1932

Abstract

Nearly all animal cells contain proteins evolved to trigger the destruction of the cell in which they reside. The activation of these proteins occurs via sequential programs, and much effort has been expended in delineating the molecular mechanisms underlying the resulting processes of programmed cell death (PCD). These efforts have led to the definition of apoptosis as a form of nonimmunogenic PCD that is required for normal development and tissue homeostasis, and of pyroptosis and necroptosis as forms of PCD initiated by pathogen infection that are associated with inflammation and immune activation. While this paradigm has served the field well, numerous recent studies have highlighted cross talk between these programs, challenging the idea that apoptosis, pyroptosis, and necroptosis are linear pathways with defined immunological outputs. Here, we discuss the emerging idea of cell death as a signaling network, considering connections between cell death pathways both as we observe them now and in their evolutionary origins. We also discuss the engagement and subversion of cell death pathways by pathogens, as well as the key immunological outcomes of these processes.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-immunol-112019-072301
2021-04-26
2024-04-20
Loading full text...

Full text loading...

/deliver/fulltext/immunol/39/1/annurev-immunol-112019-072301.html?itemId=/content/journals/10.1146/annurev-immunol-112019-072301&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Linkermann A, Green DR 2014. Necroptosis. N. Engl. J. Med. 370:5455–65
    [Google Scholar]
  2. 2. 
    Green DR. 2019. The coming decade of cell death research: five riddles. Cell 177:51094–107
    [Google Scholar]
  3. 3. 
    Ting A, Bertrand M. 2016. More to life than NF-κB in TNFR1 signaling. Trends Immunol 37:8535–45
    [Google Scholar]
  4. 4. 
    Czabotar P, Lessene G, Strasser A, Adams J. 2014. Control of apoptosis by the BCL-2 protein family: implications for physiology and therapy. Nat. Rev. Mol. Cell Biol. 15:149–63
    [Google Scholar]
  5. 5. 
    Hotchkiss R, Strasser A, McDunn J, Swanson P. 2009. Cell death. N. Engl. J. Med. 361:161570–83
    [Google Scholar]
  6. 6. 
    Blander J. 2014. A long-awaited merger of the pathways mediating host defence and programmed cell death. Nat. Rev. Immunol. 14:9601–18
    [Google Scholar]
  7. 7. 
    Broz P, Pelegrín P, Shao F. 2020. The gasdermins, a protein family executing cell death and inflammation. Nat. Rev. Immunol. 20:3143–57
    [Google Scholar]
  8. 8. 
    Green D, Llambi F. 2015. Cell death signaling. Cold Spring Harb. Perspect. Biol. 7:12a006080
    [Google Scholar]
  9. 9. 
    Hirschhorn T, Stockwell B. 2018. The development of the concept of ferroptosis. Free Radic. Biol. Med. 133:130–43
    [Google Scholar]
  10. 10. 
    Yousefi S, Stojkov D, Germic N, Simon D, Wang X et al. 2019. Untangling “NETosis” from NETs. Eur. J. Immunol. 49:2221–27
    [Google Scholar]
  11. 11. 
    Fais S, Overholtzer M. 2018. Cell-in-cell phenomena in cancer. Nat. Rev. Cancer 18:12758–66
    [Google Scholar]
  12. 12. 
    Krysko D, Garg A, Kaczmarek A, Krysko O, Agostinis P, Vandenabeele P. 2012. Immunogenic cell death and DAMPs in cancer therapy. Nat. Rev. Cancer 12:12860–75
    [Google Scholar]
  13. 13. 
    Pitt J, Kroemer G, Zitvogel L. 2017. Immunogenic and non-immunogenic cell death in the tumor microenvironment. Adv. Exp. Med. Biol. 1036:65–79
    [Google Scholar]
  14. 14. 
    Arandjelovic S, Ravichandran K. 2015. Phagocytosis of apoptotic cells in homeostasis. Nat. Immunol. 16:9907–17
    [Google Scholar]
  15. 15. 
    Kalkavan H, Green D. 2018. MOMP, cell suicide as a BCL-2 family business. Cell Death Differ 25:146–55
    [Google Scholar]
  16. 16. 
    Green D, Kroemer G. 2004. The pathophysiology of mitochondrial cell death. Science 305:5684626–29
    [Google Scholar]
  17. 17. 
    Jost P, Grabow S, Gray D, McKenzie M, Nachbur U et al. 2009. XIAP discriminates between type I and type II FAS-induced apoptosis. Nature 460:72581035–39
    [Google Scholar]
  18. 18. 
    Li P, Nijhawan D, Budihardjo I, Srinivasula S, Ahmad M et al. 1997. Cytochrome c and dATP-dependent formation of Apaf-1/Caspase-9 complex initiates an apoptotic protease cascade. Cell 91:4479–89
    [Google Scholar]
  19. 19. 
    Walczak H. 2013. Death receptor-ligand systems in cancer, cell death, and inflammation. Cold Spring Harb. Perspect. Biol. 5:5a008698
    [Google Scholar]
  20. 20. 
    Walczak H. 2011. TNF and ubiquitin at the crossroads of gene activation, cell death, inflammation, and cancer. Immunol. Rev. 244:19–28
    [Google Scholar]
  21. 21. 
    Wajant H. 2014. Principles and mechanisms of CD95 activation. Biol. Chem. 395:121401–16
    [Google Scholar]
  22. 22. 
    Miguel D. 2016. Onto better TRAILs for cancer treatment. Cell Death Differ 23:5733–47
    [Google Scholar]
  23. 23. 
