text...

Full text loading...

/deliver/fulltext/immunol/40/1/annurev-immunol-101320-011829.html?itemId=/content/journals/10.1146/annurev-immunol-101320-011829&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Ivanov II, Atarashi K, Manel N, Brodie EL, Shima T et al. 2009. Induction of intestinal Th17 cells by segmented filamentous bacteria. Cell 139:3485–98
    [Google Scholar]
  2. 2. 
    Gaboriau-Routhiau V, Rakotobe S, Lécuyer E, Mulder I, Lan A et al. 2009. The key role of segmented filamentous bacteria in the coordinated maturation of gut helper T cell responses. Immunity 31:4677–89
    [Google Scholar]
  3. 3. 
    Sczesnak A, Segata N, Qin X, Gevers D, Petrosino JF et al. 2011. The genome of Th17 cell–inducing segmented filamentous bacteria reveals extensive auxotrophy and adaptations to the intestinal environment. Cell Host Microbe 10:3260–72
    [Google Scholar]
  4. 4. 
    Atarashi K, Tanoue T, Ando M, Kamada N, Nagano Y et al. 2015. Th17 cell induction by adhesion of microbes to intestinal epithelial cells. Cell 163:2367–80
    [Google Scholar]
  5. 5. 
    Goto Y, Panea C, Nakato G, Cebula A, Lee C et al. 2014. Segmented filamentous bacteria antigens presented by intestinal dendritic cells drive mucosal Th17 cell differentiation. Immunity 40:4594–607
    [Google Scholar]
  6. 6. 
    Yang Y, Torchinsky MB, Gobert M, Xiong H, Xu M et al. 2014. Focused specificity of intestinal TH17 cells towards commensal bacterial antigens. Nature 510:7503152–56
    [Google Scholar]
  7. 7. 
    Ladinsky MS, Araujo LP, Zhang X, Veltri J, Galan-Diez M et al. 2019. Endocytosis of commensal antigens by intestinal epithelial cells regulates mucosal T cell homeostasis. Science 363:6431eaat4042
    [Google Scholar]
  8. 8. 
    Sano T, Huang W, Hall JA, Yang Y, Chen A et al. 2015. An IL-23R/IL-22 circuit regulates epithelial serum amyloid A to promote local effector Th17 responses. Cell 163:2381–93
    [Google Scholar]
  9. 9. 
    Lee J-Y, Hall JA, Kroehling L, Wu L, Najar T et al. 2020. Serum amyloid A proteins induce pathogenic Th17 cells and promote inflammatory disease. Cell 180:179–91.e16
    [Google Scholar]
  10. 10. 
    Chaudhry A, Samstein RM, Treuting P, Liang Y, Pils MC et al. 2011. Interleukin-10 signaling in regulatory T cells is required for suppression of Th17 cell–mediated inflammation. Immunity 34:4566–78
    [Google Scholar]
  11. 11. 
    Xu M, Pokrovskii M, Ding Y, Yi R, Au C et al. 2018. c-MAF-dependent regulatory T cells mediate immunological tolerance to a gut pathobiont. Nature 554:7692373–77
    [Google Scholar]
  12. 12. 
    Kumar P, Monin L, Castillo P, Elsegeiny W, Horne W et al. 2016. Intestinal interleukin-17 receptor signaling mediates reciprocal control of the gut microbiota and autoimmune inflammation. Immunity 44:3659–71
    [Google Scholar]
  13. 13. 
    Okada S, Markle JG, Deenick EK, Mele F, Averbuch D et al. 2015. Impairment of immunity to Candida and Mycobacterium in humans with bi-allelic RORC mutations. Science 349:6248606–13
    [Google Scholar]
  14. 14. 
    Li J, Casanova J-L, Puel A. 2018. Mucocutaneous IL-17 immunity in mice and humans: host defense versus excessive inflammation. Mucosal Immunol 11:3581–89
    [Google Scholar]
  15. 15. 
    Tan TG, Sefik E, Geva-Zatorsky N, Kua L, Naskar D et al. 2016. Identifying species of symbiont bacteria from the human gut that, alone, can induce intestinal Th17 cells in mice. PNAS 113:50E8141–50
    [Google Scholar]
  16. 16. 
    Ang QY, Alexander M, Newman JC, Tian Y, Cai J et al. 2020. Ketogenic diets alter the gut microbiome resulting in decreased intestinal Th17 cells. Cell 181:61263–75.e16
    [Google Scholar]
  17. 17. 
    Wilck N, Matus MG, Kearney SM, Olesen SW, Forslund K et al. 2017. Salt-responsive gut commensal modulates TH17 axis and disease. Nature 551:7682585–89
    [Google Scholar]
  18. 18. 
    Kleinewietfeld M, Manzel A, Titze J, Kvakan H, Yosef N et al. 2013. Sodium chloride drives autoimmune disease by the induction of pathogenic TH17 cells. Nature 496:7446518–22
    [Google Scholar]
  19. 19. 
    Wu C, Yosef N, Thalhamer T, Zhu C, Xiao S et al. 2013. Induction of pathogenic TH17 cells by inducible salt-sensing kinase SGK1. Nature 496:7446513–17
    [Google Scholar]
  20. 20. 
    Benakis C, Brea D, Caballero S, Faraco G, Moore J et al. 2016. Commensal microbiota affects ischemic stroke outcome by regulating intestinal γδ T cells. Nat. Med. 22:5516–23
    [Google Scholar]
  21. 21. 
    Sakaguchi S, Mikami N, Wing JB, Tanaka A, Ichiyama K, Ohkura N. 2020. Regulatory T cells and human disease. Annu. Rev. Immunol. 38:541–66
    [Google Scholar]
  22. 22. 
    Niec RE, Rudensky AY, Fuchs E. 2021. Inflammatory adaptation in barrier tissues. Cell 184:133361–75
    [Google Scholar]
  23. 23. 
