1932

Abstract

Unlike many species, song learning birds and humans have independently evolved the ability to communicate via learned vocalizations. Both birdsong and spoken language are culturally transmitted across generations, within species-specific constraints that leave room for considerable variation. We review the commonalities and differences between vocal learning bird species and humans, across behavioral, developmental, neuroanatomical, physiological, and genetic levels. We propose that cultural transmission of vocal repertoires is a natural consequence of the evolution of vocal learning and that at least some species-specific universals, as well as species differences in cultural transmission, are due to differences in vocal learning phenotypes, which are shaped by genetic constraints. We suggest that it is the balance between these constraints and features of the social environment that allows cultural learning to propagate. We describe new opportunities for exploring meaningful comparisons of birdsong and human vocal culture.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-linguistics-090420-121034
2021-01-04
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/linguistics/7/1/annurev-linguistics-090420-121034.html?itemId=/content/journals/10.1146/annurev-linguistics-090420-121034&mimeType=html&fmt=ahah

Literature Cited

  1. Adret P, Margoliash D. 2002. Metabolic and neural activity in the song system nucleus robustus archistriatalis: effect of age and gender. J. Comp. Neurol. 454:409–23
    [Google Scholar]
  2. Akçay Ç, Tom ME, Campbell SE, Beecher MD 2013. Song type matching is an honest early threat signal in a hierarchical animal communication system. Proc. R. Soc. B 280:20122517
    [Google Scholar]
  3. Aronov D, Andalman AS, Fee MS 2008. A specialized forebrain circuit for vocal babbling in the juvenile songbird. Science 320:630–34
    [Google Scholar]
  4. Arriaga G, Jarvis ED. 2013. Mouse vocal communication system: Are ultrasounds learned or innate?. Brain Lang 124:96–116
    [Google Scholar]
  5. Baker MC, Cunningham MA. 1985. The biology of bird-song dialects. Behav. Brain Sci. 8:85–100
    [Google Scholar]
  6. Baptista LF, Schuchmann KL. 1990. Song learning in the Anna hummingbird (Calypte anna). Ethology 84:15–26
    [Google Scholar]
  7. Baran NM, Peck SC, Kim TH, Goldstein MH, Adkins-Regan E 2017. Early life manipulations of vasopressin-family peptides alter vocal learning. Proc. R. Soc. B 284:20171114
    [Google Scholar]
  8. Beecher MD. 2017. Birdsong learning as a social process. Anim. Behav. 124:233–46
    [Google Scholar]
  9. Beecher MD, Brenowitz EA. 2005. Functional aspects of song learning in songbirds. Trends Ecol. Evol. 20:143–49
    [Google Scholar]
  10. Belyk M, Brown S. 2017. The origins of the vocal brain in humans. Neurosci. Biobehav. Rev. 77:177–93
    [Google Scholar]
  11. Benichov JI, Benezra SE, Vallentin D, Globerson E, Long MA, Tchernichovski O 2016. The forebrain song system mediates predictive call timing in female and male zebra finches. Curr. Biol. 26:309–18
    [Google Scholar]
  12. Berwick RC, Frierderici AD, Chomsky N, Bolhuis JJ 2013. Evolution, brain, and the nature of language. Trends Cogn. Sci. 17:89–98
    [Google Scholar]
  13. Bolhuis JJ, Okanoya K, Scharff C 2010. Twitter evolution: converging mechanisms in birdsong and human speech. Nat. Rev. Neurosci. 11:747–59
    [Google Scholar]
  14. Bouchard KE, Chang EF. 2014. Control of spoken vowel acoustics and the influence of phonetic context in human speech sensorimotor cortex. J. Neurosci. 34:12662–77
    [Google Scholar]
  15. Bradbury JW, Balsby TJS. 2016. The functions of vocal learning in parrots. Behav. Ecol. Sociobiol. 70:293–312
    [Google Scholar]
  16. Brainard MS, Doupe AJ. 2002. What songbirds teach us about learning. Nature 417:351–58
    [Google Scholar]
  17. Brenowitz EA, Arnold AA, Levin RN 1985. Neural correlates of female song in tropical duetting birds. Brain Res 343:104–12
    [Google Scholar]
  18. Brenowitz EA, Beecher MD. 2005. Song learning in birds: diversity and plasticity, opportunities and challenges. Trends Neurosci 28:127–32