    Muzio M, Chinnaiyan A, Kischkel F, O'Rourke K, Shevchenko A et al. 1996. FLICE, a novel FADD-homologous ICE/CED-3-like protease, is recruited to the CD95 (Fas/APO-1) death-inducing signaling complex. Cell 85:6817–27
    [Google Scholar]
  24. 24. 
    Jost P. 2012. Fas death receptor signalling: roles of Bid and XIAP. Cell Death Differ 19:142–50
    [Google Scholar]
  25. 25. 
    Bodmer J, French L. 1997. Inhibition of death receptor signals by cellular FLIP. Nature 388:6638190–95
    [Google Scholar]
  26. 26. 
    Taylor R, Cullen S, Martin S 2008. Apoptosis: controlled demolition at the cellular level. Nat. Rev. Mol. Cell Biol. 9:3231–41
    [Google Scholar]
  27. 27. 
    Bosurgi L, Hughes L, Rothlin C, Ghosh S. 2017. Death begets a new beginning. Immunol. Rev. 280:18–25
    [Google Scholar]
  28. 28. 
    Galimberti V, Rothlin C, Ghosh S. 2019. Funerals and feasts: the immunological rites of cell death. Yale J. Biol. Med. 92:4663–74
    [Google Scholar]
  29. 29. 
    Kazama H, Ricci J-E, Herndon JM, Hoppe G, Green DR, Ferguson TA. 2008. Induction of immunological tolerance by apoptotic cells requires caspase-dependent oxidation of high-mobility group box-1 protein. Immunity 29:121–32
    [Google Scholar]
  30. 30. 
    Rongvaux A, Jackson R, Harman CCD, Li T, West AP et al. 2014. Apoptotic caspases prevent the induction of type I interferons by mitochondrial DNA. Cell 159:71563–77
    [Google Scholar]
  31. 31. 
    Bosurgi L, Cao Y, Cabeza-Cabrerizo M, Tucci A, Hughes L et al. 2017. Macrophage function in tissue repair and remodeling requires IL-4 or IL-13 with apoptotic cells. Science 356:63421072–76
    [Google Scholar]
  32. 32. 
    Nagata S. 2010. Apoptosis and autoimmune diseases. Ann. N. Y. Acad. Sci. 1209:110–16
    [Google Scholar]
  33. 33. 
    Nagata S. 2018. Apoptosis and clearance of apoptotic cells. Annu. Rev. Immunol. 36:1489–517
    [Google Scholar]
  34. 34. 
    Elkon K. 2018. Review: cell death, nucleic acids, and immunity; inflammation beyond the grave. Arthritis Rheumatol. Hoboken N. J. 70:6805–16
    [Google Scholar]
  35. 35. 
    Cullen SP, Henry CM, Kearney CJ, Logue SE. 2013. Fas/CD95-induced chemokines can serve as “find-me” signals for apoptotic cells. Mol. Cell 49:61034–48
    [Google Scholar]
  36. 36. 
    Peterson LW, Philip NH, DeLaney A, Wynosky-Dolfi MA, Asklof K et al. 2017. RIPK1-dependent apoptosis bypasses pathogen blockade of innate signaling to promote immune defense. J. Exp. Med. 214:11jem.20170347
    [Google Scholar]
  37. 37. 
    Li J, McQuade T, Siemer AB, Napetschnig J, Moriwaki K et al. 2012. The RIP1/RIP3 necrosome forms a functional amyloid signaling complex required for programmed necrosis. Cell 150:2339–50
    [Google Scholar]
  38. 38. 
    Sun L, Wang H, Wang Z, He S, Chen S et al. 2012. Mixed lineage kinase domain-like protein mediates necrosis signaling downstream of RIP3 kinase. Cell 148:1–2213–27
    [Google Scholar]
  39. 39. 
    Huang D, Zheng X, Wang Z, Chen X, He W et al. 2017. The MLKL channel in necroptosis is an octamer formed by tetramers in a dyadic process. Mol. Cell. Biol. 37:5e00497–16
    [Google Scholar]
  40. 40. 
    Oberst A, Dillon CP, Weinlich R, McCormick LL, Fitzgerald P et al. 2011. Catalytic activity of the caspase-8-FLIP(L) complex inhibits RIPK3-dependent necrosis. Nature 471:7338363–67
    [Google Scholar]
  41. 41. 
    Kaiser WJ, Upton JW, Long AB, Livingston-Rosanoff D, Daley-Bauer LP et al. 2011. RIP3 mediates the embryonic lethality of caspase-8-deficient mice. Nature 471:7338368–72
    [Google Scholar]
  42. 42. 
    Newton K, Wickliffe KE, Dugger DL, Maltzman A, Roose-Girma M et al. 2019. Cleavage of RIPK1 by caspase-8 is crucial for limiting apoptosis and necroptosis. Nature 574:7778428–31
    [Google Scholar]
  43. 43. 
    Mocarski ES, Kaiser WJ, Livingston-Rosanoff D, Upton JW, Daley-Bauer LP. 2014. True grit: programmed necrosis in antiviral host defense, inflammation, and immunogenicity. J. Immunol. 192:52019–26
    [Google Scholar]
  44. 44. 
    Kaiser WJ, Upton JW, Mocarski ES. 2013. Viral modulation of programmed necrosis. Curr. Opin. Virol. 3:3296–306
    [Google Scholar]
  45. 45. 
    Rebsamen M, Heinz LX, Meylan E, Michallet M-C, Schroder K et al. 2009. DAI/ZBP1 recruits RIP1 and RIP3 through RIP homotypic interaction motifs to activate NF-κB. EMBO Rep 10:8916–22
    [Google Scholar]
  46. 46. 