    Tanoue T, Atarashi K, Honda K 2016. Development and maintenance of intestinal regulatory T cells. Nat. Rev. Immunol. 16:5295–309
    [Google Scholar]
  24. 24. 
    Wohlfert EA, Grainger JR, Bouladoux N, Konkel JE, Oldenhove G et al. 2011. GATA3 controls Foxp3+ regulatory T cell fate during inflammation in mice. J. Clin. Investig. 121:114503–15
    [Google Scholar]
  25. 25. 
    Schiering C, Krausgruber T, Chomka A, Fröhlich A, Adelmann K et al. 2014. The alarmin IL-33 promotes regulatory T-cell function in the intestine. Nature 513:7519564–68
    [Google Scholar]
  26. 26. 
    Stefka AT, Feehley T, Tripathi P, Qiu J, McCoy K et al. 2014. Commensal bacteria protect against food allergen sensitization. PNAS 111:3613145–50
    [Google Scholar]
  27. 27. 
    Atarashi K, Tanoue T, Oshima K, Suda W, Nagano Y et al. 2013. Treg induction by a rationally selected mixture of Clostridia strains from the human microbiota. Nature 500:7461232–36
    [Google Scholar]
  28. 28. 
    Atarashi K, Tanoue T, Shima T, Imaoka A, Kuwahara T et al. 2011. Induction of colonic regulatory T cells by indigenous Clostridium species. Science 331:6015337–41
    [Google Scholar]
  29. 29. 
    Sefik E, Geva-Zatorsky N, Oh S, Konnikova L, Zemmour D et al. 2015. Individual intestinal symbionts induce a distinct population of RORγ+ regulatory T cells. Science 349:6251993–97
    [Google Scholar]
  30. 30. 
    Chai JN, Peng Y, Rengarajan S, Solomon BD, Ai TL et al. 2017. Helicobacter species are potent drivers of colonic T cell responses in homeostasis and inflammation. Sci. Immunol. 2:13eaal5068
    [Google Scholar]
  31. 31. 
    Ansaldo E, Slayden LC, Ching KL, Koch MA, Wolf NK et al. 2019. Akkermansia muciniphila induces intestinal adaptive immune responses during homeostasis. Science 364:64461179–84
    [Google Scholar]
  32. 32. 
    Teng F, Klinger CN, Felix KM, Bradley CP, Wu E et al. 2016. Gut microbiota drive autoimmune arthritis by promoting differentiation and migration of Peyer's patch T follicular helper cells. Immunity 44:4875–88
    [Google Scholar]
  33. 33. 
    Atarashi K, Suda W, Luo C, Kawaguchi T, Motoo I et al. 2017. Ectopic colonization of oral bacteria in the intestine drives TH1 cell induction and inflammation. Science 358:6361359–65
    [Google Scholar]
  34. 34. 
    Nagayama M, Yano T, Atarashi K, Tanoue T, Sekiya M et al. 2020. TH1 cell–inducing Escherichia coli strain identified from the small intestinal mucosa of patients with Crohn's disease. Gut Microbes 12:11788898
    [Google Scholar]
  35. 35. 
    Lloyd-Price J, Arze C, Ananthakrishnan AN, Schirmer M, Avila-Pacheco J et al. 2019. Multi-omics of the gut microbial ecosystem in inflammatory bowel diseases. Nature 569:7758655–62
    [Google Scholar]
  36. 36. 
    Tanoue T, Morita S, Plichta DR, Skelly AN, Suda W et al. 2019. A defined commensal consortium elicits CD8 T cells and anti-cancer immunity. Nature 565:7741600–5
    [Google Scholar]
  37. 37. 
    Bachem A, Makhlouf C, Binger KJ, de Souza DP, Tull D et al. 2019. Microbiota-derived short-chain fatty acids promote the memory potential of antigen-activated CD8+ T cells. Immunity 51:2285–97.e5
    [Google Scholar]
  38. 38. 
    Naik S, Bouladoux N, Wilhelm C, Molloy MJ, Salcedo R et al. 2012. Compartmentalized control of skin immunity by resident commensals. Science 337:60981115–19
    [Google Scholar]
  39. 39. 
    Naik S, Bouladoux N, Linehan JL, Han S-J, Harrison OJ et al. 2015. Commensal–dendritic-cell interaction specifies a unique protective skin immune signature. Nature 520:7545104–8
    [Google Scholar]
  40. 40. 
    Linehan JL, Harrison OJ, Han S-J, Byrd AL, Vujkovic-Cvijin I et al. 2018. Non-classical immunity controls microbiota impact on skin immunity and tissue repair. Cell 172:784–96.e18
    [Google Scholar]
  41. 41. 
    Chen YE, Bouladoux N, Hurabielle C, Mattke AM, Belkaid Y, Fischbach MA. 2019. Decoding commensal–host communication through genetic engineering of Staphylococcus epidermidis. bioRxiv 664656. https://www.biorxiv.org/content/10.1101/664656v1
  42. 42. 
    Cervantes-Barragan L, Chai JN, Tianero MD, Di Luccia B, Ahern PP et al. 2017. Lactobacillus reuteri induces gut intraepithelial CD4+CD8αα+ T cells. Science 357:6353806–10
    [Google Scholar]
  43. 43. 
    Reis BS, Rogoz A, Costa-Pinto FA, Taniuchi I, Mucida D 2013. Mutual expression of the transcription factors Runx3 and ThPOK regulates intestinal CD4+ T cell immunity. Nat. Immunol. 14:3271–80
    [Google Scholar]
  44. 44. 
    Sujino T, London M, Hoytema van Konijnenburg DP, Rendon T, Buch T et al. 2016. Tissue adaptation of regulatory and intraepithelial CD4+ T cells controls gut inflammation. Science 352:62931581–86
    [Google Scholar]
  45. 45. 
    McDonald BD, Jabri B, Bendelac A 2018. Diverse developmental pathways of intestinal intraepithelial lymphocytes. Nat. Rev. Immunol. 18:8514–25
    [Google Scholar]
  46. 46. 