    [Google Scholar]
  19. Brown ED, Farabaugh SM. 1997. What birds with complex social relationships can tell us about vocal learning: vocal sharing in avian groups. Social Influences on Vocal Development CT Snowdon, M Hausberger 98–127 Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  20. Bruner JS. 1975. The ontogenesis of speech acts. J. Child Lang. 2:1–19
    [Google Scholar]
  21. Cardin JA, Schmidt MF. 2003. Song system auditory responses are stable and highly tuned during sedation, rapidly modulated and unselective during wakefulness, and suppressed by arousal. J. Neurophysiol. 90:2884–99
    [Google Scholar]
  22. Carouso-Peck S, Goldstein MH. 2019. Female social feedback reveals non-imitative mechanisms of vocal learning in zebra finches. Curr. Biol. 29:631–36
    [Google Scholar]
  23. Carouso-Peck S, Menyhart O, DeVoogd TJ, Goldstein MH 2020. Contingent parental responses are naturally associated with zebra finch song learning. Anim. Behav. 165:123–32
    [Google Scholar]
  24. Castellucci GA, McGinley MJ, McCormick DA 2016. Knockout of Foxp2 disrupts vocal development in mice. Sci. Rep. 6:23305
    [Google Scholar]
  25. Catchpole CK, Slater PJB. 2003. Bird Song: Biological Themes and Variations New York: Cambridge Univ. Press
  26. Chabout J, Sarkar A, Dunson DB, Jarvis ED 2015. Male mice song syntax depends on social contexts and influences female preferences. Front. Behav. Neurosci. 9:76
    [Google Scholar]
  27. Chabout J, Sarkar A, Patel SR, Radden T, Dunson DB et al. 2016. A Foxp2 mutation implicated in human speech deficits alters sequencing of ultrasonic vocalizations in adult male mice. Front. Behav. Neurosci. 10:197
    [Google Scholar]
  28. Chakraborty M, Jarvis ED. 2015. Brain evolution by brain pathway duplication. Philos. Trans. R. Soc. B 370:20150056
    [Google Scholar]
  29. Choe HN, Tewari J, Zhu KW, Davenport M, Matsunami H, Jarvis ED 2020. Estrogen and sex-dependent loss of the vocal learning system in female zebra finches. bioRxiv 011932. https://doi.org/10.1101/2020.03.28.011932
    [Crossref]
  30. Cohen Y, Shen J, Semu D, Leman DP, Liberti WA III et al. 2020. Hidden neural states underlie canary song syntax. Nature 582:539–44
    [Google Scholar]
  31. Darwin C. 1871. The Descent of Man and Selection in Relation to Sex London: Murray
  32. Demartsev V, Strandburg-Peshkin A, Ruffner M, Manser M 2018. Vocal turn-taking in meerkat group calling sessions. Curr. Biol. 28:3661–66
    [Google Scholar]
  33. Derégnaucourt S, Poirier C, Van der Kant A, Van der Linden A, Gahr M 2013. Comparisons of different methods to train a young zebra finch (Taeniopygia guttata) to learn a song. J. Physiol. 107:210–18
    [Google Scholar]
  34. Doupe AJ, Kuhl PK. 1999. Birdsong and human speech: common themes and mechanisms. Annu. Rev. Neurosci. 22:567–631
    [Google Scholar]
  35. Eens M. 1997. Understanding the complex song of the European starling: an integrated ethological approach. Adv. Stud. Behav. 26:355–434
    [Google Scholar]
  36. Elie JE, Mariette MM, Soula HA, Griffith SC, Mathevon N, Vignal C 2010. Vocal communication at the nest between mates in wild zebra finches: a private vocal duet. Anim. Behav. 80:597–605
    [Google Scholar]
  37. Fee MS, Goldberg JH. 2011. A hypothesis for basal ganglia–dependent reinforcement learning in the songbird. Neuroscience 198:152–70
    [Google Scholar]
  38. Fee MS, Kozhevnikov AA, Hahnloser RHR 2004. Neural mechanisms of vocal sequence generation in the songbird. Ann. N. Y. Acad. Sci. 1016:153–70
    [Google Scholar]
  39. Feenders G, Liedvogel M, Rivas M, Zapka M, Horita H et al. 2008. Molecular mapping of movement-associated areas in the avian brain: a motor theory for vocal learning origin. PLOS ONE 3:e1768
    [Google Scholar]
  40. Fehér O, Ljubičić I, Suzuki K, Okanoya K, Tchernichovski O 2017. Statistical learning in songbirds: from self-tutoring to song culture. Philos. Trans. R. Soc. B 372:20160053
    [Google Scholar]
  41. Fehér O, Wang H, Saar S, Mitra PP, Tchernichovski O 2009. De novo establishment of wild-type song culture in the zebra finch. Nature 459:564–68
    [Google Scholar]