    Upton JW, Kaiser WJ, Mocarski ES. 2012. DAI/ZBP1/DLM-1 complexes with RIP3 to mediate virus-induced programmed necrosis that is targeted by murine cytomegalovirus vIRA. Cell Host Microbe 11:3290–97
    [Google Scholar]
  47. 47. 
    Huang Z, Wu S-Q, Liang Y, Zhou X, Chen W et al. 2015. RIP1/RIP3 binding to HSV-1 ICP6 initiates necroptosis to restrict virus propagation in mice. Cell Host Microbe 17:2229–42
    [Google Scholar]
  48. 48. 
    Guo H, Omoto S, Harris PA, Finger JN, Bertin J et al. 2015. Herpes simplex virus suppresses necroptosis in human cells. Cell Host Microbe 17:2243–51
    [Google Scholar]
  49. 49. 
    Cho YS, Challa S, Moquin D, Genga R, TD Ray, Guildford M. 2009. Phosphorylation-driven assembly of the RIP1-RIP3 complex regulates programmed necrosis and virus-induced inflammation. Cell 137:61112–23
    [Google Scholar]
  50. 50. 
    Thapa RJ, Ingram JP, Ragan KB, Nogusa S, Boyd DF et al. 2016. DAI senses influenza A virus genomic RNA and activates RIPK3-dependent cell death. Cell Host Microbe 20:5674–81
    [Google Scholar]
  51. 51. 
    Zhang T, Yin C, Boyd D, Quarato G, Ingram J et al. 2020. Influenza virus Z-RNAs induce ZBP1-mediated necroptosis. Cell 180:61115–29.e13
    [Google Scholar]
  52. 52. 
    Daniels BP, Snyder AG, Olsen TM, Orozco S, Oguin TH et al. 2017. RIPK3 restricts viral pathogenesis via cell death-independent neuroinflammation. Cell 169:2301–13.e11
    [Google Scholar]
  53. 53. 
    Daniels BP, Kofman SB, Smith JR, Norris GT, Snyder AG et al. 2019. The nucleotide sensor ZBP1 and kinase RIPK3 induce the enzyme IRG1 to promote an antiviral metabolic state in neurons. Immunity 50:164–76.e4
    [Google Scholar]
  54. 54. 
    Kaiser WJ, Offermann MK. 2005. Apoptosis induced by the Toll-like receptor adaptor TRIF is dependent on its receptor interacting protein homotypic interaction motif. J Immunol 174:84942–52
    [Google Scholar]
  55. 55. 
    Kaczmarek A, Vandenabeele P, Krysko DV. 2013. Necroptosis: the release of damage-associated molecular patterns and its physiological relevance. Immunity 38:2209–23
    [Google Scholar]
  56. 56. 
    Pradeu T, Cooper EL. 2012. The danger theory: 20 years later. Front. Immunol. 3:287
    [Google Scholar]
  57. 57. 
    Matzinger P. 1994. Tolerance, danger, and the extended family. Annu. Rev. Immunol. 12:991–1045
    [Google Scholar]
  58. 58. 
    Janeway C Jr. 1989. Approaching the asymptote? Evolution and revolution in immunology. Cold Spring Harb. Symp. Quant. Biol. 54:Part 11–13
    [Google Scholar]
  59. 59. 
    Ahrens S, Zelenay S, Sancho D, Hanč P, Kjær S et al. 2012. F-actin is an evolutionarily conserved damage-associated molecular pattern recognized by DNGR-1, a receptor for dead cells. Immunity 36:4635–45
    [Google Scholar]
  60. 60. 
    Scaffidi P, Misteli T, Bianchi M. 2002. Release of chromatin protein HMGB1 by necrotic cells triggers inflammation. Nature 418:6894191–95
    [Google Scholar]
  61. 61. 
    Di Virgilio F, Dal Ben D, Sarti A, Giuliani A, Falzoni S. 2017. The P2X7 receptor in infection and inflammation. Immunity 47:115–31
    [Google Scholar]
  62. 62. 
    Lüthi A, Cullen S, McNeela E, Duriez P, Afonina I et al. 2009. Suppression of interleukin-33 bioactivity through proteolysis by apoptotic caspases. Immunity 31:184–98
    [Google Scholar]
  63. 63. 
    Yatim N, Jusforgues-Saklani H, Orozco S, Schulz O, da Silva RB et al. 2015. RIPK1 and NF-κB signaling in dying cells determines cross-priming of CD8+ T cells. Science 350:6258328–34
    [Google Scholar]
  64. 64. 
    Orozco SL, Daniels BP, Yatim N, Messmer MN, Quarato G et al. 2019. RIPK3 activation leads to cytokine synthesis that continues after loss of cell membrane integrity. Cell Rep 28:92275–87.e5
    [Google Scholar]
  65. 65. 
    Najjar M, Saleh D, Zelic M, Nogusa S, Shah S et al. 2016. RIPK1 and RIPK3 kinases promote cell-death-independent inflammation by Toll-like receptor 4. Immunity 45:146–59
    [Google Scholar]
  66. 66. 
    Yatim N, Cullen S, Albert ML. 2017. Dying cells actively regulate adaptive immune responses. Nat. Rev. Immunol. 17:4262–75
    [Google Scholar]
  67. 67. 
    Newton K, Dugger DL, Maltzman A, Greve JM, Hedehus M et al. 2016. RIPK3 deficiency or catalytically inactive RIPK1 provides greater benefit than MLKL deficiency in mouse models of inflammation and tissue injury. Cell Death Differ 23:91565–76
    [Google Scholar]
  68. 68. 
    Fink S, Cookson B. 2006. Caspase-1-dependent pore formation during pyroptosis leads to osmotic lysis of infected host macrophages. Cell Microbiol 8:111812–25
    [Google Scholar]
  69. 69. 