    Ribot JC, Lopes N, Silva-Santos B. 2021. γδ T cells in tissue physiology and surveillance. Nat. Rev. Immunol. 21:4221–32
    [Google Scholar]
  47. 47. 
    Hu B, Jin C, Zeng X, Resch JM, Jedrychowski MP et al. 2020. γδ T cells and adipocyte IL-17RC control fat innervation and thermogenesis. Nature 578:7796610–14
    [Google Scholar]
  48. 48. 
    Ribeiro M, Brigas HC, Temido-Ferreira M, Pousinha PA, Regen T et al. 2019. Meningeal γδ T cell–derived IL-17 controls synaptic plasticity and short-term memory. Sci. Immunol. 4:40eaay5199
    [Google Scholar]
  49. 49. 
    Nielsen MM, Witherden DA, Havran WL. 2017. γδ T cells in homeostasis and host defence of epithelial barrier tissues. Nat. Rev. Immunol. 17:12733–45
    [Google Scholar]
  50. 50. 
    Pellicci DG, Koay HF, Berzins SP. 2020. Thymic development of unconventional T cells: how NKT cells, MAIT cells and γδ T cells emerge. Nat. Rev. Immunol. 20:12756–70
    [Google Scholar]
  51. 51. 
    Eberl M. 2020. Antigen recognition by human γδ T cells: one step closer to knowing. Immunol. Cell Biol. 98:5351–54
    [Google Scholar]
  52. 52. 
    Ismail AS, Severson KM, Vaishnava S, Behrendt CL, Yu X et al. 2011. γδ intraepithelial lymphocytes are essential mediators of host–microbial homeostasis at the intestinal mucosal surface. PNAS 108:218743–48
    [Google Scholar]
  53. 53. 
    Chien YH, Meyer C, Bonneville M 2014. γδ T cells: first line of defense and beyond. Annu. Rev. Immunol. 32:121–55
    [Google Scholar]
  54. 54. 
    Bandeira A, Mota-Santos T, Itohara S, Degermann S, Heusser C et al. 1990. Localization of γ/δ T cells to the intestinal epithelium is independent of normal microbial colonization. J. Exp. Med. 172:1239–44
    [Google Scholar]
  55. 55. 
    Duan J, Chung H, Troy E, Kasper DL 2010. Microbial colonization drives expansion of IL-1 receptor 1–expressing and IL-17-producing γ/δ T cells. Cell Host Microbe 7:2140–50
    [Google Scholar]
  56. 56. 
    Chen YS, Chen IB, Pham G, Shao TY, Bangar H et al. 2020. IL-17-producing γδ T cells protect against Clostridium difficile infection. J. Clin. Investig. 130:52377–90
    [Google Scholar]
  57. 57. 
    Hoytema van Konijnenburg DP, Reis BS, Pedicord VA, Farache J, Victora GD, Mucida D. 2017. Intestinal epithelial and intraepithelial T cell crosstalk mediates a dynamic response to infection. Cell 171:783–94
    [Google Scholar]
  58. 58. 
    Semenkovich NP, Planer JD, Ahern PP, Griffin NW, Lin CY, Gordon JI. 2016. Impact of the gut microbiota on enhancer accessibility in gut intraepithelial lymphocytes. PNAS 113:5114805–10
    [Google Scholar]
  59. 59. 
    Godfrey DI, Koay HF, McCluskey J, Gherardin NA. 2019. The biology and functional importance of MAIT cells. Nat. Immunol. 20:91110–28
    [Google Scholar]
  60. 60. 
    Koay H-F, Gherardin NA, Xu C, Seneviratna R, Zhao Z et al. 2019. Diverse MR1-restricted T cells in mice and humans. Nat. Commun. 10:2243
    [Google Scholar]
  61. 61. 
    Kjer-Nielsen L, Patel O, Corbett AJ, Le Nours J, Meehan B et al. 2012. MR1 presents microbial vitamin B metabolites to MAIT cells. Nature 491:7426717–23
    [Google Scholar]
  62. 62. 
    Corbett AJ, Eckle SBG, Birkinshaw RW, Liu L, Patel O et al. 2014. T-cell activation by transitory neo-antigens derived from distinct microbial pathways. Nature 509:7500361–65
    [Google Scholar]
  63. 63. 
    Constantinides MG, Link VM, Tamoutounour S, Wong AC, Perez-Chaparro PJ et al. 2019. MAIT cells are imprinted by the microbiota in early life and promote tissue repair. Science 366:6464eaax6624
    [Google Scholar]
  64. 64. 
    Legoux F, Bellet D, Daviaud C, El Morr Y, Darbois A et al. 2019. Microbial metabolites control the thymic development of mucosal-associated invariant T cells. Science 366:6464494–99
    [Google Scholar]
  65. 65. 
    Provine NM, Amini A, Garner LC, Spencer AJ, Dold C et al. 2021. MAIT cell activation augments adenovirus vector vaccine immunogenicity. Science 371:6528521–26
    [Google Scholar]
  66. 66. 
    Crosby CM, Kronenberg M. 2018. Tissue-specific functions of invariant natural killer T cells. Nat. Rev. Immunol. 18:9559–74
    [Google Scholar]
  67. 67. 
    Olszak T, An D, Zeissig S, Vera MP, Richter J et al. 2012. Microbial exposure during early life has persistent effects on natural killer T cell function. Science 336:6080489–93
    [Google Scholar]
  68. 68. 
    An D, Oh SF, Olszak T, Neves JF, Avci FY et al. 2014. Sphingolipids from a symbiotic microbe regulate homeostasis of host intestinal natural killer T cells. Cell 156:1/2123–33
    [Google Scholar]
  69. 69. 
    Wieland Brown LC, Penaranda C, Kashyap PC, Williams BB, Clardy J et al. 2013. Production of α-galactosylceramide by a prominent member of the human gut microbiota. PLOS Biol 11:7e1001610
    [Google Scholar]
  70. 70. 