  42. Fitch WT. 2010. The Evolution of Language New York: Cambridge Univ. Press
  43. Fitch WT. 2017. Empirical approaches to the study of language evolution. Psychon. Bull. Rev. 24:3–33
    [Google Scholar]
  44. Fitch WT, Huber L, Bugnyar T 2010. Social cognition and the evolution of language: constructing cognitive phylogenies. Neuron 65:795–814
    [Google Scholar]
  45. Fortune ES, Rodríguez C, Li D, Ball GF, Coleman MJ 2011. Neural mechanisms for the coordination of duet singing in wrens. Science 334:666–70
    [Google Scholar]
  46. Freeberg TM, Duncan SD, Kast TL, Enstrom DA 1999. Cultural influences on female mate choice: an experimental test in cowbirds. Molothrus ater. Anim. Behav. 57:421–26
    [Google Scholar]
  47. Friederici AD, Chomsky N, Berwick RC, Moro A, Bolhuis JJ 2017. Language, mind and brain. Nat. Hum. Behav. 10:713–22
    [Google Scholar]
  48. Gahr M, Metzdorf R, Schmidl D, Wickler W 2008. Bi-directional sexual dimorphisms of the song control nucleus HVC in a songbird with unison song. PLOS ONE 3:e3073
    [Google Scholar]
  49. Gardner TJ, Naef F, Nottebohm F 2005. Freedom and rules: the acquisition and reprogramming of a bird's learned song. Science 308:1046–49
    [Google Scholar]
  50. Gaub S, Groszer M, Fisher SE, Ehret G 2010. The structure of innate vocalizations in Foxp2‐deficient mouse pups. Genes Brain Behav 9:390–401
    [Google Scholar]
  51. Geberzahn N, Gahr M. 2013. Song learning in male and female Uraeginthus cyanocephalus, a tropical songbird species. J. Comp. Psychol. 127:352–64
    [Google Scholar]
  52. Geberzahn N, Hultsch H. 2004. Rules of song development and their use in vocal interactions by birds with large repertoires. An. Acad. Bras. Ciênc. 76:209–18
    [Google Scholar]
  53. Goldstein MH, King AP, West MJ 2003. Social interaction shapes babbling: testing parallels between birdsong and speech. PNAS 100:8030–35
    [Google Scholar]
  54. Griffith SC, Buchanan KL. 2010. The zebra finch: the ultimate Australian supermodel. Emu 110:v–xii
    [Google Scholar]
  55. Grimsley JM, Monaghan JJ, Wenstrup JJ 2011. Development of social vocalizations in mice. PLOS ONE 6:e17460
    [Google Scholar]
  56. Gros-Louis J, West MJ, King AP 2010. Comparative perspectives on the missing link: communicative pragmatics. The Oxford Handbook of Developmental Behavioral Neuroscience, M Blumberg, J Freeman, S Robinson 684–707 Oxford, UK: Oxford Univ. Press
    [Google Scholar]
  57. Haesler S, Rochefort C, Georgi B, Licznerski P, Osten P, Scharff C 2007. Incomplete and inaccurate vocal imitation after knockdown of FoxP2 in songbird basal ganglia nucleus Area X. PLOS Biol 5:e321
    [Google Scholar]
  58. Hahnloser RHR, Kozhevnikov AA, Fee MS 2002. An ultra-sparse code underlies the generation of neural sequences in a songbird. Nature 419:65–70
    [Google Scholar]
  59. Hall ML. 2004. A review of hypotheses for the functions of avian duetting. Behav. Ecol. Sociobiol. 55:415–30
    [Google Scholar]
  60. Hall ML. 2009. A review of vocal duetting in birds. Adv. Study Behav. 40:67–121
    [Google Scholar]
  61. Haugen E. 1966. Dialect, language, nation. Am. Anthropol. 68:922–35
    [Google Scholar]
  62. Hausberger M. 1997. Social influences on song acquisition and sharing in the European starling (Sturnus vulgaris). Social Influences on Vocal Development CT Snowdon, M Hausberger 128–56 Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  63. Hauser MD, Chomsky N, Fitch WT 2002. The faculty of language: What is it, who has it, and how did it evolve?. Science 298:1569–79
    [Google Scholar]
  64. Henry L, Craig AJ, Lemasson A, Hausberger M 2015. Social coordination in animal vocal interactions. Is there any evidence of turn-taking? The starling as an animal model. Front. Psychol. 6:1416
    [Google Scholar]
  65. Hoffmann S, Trost L, Voigt C, Leitner S, Lemazina A et al. 2019. Duets recorded in the wild reveal that interindividually coordinated motor control enables cooperative behavior. Nat. Commun. 10:2577
    [Google Scholar]
  66. Horita H, Wada K, Rivas MV, Hara E, Jarvis ED 2010. The dusp1 immediate early gene is regulated by natural stimuli predominantly in sensory input neurons. J. Comp. Neurol. 518:2873–901