    Bergsbaken T, Fink SL, Cookson BT. 2009. Pyroptosis: host cell death and inflammation. Nat. Rev. Microbiol. 7:299–109
    [Google Scholar]
  70. 70. 
    Lamkanfi M, Dixit V. 2014. Mechanisms and functions of inflammasomes. Cell 157:51013–22
    [Google Scholar]
  71. 71. 
    Schroder K, Tschopp J. 2010. The inflammasomes. Cell 140:6821–32
    [Google Scholar]
  72. 72. 
    Jorgensen I, Miao E. 2015. Pyroptotic cell death defends against intracellular pathogens. Immunol. Rev. 265:1130–42
    [Google Scholar]
  73. 73. 
    Kayagaki N, Stowe IB, Lee BL, O'Rourke K, Anderson K et al. 2015. Caspase-11 cleaves gasdermin D for non-canonical inflammasome signalling. Nature 526:7575666–71
    [Google Scholar]
  74. 74. 
    Kayagaki N, Warming S, Lamkanfi M, Walle LV, Louie S et al. 2011. Non-canonical inflammasome activation targets caspase-11. Nature 479:7371117–21
    [Google Scholar]
  75. 75. 
    Kayagaki N, Wong MT, Stowe IB, Ramani SR, Gonzalez LC et al. 2013. Noncanonical inflammasome activation by intracellular LPS independent of TLR4. Science 341:61511246–49
    [Google Scholar]
  76. 76. 
    Shi J, Zhao Y, Wang Y, Gao W, Ding J et al. 2014. Inflammatory caspases are innate immune receptors for intracellular LPS. Nature 514:7521187–92
    [Google Scholar]
  77. 77. 
    Hornung V, Ablasser A, Charrel-Dennis M, Bauernfeind F, Horvath G et al. 2009. AIM2 recognizes cytosolic dsDNA and forms a caspase-1-activating inflammasome with ASC. Nature 458:7237514–18
    [Google Scholar]
  78. 78. 
    Zhao Y, Shao F. 2015. The NAIP-NLRC4 inflammasome in innate immune detection of bacterial flagellin and type III secretion apparatus. Immunol. Rev. 265:185–102
    [Google Scholar]
  79. 79. 
    Vance R. 2015. The NAIP/NLRC4 inflammasomes. Curr. Opin. Immunol. 32:84–89
    [Google Scholar]
  80. 80. 
    Cullen SP, Kearney CJ, Clancy DM, Martin SJ. 2015. Diverse activators of the NLRP3 inflammasome promote IL-1β secretion by triggering necrosis. Cell Rep 11:101535–48
    [Google Scholar]
  81. 81. 
    Srinivasula S, Poyet J, Razmara M, Datta P, Zhang Z, Alnemri E 2002. The PYRIN-CARD protein ASC is an activating adaptor for caspase-1. J. Biol. Chem. 277:2421119–22
    [Google Scholar]
  82. 82. 
    Shi J, Zhao Y, Wang K, Shi X, Wang Y et al. 2015. Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death. Nature 526:7575660–65
    [Google Scholar]
  83. 83. 
    Liu X, Zhang Z, Ruan J, Pan Y, Magupalli VG et al. 2016. Inflammasome-activated gasdermin D causes pyroptosis by forming membrane pores. Nature 535:7610153–58
    [Google Scholar]
  84. 84. 
    Liu Z, Wang C, Yang J, Zhou B, Yang R et al. 2019. Crystal structures of the full-length murine and human gasdermin D reveal mechanisms of autoinhibition, lipid binding, and oligomerization. Immunity 51:143–49.e4
    [Google Scholar]
  85. 85. 
    Liu Z, Wang C, Rathkey J, Yang J, Dubyak G et al. 2018. Structures of the gasdermin D C-terminal domains reveal mechanisms of autoinhibition. Structure 26:5778–84.e3
    [Google Scholar]
  86. 86. 
    Sims J, Smith D. 2010. The IL-1 family: regulators of immunity. Nat. Rev. Immunol. 10:289–102
    [Google Scholar]
  87. 87. 
    Boraschi D, Italiani P, Weil S, Martin M. 2017. The family of the interleukin-1 receptors. Immunol. Rev. 281:1197–232
    [Google Scholar]
  88. 88. 
    Garlanda C, Dinarello C, Mantovani A. 2013. The interleukin-1 family: back to the future. Immunity 39:61003–18
    [Google Scholar]
  89. 89. 
    Feng S, Yang Y, Mei Y, Ma L, Zhu D et al. 2007. Cleavage of RIP3 inactivates its caspase-independent apoptosis pathway by removal of kinase domain. Cell Signal 19:102056–67
    [Google Scholar]
  90. 90. 
    Mandal P, Berger SB, Pillay S, Moriwaki K, Huang C et al. 2014. RIP3 induces apoptosis independent of pronecrotic kinase activity. Mol. Cell 56:4481–95
    [Google Scholar]
  91. 91. 
    Nogusa S, Thapa RJ, Dillon CP, Liedmann S, Oguin TH et al. 2016. RIPK3 activates parallel pathways of MLKL-driven necroptosis and FADD-mediated apoptosis to protect against influenza A virus. Cell Host Microbe 20:113–24
    [Google Scholar]
  92. 92. 
    Upton JW, Kaiser WJ, Mocarski ES. 2010. Virus inhibition of RIP3-dependent necrosis. Cell Host Microbe 7:4302–13
    [Google Scholar]
  93. 93. 