    Nieuwenhuis EES, Matsumoto T, Lindenbergh D, Willemsen R, Kaser A et al. 2009. Cd1d-dependent regulation of bacterial colonization in the intestine of mice. J. Clin. Investig. 119:51241–50
    [Google Scholar]
  71. 71. 
    Hegazy AN, West NR, Stubbington MJT, Wendt E, Suijker KIM et al. 2017. Circulating and tissue-resident CD4+ T cells with reactivity to intestinal microbiota are abundant in healthy individuals and function is altered during inflammation. Gastroenterology 153:51320–37.e16
    [Google Scholar]
  72. 72. 
    Belkaid Y, Hand TW. 2014. Role of the microbiota in immunity and inflammation. Cell 157:1121–41
    [Google Scholar]
  73. 73. 
    Chen YE, Atabakhsh K, Dimas A, Nagashima K, Fischbach MA. 2021. Eliciting a potent antitumor immune response by expressing tumor antigens in a skin commensal. bioRxiv 2021.02.17.431662. https://doi.org/10.1101/2021.02.17.431662
    [Crossref]
  74. 74. 
    Allaire JM, Crowley SM, Law HT, Chang S-Y, Ko H-J, Vallance BA. 2018. The intestinal epithelium: central coordinator of mucosal immunity. Trends Immunol 39:9677–96
    [Google Scholar]
  75. 75. 
    Schulz O, Pabst O. 2013. Antigen sampling in the small intestine. Trends Immunol 34:4155–61
    [Google Scholar]
  76. 76. 
    Neutra MR, Frey A, Kraehenbuhl J-P. 1996. Epithelial M cells: gateways for mucosal infection and immunization. Cell 86:3345–48
    [Google Scholar]
  77. 77. 
    Kanaya T, Williams IR, Ohno H 2020. Intestinal M cells: tireless samplers of enteric microbiota. Traffic 21:134–44
    [Google Scholar]
  78. 78. 
    Hase K, Kawano K, Nochi T, Pontes GS, Fukuda S et al. 2009. Uptake through glycoprotein 2 of FimH+ bacteria by M cells initiates mucosal immune response. Nature 462:7270226–30
    [Google Scholar]
  79. 79. 
    Rochereau N, Drocourt D, Perouzel E, Pavot V, Redelinghuys P et al. 2013. Dectin-1 is essential for reverse transcytosis of glycosylated SIgA–antigen complexes by intestinal M cells. PLOS Biol 11:9e1001658
    [Google Scholar]
  80. 80. 
    Mantis NJ, Rol N, Corthésy B 2011. Secretory IgA's complex roles in immunity and mucosal homeostasis in the gut. Mucosal Immunol 4:6603–11
    [Google Scholar]
  81. 81. 
    Kanaya T, Sakakibara S, Jinnohara T, Hachisuka M, Tachibana N et al. 2018. Development of intestinal M cells and follicle-associated epithelium is regulated by TRAF6-mediated NF-κB signaling. J. Exp. Med. 215:2501–19
    [Google Scholar]
  82. 82. 
    Ménard S, Cerf-Bensussan N, Heyman M. 2010. Multiple facets of intestinal permeability and epithelial handling of dietary antigens. Mucosal Immunol 3:3247–59
    [Google Scholar]
  83. 83. 
    Yoshida M, Kobayashi K, Kuo TT, Bry L, Glickman JN et al. 2006. Neonatal Fc receptor for IgG regulates mucosal immune responses to luminal bacteria. J. Clin. Investig. 116:82142–51
    [Google Scholar]
  84. 84. 
    Van Niel G, Mallegol J, Bevilacqua C, Candalh C, Brugière S et al. 2003. Intestinal epithelial exosomes carry MHC class II/peptides able to inform the immune system in mice. Gut 52:121690–97
    [Google Scholar]
  85. 85. 
    Cummings RJ, Barbet G, Bongers G, Hartmann BM, Gettler K et al. 2016. Different tissue phagocytes sample apoptotic cells to direct distinct homeostasis programs. Nature 539:7630565–69
    [Google Scholar]
  86. 86. 
    Jang MH, Kweon M-N, Iwatani K, Yamamoto M, Terahara K et al. 2004. Intestinal villous M cells: an antigen entry site in the mucosal epithelium. PNAS 101:166110–15
    [Google Scholar]
  87. 87. 
    McDole JR, Wheeler LW, McDonald KG, Wang B, Konjufca V et al. 2012. Goblet cells deliver luminal antigen to CD103+ dendritic cells in the small intestine. Nature 483:7389345–49
    [Google Scholar]
  88. 88. 
    Knoop KA, Gustafsson JK, McDonald KG, Kulkarni DH, Coughlin PE et al. 2017. Microbial antigen encounter during a preweaning interval is critical for tolerance to gut bacteria. Sci. Immunol. 2:18eaao1314
    [Google Scholar]
  89. 89. 
    Rescigno M, Urbano M, Valzasina B, Francolini M, Rotta G et al. 2001. Dendritic cells express tight junction proteins and penetrate gut epithelial monolayers to sample bacteria. Nat. Immunol. 2:4361–67
    [Google Scholar]
  90. 90. 
    Niess JH, Brand S, Gu X, Landsman L, Jung S et al. 2005. CX3CR1-mediated dendritic cell access to the intestinal lumen and bacterial clearance. Science 307:5707254–58
    [Google Scholar]
  91. 91. 
    Chieppa M, Rescigno M, Huang AYC, Germain RN. 2006. Dynamic imaging of dendritic cell extension into the small bowel lumen in response to epithelial cell TLR engagement. J. Exp. Med. 203:132841–52
    [Google Scholar]
  92. 92. 
    Hadis U, Wahl B, Schulz O, Hardtke-Wolenski M, Schippers A et al. 2011. Intestinal tolerance requires gut homing and expansion of FoxP3+ regulatory T cells in the lamina propria. Immunity 34:2237–46
    [Google Scholar]
  93. 93. 