    Skaletskaya A, Bartle L, Chittenden T, McCormick A, Mocarski E, Goldmacher V 2001. A cytomegalovirus-encoded inhibitor of apoptosis that suppresses caspase-8 activation. PNAS 98:147829–34
    [Google Scholar]
  94. 94. 
    Daley-Bauer L, Roback L, Crosby L, McCormick A, Feng Y et al. 2017. Mouse cytomegalovirus M36 and M45 death suppressors cooperate to prevent inflammation resulting from antiviral programmed cell death pathways. PNAS 114:13E2786–95
    [Google Scholar]
  95. 95. 
    Tsuchiya K, Nakajima S, Hosojima S, Nguyen D, Hattori T et al. 2019. Caspase-1 initiates apoptosis in the absence of gasdermin D. Nat. Commun. 10:12091
    [Google Scholar]
  96. 96. 
    Mascarenhas D, Cerqueira D, Pereira M, Castanheira F, Fernandes T et al. 2017. Inhibition of caspase-1 or gasdermin-D enable caspase-8 activation in the Naip5/NLRC4/ASC inflammasome. PLOS Pathog 13:8e1006502
    [Google Scholar]
  97. 97. 
    Opdenbosch N, Gorp H, Verdonckt M, Saavedra P, Vasconcelos NM et al. 2017. Caspase-1 engagement and TLR-induced c-FLIP expression suppress ASC/caspase-8-dependent apoptosis by inflammasome sensors NLRP1b and NLRC4. Cell Rep 21:123427–44
    [Google Scholar]
  98. 98. 
    Fritsch M, Günther S, Schwarzer R, Albert M, Schorn F et al. 2019. Caspase-8 is the molecular switch for apoptosis, necroptosis and pyroptosis. Nature 575:7784683–87
    [Google Scholar]
  99. 99. 
    Newton K, Wickliffe K, Maltzman A, Dugger D, Reja R et al. 2019. Activity of caspase-8 determines plasticity between cell death pathways. Nature 575:7784679–82
    [Google Scholar]
  100. 100. 
    Wang Y, Gao W, Shi X, Ding J, Liu W et al. 2017. Chemotherapy drugs induce pyroptosis through caspase-3 cleavage of a gasdermin. Nature 547:766199–103
    [Google Scholar]
  101. 101. 
    Shi J, Gao W, Shao F. 2017. Pyroptosis: gasdermin-mediated programmed necrotic cell death. Trends Biochem. Sci. 42:4245–54
    [Google Scholar]
  102. 102. 
    Gutierrez KD, Davis MA, Daniels BP, Olsen TM, Ralli-Jain P et al. 2017. MLKL activation triggers NLRP3-mediated processing and release of IL-1β independently of gasdermin-D. J. Immunol. 198:52156–64
    [Google Scholar]
  103. 103. 
    Conos S, Chen K, Nardo D, Hara H, Whitehead L et al. 2017. Active MLKL triggers the NLRP3 inflammasome in a cell-intrinsic manner. PNAS 114:6E961–69
    [Google Scholar]
  104. 104. 
    Christgen S, Zheng M, Kesavardhana S, Karki R, Malireddi R et al. 2020. Identification of the PANoptosome: a molecular platform triggering pyroptosis, apoptosis, and necroptosis (PAN-optosis). Front. Cell Infect. Microbiol. 10:237
    [Google Scholar]
  105. 105. 
    Ichinohe T, Lee HK, Ogura Y, Flavell R, Iwasaki A. 2009. Inflammasome recognition of influenza virus is essential for adaptive immune responses. J. Exp. Med. 206:179–87
    [Google Scholar]
  106. 106. 
    Ting J, Willingham S, Bergstralh D. 2008. NLRs at the intersection of cell death and immunity. Nat. Rev. Immunol. 8:5372–79
    [Google Scholar]
  107. 107. 
    Oberst A, Bender C, Green DR. 2008. Living with death: the evolution of the mitochondrial pathway of apoptosis in animals. Cell Death Differ 15:71139–46
    [Google Scholar]
  108. 108. 
    Dondelinger Y, Hulpiau P, Saeys Y, Bertrand MJM, Vandenabeele P. 2016. An evolutionary perspective on the necroptotic pathway. Trends Cell Biol 26:10721–32
    [Google Scholar]
  109. 109. 
    Kleino A, Ramia NF, Bozkurt G, Shen Y, Nailwal H et al. 2017. Peptidoglycan-sensing receptors trigger the formation of functional amyloids of the adaptor protein Imd to initiate Drosophila NF-κB signaling. Immunity 47:4635–47.e6
    [Google Scholar]
  110. 110. 
    Nailwal H, Chan F. 2019. Necroptosis in anti-viral inflammation. Cell Death Differ 26:14–13
    [Google Scholar]
  111. 111. 
    Kvansakul M, Caria S, Hinds M. 2017. The Bcl-2 family in host-virus interactions. Viruses 9:10290
    [Google Scholar]
  112. 112. 
    Man S, Karki R, Kanneganti T. 2017. Molecular mechanisms and functions of pyroptosis, inflammatory caspases and inflammasomes in infectious diseases. Immunol. Rev. 277:161–75
    [Google Scholar]
  113. 113. 
    Zhou X, Jiang W, Liu Z, Liu S, Liang X. 2017. Virus infection and death receptor-mediated apoptosis. Viruses 9:11316
    [Google Scholar]
  114. 114. 
    Upton J, Chan F. 2014. Staying alive: cell death in antiviral immunity. Mol. Cell. 54:2273–80
    [Google Scholar]
  115. 115. 
    Ray CA, Pickup DJ. 1996. The mode of death of pig kidney cells infected with cowpox virus is governed by the expression of the crmA gene. Virology 217:1384–91
    [Google Scholar]
  116. 116. 
    Ray CA, Black RA, Kronheim SR, Greenstreet TA, Sleath PR et al. 1992. Viral inhibition of inflammation: Cowpox virus encodes an inhibitor of the interleukin-1β converting enzyme. Cell 69:4597–604
    [Google Scholar]
  117. 117. 
    Smith G, Howard S, Chan Y. 1989. Vaccinia virus encodes a family of genes with homology to serine proteinase inhibitors. J. Gen. Virol. 70:92333–43
    [Google Scholar]
  118. 118. 
    Li M, Beg A. 2000. Induction of necrotic-like cell death by tumor necrosis factor alpha and caspase inhibitors: novel mechanism for killing virus-infected cells. J. Virol. 74:167470–77
    [Google Scholar]
  119. 119. 
    Wang G, Garvey T, Cohen J. 1999. The murine gammaherpesvirus-68 M11 protein inhibits Fas- and TNF-induced apoptosis. J. Gen. Virol. 80:102737–40
    [Google Scholar]
  120. 120. 
    Lima BD, May J, Marques S, Simas J, Stevenson P. 2005. Murine gammaherpesvirus 68 bcl-2 homologue contributes to latency establishment in vivo. J. Gen. Virol. 86:131–40
    [Google Scholar]
  121. 121. 
    Geiss G, An M, Bumgarner R, Hammersmark E, Cunningham D, Katze M. 2001. Global impact of influenza virus on cellular pathways is mediated by both replication-dependent and -independent events. J. Virol. 75:94321–31
    [Google Scholar]
  122. 122. 
    Omoto S, Guo H, Talekar GR, Roback L, Kaiser WJ, Mocarski ES. 2015. Suppression of RIP3-dependent necroptosis by human cytomegalovirus. J. Biol. Chem. 290:1811635–48
    [Google Scholar]
  123. 123. 
    Snyder AG, Hubbard NW, Messmer MN, Kofman SB, Hagan CE et al. 2019. Intratumoral activation of the necroptotic pathway components RIPK1 and RIPK3 potentiates antitumor immunity. Sci. Immunol. 4:36eaaw2004
    [Google Scholar]
  124. 124. 
    Kuriakose T, Kanneganti T. 2019. Pyroptosis in antiviral immunity. Curr. Top. Microbiol. Immunol. In press. https://doi.org/10.1007/82_2019_189
    [Crossref] [Google Scholar]
  125. 125. 
    Kesavardhana S, Kuriakose T, Guy CS, Samir P, Malireddi RKS et al. 2017. ZBP1/DAI ubiquitination and sensing of influenza vRNPs activate programmed cell death. J. Exp. Med. 214:82217–29
    [Google Scholar]
  126. 126. 
    Kuriakose T, Man SM, Malireddi RKS, Karki R, Kesavardhana S et al. 2016. ZBP1/DAI is an innate sensor of influenza virus triggering the NLRP3 inflammasome and programmed cell death pathways. Sci. Immunol. 1:2aag2045
    [Google Scholar]
  127. 127. 
    Segovia J, Sabbah A, Mgbemena V, Tsai S, Chang T et al. 2012. TLR2/MyD88/NF-κB pathway, reactive oxygen species, potassium efflux activates NLRP3/ASC inflammasome during respiratory syncytial virus infection. PLOS ONE 7:1e29695
    [Google Scholar]
  128. 128. 
    Maruzuru Y, Ichinohe T, Sato R, Miyake K, Okano T et al. 2018. Herpes simplex virus 1 VP22 inhibits AIM2-dependent inflammasome activation to enable efficient viral replication. Cell Host Microbe 23:2254–65.e7
    [Google Scholar]
  129. 129. 
    Rathinam V, Jiang Z, Waggoner S, Sharma S, Cole L et al. 2010. The AIM2 inflammasome is essential for host defense against cytosolic bacteria and DNA viruses. Nat. Immunol. 11:5395–402
    [Google Scholar]
  130. 130. 
    Thomas P, Dash P, Aldridge J, Ellebedy A, Reynolds C et al. 2009. The intracellular sensor NLRP3 mediates key innate and healing responses to influenza A virus via the regulation of caspase-1. Immunity 30:4566–75
    [Google Scholar]
  131. 131. 
    Allen IC, Scull MA, Moore CB, Holl EK, McElvania-TeKippe E et al. 2009. The NLRP3 inflammasome mediates in vivo innate immunity to influenza A virus through recognition of viral RNA. Immunity 30:4556–65
    [Google Scholar]
  132. 132. 
    Ramos HJ, Lanteri MC, Blahnik G, Negash A, Suthar MS et al. 2012. IL-1β signaling promotes CNS-intrinsic immune control of West Nile virus infection. PLOS Pathog 8:11e1003039
    [Google Scholar]
  133. 133. 
    Doitsh G, Galloway N, Geng X, Yang Z, Monroe K et al. 2014. Cell death by pyroptosis drives CD4 T-cell depletion in HIV-1 infection. Nature 505:7484509–14
    [Google Scholar]
  134. 134. 
    Dubois H, Sorgeloos F, Sarvestani S, Martens L, Saeys Y et al. 2019. Nlrp3 inflammasome activation and Gasdermin D-driven pyroptosis are immunopathogenic upon gastrointestinal norovirus infection. PLOS Pathog 15:4e1007709
    [Google Scholar]
  135. 135. 
    Berghe T, Gucht S. 2017. Impact of caspase-1/11, -3, -7, or IL-1β/IL-18 deficiency on rabies virus-induced macrophage cell death and onset of disease. Cell Death Discov 3:117012
    [Google Scholar]
  136. 136. 