    Esterházy D, Loschko J, London M, Jove V, Oliveira TY, Mucida D. 2016. Classical dendritic cells are required for dietary antigen-mediated induction of peripheral Treg cells and tolerance. Nat. Immunol. 17:5545–55
    [Google Scholar]
  94. 94. 
    Esterházy D, Canesso MCC, Mesin L, Muller PA, de Castro TBR et al. 2019. Compartmentalized gut lymph node drainage dictates adaptive immune responses. Nature 569:7754126–30
    [Google Scholar]
  95. 95. 
    Russler-Germain EV, Yi J, Young S, Nutsch K, Wong HS et al. 2021. Gut Helicobacter presentation by multiple dendritic cell subsets enables context-specific regulatory T cell generation. eLife 10:e54792
    [Google Scholar]
  96. 96. 
    Coombes JL, Siddiqui KRR, Arancibia-Cárcamo CV, Hall J, Sun C-M et al. 2007. A functionally specialized population of mucosal CD103+ DCs induces Foxp3+ regulatory T cells via a TGF-β- and retinoic acid–dependent mechanism. J. Exp. Med. 204:81757–64
    [Google Scholar]
  97. 97. 
    Matteoli G, Mazzini E, Iliev ID, Mileti E, Fallarino F et al. 2010. Gut CD103+ dendritic cells express indoleamine 2,3-dioxygenase which influences T regulatory/T effector cell balance and oral tolerance induction. Gut 59:5595–604
    [Google Scholar]
  98. 98. 
    Sun C-M, Hall JA, Blank RB, Bouladoux N, Oukka M et al. 2007. Small intestine lamina propria dendritic cells promote de novo generation of Foxp3 Treg cells via retinoic acid. J. Exp. Med. 204:81775–85
    [Google Scholar]
  99. 99. 
    Edelson BT, KC W, Juang R, Kohyama M, Benoit LA et al. 2010. Peripheral CD103+ dendritic cells form a unified subset developmentally related to CD8α+ conventional dendritic cells. J. Exp. Med. 207:4823–36
    [Google Scholar]
  100. 100. 
    Lewis KL, Caton ML, Bogunovic M, Greter M, Grajkowska LT et al. 2011. Notch2 receptor signaling controls functional differentiation of dendritic cells in the spleen and intestine. Immunity 35:5780–91
    [Google Scholar]
  101. 101. 
    Ginhoux F, Liu K, Helft J, Bogunovic M, Greter M et al. 2009. The origin and development of nonlymphoid tissue CD103+ DCs. J. Exp. Med. 206:133115–30
    [Google Scholar]
  102. 102. 
    Persson EK, Uronen-Hansson H, Semmrich M, Rivollier A, Hägerbrand K et al. 2013. IRF4 transcription-factor-dependent CD103+CD11b+ dendritic cells drive mucosal T helper 17 cell differentiation. Immunity 38:5958–69
    [Google Scholar]
  103. 103. 
    Schlitzer A, McGovern N, Teo P, Zelante T, Atarashi K et al. 2013. IRF4 transcription factor–dependent CD11b+ dendritic cells in human and mouse control mucosal IL-17 cytokine responses. Immunity 38:5970–83
    [Google Scholar]
  104. 104. 
    Grainger JR, Askenase MH, Guimont-Desrochers F, da Fonseca DM, Belkaid Y. 2014. Contextual functions of antigen-presenting cells in the gastrointestinal tract. Immunol. Rev. 259:175–87
    [Google Scholar]
  105. 105. 
    Panea C, Farkas AM, Goto Y, Abdollahi-Roodsaz S, Lee C et al. 2015. Intestinal monocyte-derived macrophages control commensal-specific Th17 responses. Cell Rep 12:81314–24
    [Google Scholar]
  106. 106. 
    Bogunovic M, Ginhoux F, Helft J, Shang L, Hashimoto D et al. 2009. Origin of the lamina propria dendritic cell network. Immunity 31:3513–25
    [Google Scholar]
  107. 107. 
    Yona S, Kim K-W, Wolf Y, Mildner A, Varol D et al. 2013. Fate mapping reveals origins and dynamics of monocytes and tissue macrophages under homeostasis. Immunity 38:179–91
    [Google Scholar]
  108. 108. 
    Ginhoux F, Jung S 2014. Monocytes and macrophages: developmental pathways and tissue homeostasis. Nat. Rev. Immunol. 14:6392–404
    [Google Scholar]
  109. 109. 
    Shaw TN, Houston SA, Wemyss K, Bridgeman HM, Barbera TA et al. 2018. Tissue-resident macrophages in the intestine are long lived and defined by Tim-4 and CD4 expression. J. Exp. Med. 215:61507–18
    [Google Scholar]
  110. 110. 
    Leonardi I, Li X, Semon A, Li D, Doron I et al. 2018. CX3CR1+ mononuclear phagocytes control immunity to intestinal fungi. Science 359:6372232–36
    [Google Scholar]
  111. 111. 
    Hohl TM, Rivera A, Lipuma L, Gallegos A, Shi C et al. 2009. Inflammatory monocytes facilitate adaptive CD4 T cell responses during respiratory fungal infection. Cell Host Microbe 6:5470–81
    [Google Scholar]
  112. 112. 
    Koscsó B, Kurapati S, Rodrigues RR, Nedjic J, Gowda K et al. 2020. Gut-resident CX3CR1hi macrophages induce tertiary lymphoid structures and IgA response in situ. Sci. Immunol. 5:46eaax0062
    [Google Scholar]
  113. 113. 
    Geem D, Medina-Contreras O, McBride M, Newberry RD, Koni PA, Denning TL. 2014. Specific microbiota-induced intestinal Th17 differentiation requires MHC class II but not GALT and mesenteric lymph nodes. J. Immunol. 193:1431–38
    [Google Scholar]
  114. 114. 