    Fairbairn I. 2004. Macrophage apoptosis in host immunity to mycobacterial infections. Biochem. Soc. Trans. 32:3496–98
    [Google Scholar]
  137. 137. 
    Yrlid U, Wick M. 2000. Salmonella-induced apoptosis of infected macrophages results in presentation of a bacteria-encoded antigen after uptake by bystander dendritic cells. J. Exp. Med. 191:4613–24
    [Google Scholar]
  138. 138. 
    Janda J, Schöneberger P, Škoberne M, Messerle M, Rüssmann H, Geginat G. 2004. Cross-presentation of Listeria-derived CD8 T cell epitopes requires unstable bacterial translation products. J. Immunol. 173:95644–51
    [Google Scholar]
  139. 139. 
    Schaible U, Winau F, Sieling P, Fischer K, Collins H et al. 2003. Apoptosis facilitates antigen presentation to T lymphocytes through MHC-I and CD1 in tuberculosis. Nat. Med. 9:81039–46
    [Google Scholar]
  140. 140. 
    Banga S, Gao P, Shen X, Fiscus V, Zong W et al. 2007. Legionella pneumophila inhibits macrophage apoptosis by targeting pro-death members of the Bcl2 protein family. PNAS 104:125121–26
    [Google Scholar]
  141. 141. 
    Pirbhai M, Dong F, Zhong Y, Pan K, Zhong G. 2006. The secreted protease factor CPAF is responsible for degrading pro-apoptotic BH3-only proteins in Chlamydia trachomatis-infected cells. J. Biol. Chem. 281:4231495–501
    [Google Scholar]
  142. 142. 
    Dong F, Pirbhai M, Xiao Y, Zhong Y, Wu Y, Zhong G. 2005. Degradation of the proapoptotic proteins Bik, Puma, and Bim with Bcl-2 domain 3 homology in Chlamydia trachomatis-infected cells. Infect. Immun. 73:31861–64
    [Google Scholar]
  143. 143. 
    Günther S, Fritsch M, Seeger J, Schiffmann L, Snipas S et al. 2020. Cytosolic Gram-negative bacteria prevent apoptosis by inhibition of effector caspases through lipopolysaccharide. Nat. Microbiol. 5:2354–67
    [Google Scholar]
  144. 144. 
    Clifton D, Goss R, Sahni S, Antwerp D, Baggs R et al. 1998. NF-κB-dependent inhibition of apoptosis is essential for host cell survival during Rickettsia rickettsii infection. PNAS 95:84646–51
    [Google Scholar]
  145. 145. 
    Schwartz J, Barker J, Kaufman J, Fayram D, McCracken J, Allen L 2012. Francisella tularensis inhibits the intrinsic and extrinsic pathways to delay constitutive apoptosis and prolong human neutrophil lifespan. J. Immunol. 188:73351–63
    [Google Scholar]
  146. 146. 
    Liu Z, Zaki M, Vogel P, Gurung P, Finlay B et al. 2012. Role of inflammasomes in host defense against Citrobacter rodentium infection. J. Biol. Chem. 287:2016955–64
    [Google Scholar]
  147. 147. 
    Pereira M, Marques G, DelLama J, Zamboni D. 2011. The Nlrc4 inflammasome contributes to restriction of pulmonary infection by flagellated Legionella spp. that trigger pyroptosis. Front. Microbiol. 2:33
    [Google Scholar]
  148. 148. 
    Sansonetti P, Phalipon A, Arondel J, Thirumalai K, Banerjee S et al. 2000. Caspase-1 activation of IL-1β and IL-18 are essential for Shigella flexneri–induced inflammation. Immunity 12:5581–90
    [Google Scholar]
  149. 149. 
    Raupach B, Peuschel S, Monack D, Zychlinsky A. 2006. Caspase-1-mediated activation of interleukin-1β (IL-1β) and IL-18 contributes to innate immune defenses against Salmonella enterica serovar Typhimurium infection. Infect. Immun. 74:84922–26
    [Google Scholar]
  150. 150. 
    Broz P, Newton K, Lamkanfi M, Mariathasan S, Dixit V, Monack D. 2010. Redundant roles for inflammasome receptors NLRP3 and NLRC4 in host defense against Salmonella. J. Exp. Med. 207:81745–55
    [Google Scholar]
  151. 151. 
    Wren B. 2003. The Yersiniae—a model genus to study the rapid evolution of bacterial pathogens. Nat. Rev. Microbiol. 1:155–64
    [Google Scholar]
  152. 152. 
    Viboud G, Bliska J. 2005. Yersinia outer proteins: role in modulation of host cell signaling responses and pathogenesis. Annu. Rev. Microbiol. 59:69–89
    [Google Scholar]
  153. 153. 
    Brodsky I, Palm N, Sadanand S, Ryndak M, Sutterwala F et al. 2010. A Yersinia effector protein promotes virulence by preventing inflammasome recognition of the type III secretion system. Cell Host Microbe 7:5376–87
    [Google Scholar]
  154. 154. 
    Zwack E, Snyder A, Wynosky-Dolfi M, Ruthel G, Philip N et al. 2015. Inflammasome activation in response to the Yersinia type III secretion system requires hyperinjection of translocon proteins YopB and YopD. mBio 6:1e02095–14
    [Google Scholar]
  155. 155. 
    LaRock CN, Cookson BT. 2012. The Yersinia virulence effector YopM binds caspase-1 to arrest inflammasome assembly and processing. Cell Host Microbe 12:6799–805
    [Google Scholar]
  156. 156. 
    Chung L, Philip N, Schmidt V, Koller A, Strowig T et al. 2014. IQGAP1 is important for activation of caspase-1 in macrophages and is targeted by Yersinia pestis type III effector YopM. mBio 5:4e01402–14
    [Google Scholar]
  157. 157. 
    Mills S, Boland A, Sory M, Smissen P, Kerbourch C et al. 1997. Yersinia enterocolitica induces apoptosis in macrophages by a process requiring functional type III secretion and translocation mechanisms and involving YopP, presumably acting as an effectorprotein. PNAS 94:2312638–43
    [Google Scholar]
  158. 158. 
    Monack D, Mecsas J, Ghori N, Falkow S 1997. Yersinia signals macrophages to undergo apoptosis and YopJ is necessary for this celldeath. PNAS 94:1910385–90
    [Google Scholar]
  159. 159. 
    Palmer L, Hobbie S, Galán J, Bliska J. 1998. YopJ of Yersinia pseudotuberculosis is required for the inhibition of macrophage TNF-α production and downregulation of the MAP kinases p38 and JNK. Mol. Microbiol. 27:5953–65
    [Google Scholar]
  160. 160. 
    Orth K, Palmer L, Bao Z, Stewart S, Rudolph A et al. 1999. Inhibition of the mitogen-activated protein kinase kinase superfamily by a Yersinia effector. Science 285:54351920–23
    [Google Scholar]
  161. 161. 
    Philip NH, Dillon CP, Snyder AG, Fitzgerald P, Wynosky-Dolfi MA et al. 2014. Caspase-8 mediates caspase-1 processing and innate immune defense in response to bacterial blockade of NF-κB and MAPK signaling. PNAS 111:207385–90
    [Google Scholar]
  162. 162. 
    Weng D, Marty-Roix R, Ganesan S, Proulx MK, Vladimer GI et al. 2014. Caspase-8 and RIP kinases regulate bacteria-induced innate immune responses and cell death. PNAS 111:207391–96
    [Google Scholar]
  163. 163. 
    Batista J, Neto JF. 2017. Chromobacterium violaceum pathogenicity: updates and insights from genome sequencing of novel Chromobacterium species. Front. Microbiol. 8:2213
    [Google Scholar]
  164. 164. 
    Maltez VI, Tubbs AL, Cook KD, Aachoui Y, Falcone EL et al. 2015. Inflammasomes coordinate pyroptosis and natural killer cell cytotoxicity to clear infection by a ubiquitous environmental bacterium. Immunity 43:5987–97
    [Google Scholar]
  165. 165. 
    Gurung P, Kanneganti T. 2015. Novel roles for caspase-8 in IL-1β and inflammasome regulation. Am. J. Pathol. 185:117–25
    [Google Scholar]
  166. 166. 
    Kitur K, Wachtel S, Brown A, Wickersham M, Paulino F et al. 2016. Necroptosis promotes Staphylococcus aureus clearance by inhibiting excessive inflammatory signaling. Cell Rep 16:82219–30
    [Google Scholar]
  167. 167. 
    Robinson N, McComb S, Mulligan R, Dudani R, Krishnan L, Sad S. 2012. Type I interferon induces necroptosis in macrophages during infection with Salmonella enterica serovar Typhimurium. Nat. Immunol. 13:10954–62
    [Google Scholar]
  168. 168. 
    Pearson JS, Giogha C, Ong SY, Kennedy CL, Kelly M et al. 2013. A type III effector antagonizes death receptor signalling during bacterial gut infection. Nature 501:7466247–51
    [Google Scholar]
  169. 169. 
    Pearson J, Giogha C, Mühlen S, Nachbur U, Pham C et al. 2017. EspL is a bacterial cysteine protease effector that cleaves RHIM proteins to block necroptosis and inflammation. Nat. Microbiol. 2:416258
    [Google Scholar]
  170. 170. 
    Giampazolias E, Zunino B, Dhayade S, Bock F, Cloix C et al. 2017. Mitochondrial permeabilization engages NF-κB-dependent anti-tumour activity under caspase deficiency. Nat. Cell. Biol. 19:91116–29
    [Google Scholar]
  171. 171. 
    White MJ, McArthur K, Metcalf D, Lane RM, Cambier JC et al. 2014. Apoptotic caspases suppress mtDNA-induced STING-mediated type I IFN production. Cell 159:71549–62
    [Google Scholar]
  172. 172. 
    Hoecke L, Lint S, Roose K, Parys A, Vandenabeele P et al. 2018. Treatment with mRNA coding for the necroptosis mediator MLKL induces antitumor immunity directed against neo-epitopes. Nat. Commun. 9:13417
    [Google Scholar]
  173. 173. 
    Zhang Z, Zhang Y, Xia S, Kong Q, Li S et al. 2020. Gasdermin E suppresses tumour growth by activating anti-tumour immunity. Nature 579:7799415–20
    [Google Scholar]
  174. 174. 
    Wang Q, Wang Y, Ding J, Wang C, Zhou X et al. 2020. A bioorthogonal system reveals antitumour immune function of pyroptosis. Nature 579:7799421–26
    [Google Scholar]
  175. 175. 
    Zhou Z, He H, Wang K, Shi X, Wang Y et al. 2020. Granzyme A from cytotoxic lymphocytes cleaves GSDMB to trigger pyroptosis in target cells. Science 368:6494eaaz7548
    [Google Scholar]
  176. 176. 
    Liu Y, Fang Y, Chen X, Wang Z, Liang X et al. 2020. Gasdermin E-mediated target cell pyroptosis by CAR T cells triggers cytokine release syndrome. Sci. Immunol. 5:43eaax7969
    [Google Scholar]
/content/journals/10.1146/annurev-immunol-112019-072301
Loading
/content/journals/10.1146/annurev-immunol-112019-072301
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error