    Mayer L. 2000. Epithelial cell antigen presentation. Curr. Opin. Gastroenterol. 16:6531–35
    [Google Scholar]
  115. 115. 
    Biton M, Haber AL, Rogel N, Burgin G, Beyaz S et al. 2018. T helper cell cytokines modulate intestinal stem cell renewal and differentiation. Cell 175:51307–20.e22
    [Google Scholar]
  116. 116. 
    Koyama M, Mukhopadhyay P, Schuster IS, Henden AS, Hülsdünker J et al. 2019. MHC class II antigen presentation by the intestinal epithelium initiates graft-versus-host disease and is influenced by the microbiota. Immunity 51:5885–98.e7
    [Google Scholar]
  117. 117. 
    Bilate AM, London M, Castro TBR, Mesin L, Bortolatto J et al. 2020. T cell receptor is required for differentiation, but not maintenance, of intestinal CD4+ intraepithelial lymphocytes. Immunity 53:51001–14.e20
    [Google Scholar]
  118. 118. 
    Umesaki Y, Okada Y, Matsumoto S, Imaoka A, Setoyama H. 1995. Segmented filamentous bacteria are indigenous intestinal bacteria that activate intraepithelial lymphocytes and induce MHC class II molecules and fucosyl asialo GM1 glycolipids on the small intestinal epithelial cells in the ex-germ-free mouse. Microbiol. Immunol. 39:8555–62
    [Google Scholar]
  119. 119. 
    Tuganbaev T, Mor U, Bashiardes S, Liwinski T, Nobs SP et al. 2020. Diet diurnally regulates small intestinal microbiome-epithelial-immune homeostasis and enteritis. Cell 182:61441–59.e21
    [Google Scholar]
  120. 120. 
    Hepworth MR, Fung TC, Masur SH, Kelsen JR, McConnell FM et al. 2015. Group 3 innate lymphoid cells mediate intestinal selection of commensal bacteria–specific CD4+ T cells. Science 348:62381031–35
    [Google Scholar]
  121. 121. 
    Oliphant CJ, Hwang YY, Walker JA, Salimi M, Wong SH et al. 2014. MHCII-mediated dialog between group 2 innate lymphoid cells and CD4+ T cells potentiates type 2 immunity and promotes parasitic helminth expulsion. Immunity 41:2283–95
    [Google Scholar]
  122. 122. 
    Mortha A, Chudnovskiy A, Hashimoto D, Bogunovic M, Spencer SP et al. 2014. Microbiota-dependent crosstalk between macrophages and ILC3 promotes intestinal homeostasis. Science 343:61781249288
    [Google Scholar]
  123. 123. 
    Mao K, Baptista AP, Tamoutounour S, Zhuang L, Bouladoux N et al. 2018. Innate and adaptive lymphocytes sequentially shape the gut microbiota and lipid metabolism. Nature 554:7691255–59
    [Google Scholar]
  124. 124. 
    Muller PA, Schneeberger M, Matheis F, Wang P, Kerner Z et al. 2020. Microbiota modulate sympathetic neurons via a gut–brain circuit. Nature 583:7816441–46
    [Google Scholar]
  125. 125. 
    Yissachar N, Zhou Y, Ung L, Lai NY, Mohan JF et al. 2017. An intestinal organ culture system uncovers a role for the nervous system in microbe-immune crosstalk. Cell 168:61135–48.e12
    [Google Scholar]
  126. 126. 
    Yan Y, Ramanan D, Rozenberg M, McGovern K, Rastelli D et al. 2021. Interleukin-6 produced by enteric neurons regulates the number and phenotype of microbe-responsive regulatory T cells in the gut. Immunity 54:3499–513.e5
    [Google Scholar]
  127. 127. 
    Teratani T, Mikami Y, Nakamoto N, Suzuki T, Harada Y et al. 2020. The liver-brain-gut neural arc maintains the Treg cell niche in the gut. Nature 585:7826591–96
    [Google Scholar]
  128. 128. 
    Di Giovangiulio M, Bosmans G, Meroni E, Stakenborg N, Florens M et al. 2016. Vagotomy affects the development of oral tolerance and increases susceptibility to develop colitis independently of α-7 nicotinic receptor. Mol. Med. 22:1464–76
    [Google Scholar]
  129. 129. 
    Arpaia N, Campbell C, Fan X, Dikiy S, van der Veeken J et al. 2013. Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation. Nature 504:7480451–55
    [Google Scholar]
  130. 130. 
    Smith PM, Howitt MR, Panikov N, Michaud M, Gallini CA et al. 2013. The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis. Science 341:6145569–73
    [Google Scholar]
  131. 131. 
    Furusawa Y, Obata Y, Fukuda S, Endo TA, Nakato G et al. 2013. Commensal microbe–derived butyrate induces the differentiation of colonic regulatory T cells. Nature 504:7480446–50
    [Google Scholar]
  132. 132. 
    Tan J, McKenzie C, Vuillermin PJ, Goverse G, Vinuesa CG et al. 2016. Dietary fiber and bacterial SCFA enhance oral tolerance and protect against food allergy through diverse cellular pathways. Cell Rep 15:122809–24
    [Google Scholar]
  133. 133. 
    Singh N, Gurav A, Sivaprakasam S, Brady E, Padia R et al. 2014. Activation of Gpr109a, receptor for niacin and the commensal metabolite butyrate, suppresses colonic inflammation and carcinogenesis. Immunity 40:1128–39
    [Google Scholar]
  134. 134. 
    Wahlström A, Sayin SI, Marschall H-UU, Bäckhed F. 2016. Intestinal crosstalk between bile acids and microbiota and its impact on host metabolism. Cell Metab 24:141–50
    [Google Scholar]
  135. 135. 
    Devlin AS, Fischbach MA. 2015. A biosynthetic pathway for a prominent class of microbiota-derived bile acids. Nat. Chem. Biol. 11:9685–90
    [Google Scholar]
  136. 136. 
    Paik D, Yao L, Zhang Y, Bae S, D'Agostino GD et al. 2021. Human gut bacteria produce TH17-modulating bile acid metabolites. bioRxiv 2021.01.08.425913. https://doi.org/10.1101/2021.01.08.425913
    [Crossref]
  137. 137. 
    Sato Y, Atarashi K, Plichta DR, Arai Y, Sasajima S et al. 2021. Novel bile acid biosynthetic pathways are enriched in the microbiome of centenarians. Nature 599:458–64
    [Google Scholar]
  138. 138. 
    Li W, Hang S, Fang Y, Bae S, Zhang Y et al. 2021. A bacterial bile acid metabolite modulates Treg activity through the nuclear hormone receptor NR4A1. Cell Host Microbe 29:91366–77.e9
    [Google Scholar]
  139. 139. 
    Quinn RA, Melnik AV, Vrbanac A, Fu T, Patras KA et al. 2020. Global chemical effects of the microbiome include new bile-acid conjugations. Nature 579:123–29
    [Google Scholar]
  140. 140. 
    Song X, Sun X, Oh SF, Wu M, Zhang Y et al. 2020. Microbial bile acid metabolites modulate gut RORγ+ regulatory T cell homeostasis. Nature 577:410–15
    [Google Scholar]
  141. 141. 
    Campbell C, McKenney PT, Konstantinovsky D, Isaeva OI, Schizas M et al. 2020. Bacterial metabolism of bile acids promotes generation of peripheral regulatory T cells. Nature 581:475–79
    [Google Scholar]
  142. 142. 
    Hang S, Paik D, Yao L, Kim E, Jamma T et al. 2019. Bile acid metabolites control TH17 and Treg cell differentiation. Nature 576:7785143–48
    [Google Scholar]
  143. 143. 
    Kumar S, Sandell LL, Trainor PA, Koentgen F, Duester G 2012. Alcohol and aldehyde dehydrogenases: retinoid metabolic effects in mouse knockout models. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 1821:1198–205
    [Google Scholar]
  144. 144. 
    Cha H-R, Chang S-Y, Chang J-H, Kim J-O, Yang J-Y et al. 2010. Downregulation of Th17 cells in the small intestine by disruption of gut flora in the absence of retinoic acid. J. Immunol. 184:126799–806
    [Google Scholar]
  145. 145. 
    Schiering C, Wincent E, Metidji A, Iseppon A, Li Y et al. 2017. Feedback control of AHR signalling regulates intestinal immunity. Nature 542:7640242–45
    [Google Scholar]
  146. 146. 
    Iyer SS, Gensollen T, Gandhi A, Oh SF, Neves JF et al. 2018. Dietary and microbial oxazoles induce intestinal inflammation by modulating aryl hydrocarbon receptor responses. Cell 173:51123–34.e11
    [Google Scholar]
  147. 147. 
    Puleston DJ, Baixauli F, Sanin DE, Edwards-Hicks J, Villa M et al. 2021. Polyamine metabolism is a central determinant of helper T cell lineage fidelity. Cell 184:164186–202.e20
    [Google Scholar]
  148. 148. 
    Man K, Kallies A 2015. Synchronizing transcriptional control of T cell metabolism and function. Nat. Rev. Immunol. 15:9574–84
    [Google Scholar]
  149. 149. 
    Almeida L, Lochner M, Berod L, Sparwasser T. 2016. Metabolic pathways in T cell activation and lineage differentiation. Semin. Immunol. 28:5514–24
    [Google Scholar]
  150. 150. 
    MacIver NJ, Michalek RD, Rathmell JC. 2013. Metabolic regulation of T lymphocytes. Annu. Rev. Immunol. 31:259–83
    [Google Scholar]
  151. 151. 
    Wang R, Dillon CP, Shi LZ, Milasta S, Carter R et al. 2011. The transcription factor Myc controls metabolic reprogramming upon T lymphocyte activation. Immunity 35:6871–82
    [Google Scholar]
  152. 152. 
    Frauwirth KA, Riley JL, Harris MH, Parry RV, Rathmell JC et al. 2002. The CD28 signaling pathway regulates glucose metabolism. Immunity 16:6769–77
    [Google Scholar]
  153. 153. 
    Chang CH, Curtis JD, Maggi LB, Faubert B, Villarino AV et al. 2013. Posttranscriptional control of T cell effector function by aerobic glycolysis. Cell 153:61239–51
    [Google Scholar]
  154. 154. 
    Pearce EL, Walsh MC, Cejas PJ, Harms GM, Shen H et al. 2009. Enhancing CD8 T-cell memory by modulating fatty acid metabolism. Nature 460:7251103–7
    [Google Scholar]
  155. 155. 
    Shi LZ, Wang R, Huang G, Vogel P, Neale G et al. 2011. HIF1α-dependent glycolytic pathway orchestrates a metabolic checkpoint for the differentiation of TH17 and Treg cells. J. Exp. Med. 208:71367–76
    [Google Scholar]
  156. 156. 
    Dang EV, Barbi J, Yang HY, Jinasena D, Yu H et al. 2011. Control of TH17/Treg balance by hypoxia-inducible factor 1. Cell 146:5772–84
    [Google Scholar]
  157. 157. 
    Tannahill GM, Curtis AM, Adamik J, Palsson-Mcdermott EM, McGettrick AF et al. 2013. Succinate is an inflammatory signal that induces IL-1β through HIF-1α. Nature 496:7444238–42
    [Google Scholar]
  158. 158. 
    Mills EL, Kelly B, Logan A, Costa ASH, Varma M et al. 2016. Succinate dehydrogenase supports metabolic repurposing of mitochondria to drive inflammatory macrophages. Cell 167:2457–70.e13
    [Google Scholar]
  159. 159. 
    Fu G, Guy CS, Chapman NM, Palacios G, Wei J et al. 2021. Metabolic control of TFH cells and humoral immunity by phosphatidylethanolamine. Nature 595:7869724–29
    [Google Scholar]
  160. 160. 
    Trompette A, Gollwitzer ES, Pattaroni C, Lopez-Mejia IC, Riva E et al. 2018. Dietary fiber confers protection against flu by shaping Ly6c patrolling monocyte hematopoiesis and CD8+ T cell metabolism. Immunity 48:5992–1005.e8
    [Google Scholar]
  161. 161. 
    Donohoe DR, Garge N, Zhang X, Sun W, O'Connell TM et al. 2011. The microbiome and butyrate regulate energy metabolism and autophagy in the mammalian colon. Cell Metab 13:5517–26
    [Google Scholar]
  162. 162. 
    Michaudel C, Sokol H. 2020. The gut microbiota at the service of immunometabolism. Cell Metab 32:4514–23
    [Google Scholar]
  163. 163. 
    Sun S, Luo L, Liang W, Yin Q, Guo J et al. 2020. Bifidobacterium alters the gut microbiota and modulates the functional metabolism of T regulatory cells in the context of immune checkpoint blockade. PNAS 117:4427509–15
    [Google Scholar]
  164. 164. 
    Wu L, Hollinshead KER, Hao Y, Au C, Kroehling L et al. 2020. Niche-selective inhibition of pathogenic Th17 cells by targeting metabolic redundancy. Cell 182:3641–54.e20
    [Google Scholar]
  165. 165. 
    Zhao Q, Duck LW, Huang F, Alexander KL, Maynard CL et al. 2021. CD4+ T cell activation and concomitant mTOR metabolic inhibition can ablate microbiota-specific memory cells and prevent colitis. Sci. Immunol. 5:54eabc6373
    [Google Scholar]
  166. 166. 
    Li H, Limenitakis JP, Greiff V, Yilmaz B, Schären O et al. 2020. Mucosal or systemic microbiota exposures shape the B cell repertoire. Nature 584:7820274–78
    [Google Scholar]
  167. 167. 
    Pabst O, Slack E. 2020. IgA and the intestinal microbiota: the importance of being specific. Mucosal Immunol 13:112–21
    [Google Scholar]
  168. 168. 
    Kubinak JL, Petersen C, Stephens WZ, Soto R, Bake E et al. 2015. MyD88 signaling in T cells directs IgA-mediated control of the microbiota to promote health. Cell Host Microbe 17:2153–63
    [Google Scholar]
  169. 169. 
    Takeuchi T, Miyauchi E, Kanaya T, Kato T, Nakanishi Y et al. 2021. Acetate differentially regulates IgA reactivity to commensal bacteria. Nature 595:560–64
    [Google Scholar]
  170. 170. 
    Bunker JJ, Erickson SA, Flynn TM, Henry C, Koval JC et al. 2017. Natural polyreactive IgA antibodies coat the intestinal microbiota. Science 358:6361eaan6619
    [Google Scholar]
  171. 171. 
    Palm NW, de Zoete MR, Cullen TW, Barry NA, Stefanowski J et al. 2014. Immunoglobulin A coating identifies colitogenic bacteria in inflammatory bowel disease. Cell 158:51000–10
    [Google Scholar]
  172. 172. 
    Kawamoto S, Maruya M, Kato LM, Suda W, Atarashi K et al. 2014. Foxp3+ T cells regulate immunoglobulin A selection and facilitate diversification of bacterial species responsible for immune homeostasis. Immunity 41:1152–65
    [Google Scholar]
  173. 173. 
    Cullender TC, Chassaing B, Janzon A, Kumar K, Muller CE et al. 2013. Innate and adaptive immunity interact to quench microbiome flagellar motility in the gut. Cell Host Microbe 14:5571–81
    [Google Scholar]
  174. 174. 
    Weis AM, Round JL. 2021. Microbiota–antibody interactions that regulate gut homeostasis. Cell Host Microbe 29:3334–46
    [Google Scholar]
  175. 175. 
    Cahenzli J, Köller Y, Wyss M, Geuking MB, McCoy KD. 2013. Intestinal microbial diversity during early-life colonization shapes long-term IgE levels. Cell Host Microbe 14:5559–70
    [Google Scholar]
  176. 176. 
    Hong S-W, O E, Lee JY, Lee M, Han D et al. 2019. Food antigens drive spontaneous IgE elevation in the absence of commensal microbiota. Sci. Adv. 5:5eaaw1507
    [Google Scholar]
  177. 177. 
    Ishigame H, Kakuta S, Nagai T, Kadoki M, Nambu A et al. 2009. Differential roles of interleukin-17A and -17F in host defense against mucoepithelial bacterial infection and allergic responses. Immunity 30:1108–19
    [Google Scholar]
  178. 178. 
    Amezcua Vesely MC, Pallis P, Bielecki P, Low JS, Zhao J et al. 2019. Effector TH17 cells give rise to long-lived TRM cells that are essential for an immediate response against bacterial infection. Cell 178:51176–88.e15
    [Google Scholar]
  179. 179. 
    Harrison OJ, Linehan JL, Shih H-Y, Bouladoux N, Han S-J et al. 2019. Commensal-specific T cell plasticity promotes rapid tissue adaptation to injury. Science 363:6422eaat6280
    [Google Scholar]
  180. 180. 
    Kim S, Kim H, Yim YS, Ha S, Atarashi K et al. 2017. Maternal gut bacteria promote neurodevelopmental abnormalities in mouse offspring. Nature 549:7673528–32
    [Google Scholar]
  181. 181. 
    Omenetti S, Bussi C, Metidji A, Iseppon A, Lee S et al. 2019. The intestine harbors functionally distinct homeostatic tissue-resident and inflammatory Th17 cells. Immunity 51:177–89.e6
    [Google Scholar]
/content/journals/10.1146/annurev-immunol-101320-011829
Loading
/content/journals/10.1146/annurev-immunol-101320-011829
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error