    [Google Scholar]
  67. Hultsch H, Todt D. 1981. Repertoire sharing and song-post distance in nightingales (Luscinia megarhynchos B.). Behav. Ecol. Sociobiol. 8:183–88
    [Google Scholar]
  68. Hultsch H, Todt D. 1989. Context memorization in the song learning of birds. Naturwissenschaften 76:584–86
    [Google Scholar]
  69. Hyland Bruno J. 2017. Song rhythm development in zebra finches PhD Thesis, City Univ. New York
  70. Hyland Bruno J, Tchernichovski O 2019. Regularities in zebra finch song beyond the repeated motif. Behav. Proc. 163:53–59
    [Google Scholar]
  71. Ibayashi K, Cardenas AR, Oya H, Kawasaki H, Kovach CK et al. 2020. Focal cortical surface cooling is a novel and safe method for intraoperative functional brain mapping. bioRxiv 104364. https://doi.org/10.1101/2020.05.20.104364
    [Crossref]
  72. Immelmann K. 1969. Song development in the zebra finch and other estrildid finches. Bird Vocalizations RA Hinde 64–74 Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  73. James LS, Sakata JT. 2017. Learning biases underlie “universals” in avian vocal sequencing. Curr. Biol. 27:3676–82
    [Google Scholar]
  74. James LS, Sun H, Wada K, Sakata JT 2020. Statistical learning for vocal sequence acquisition in a songbird. Sci. Rep. 10:2248
    [Google Scholar]
  75. Janik VM. 2014. Cetacean vocal learning and communication. Curr. Opin. Neurobiol. 28:60–65
    [Google Scholar]
  76. Janik VM, Slater PJB. 2000. The different roles of social learning in vocal communication. Anim. Behav. 60:1–11
    [Google Scholar]
  77. Jarvis ED. 2004. Learned birdsong and the neurobiology of human language. Ann. N. Y. Acad. Sci. 1016:749–77
    [Google Scholar]
  78. Jarvis ED. 2019. Evolution of vocal learning and spoken language. Science 366:50–54
    [Google Scholar]
  79. Jarvis ED, Mirarab S, Aberer AJ, Li B, Houde P et al. 2014. Whole-genome analyses resolve early branches in the tree of life of modern birds. Science 346:1320–31
    [Google Scholar]
  80. Jarvis ED, Ribeiro S, Da Silva ML, Ventura D, Vielliard J, Mello CV 2000. Behaviourally driven gene expression reveals song nuclei in hummingbird brain. Nature 406:628–32
    [Google Scholar]
  81. Jones CA, Duffy MK, Hoffman SA, Schultz-Darken NJ, Braun KM et al. 2018. Vocalization development in common marmosets for neurodegenerative translational modeling. Neurol. Res. 40:303–11
    [Google Scholar]
  82. Keen S, Meliza CD, Pilowsky J, Rubenstein DR 2016. Song in a social and sexual context: Vocalizations signal identity and rank in both sexes of a cooperative breeder. Front. Ecol. Evol. 4:46
    [Google Scholar]
  83. King AP, West MJ. 2002. The ontogeny of competence. Conceptions of Development R Lickliter, DJ Lewkowicz 77–103 Hove, UK: Psychology
    [Google Scholar]
  84. Knörnschild M. 2014. Vocal production learning in bats. Curr. Opin. Neurobiol. 28:80–85
    [Google Scholar]
  85. Kozhevnikov AA, Fee MS. 2007. Singing-related activity of identified HVC neurons in the zebra finch. J. Neurophysiol. 97:4271–83
    [Google Scholar]
  86. Lachlan RF, Ratmann O, Nowicki S 2018. Cultural conformity generates extremely stable traditions in bird song. Nat. Commun. 9:2417
    [Google Scholar]
  87. Langmore NE. 1998. Functions of duet and solo songs of female birds. Trends Ecol. Evol. 13:136–40
    [Google Scholar]
  88. Lattenkamp EZ, Vernes SC. 2018. Vocal learning: a language-relevant trait in need of a broad cross-species approach. Curr. Opin. Behav. Sci. 21:209–15
    [Google Scholar]
  89. Leonardo A, Fee MS. 2005. Ensemble coding of vocal control in birdsong. J. Neurosci. 256:52–61
    [Google Scholar]
  90. Levinson SC. 2016. Turn-taking in human communication-origins and implications for language processing. Trends Cogn. Sci. 20:6–14
    [Google Scholar]
  91. Liberti W, Markowitz JE, Perkins LN, Liberti DC, Leman DP et al. 2016. Unstable neurons underlie a stable learned behavior. Nat. Neurosci. 19:1665–71
    [Google Scholar]
  92. Lipkind D, Geambasu A, Levelt CC 2019. The development of structured vocalizations in songbirds and humans: a comparative analysis. Top. Cogn. Sci. 12:894–909
    [Google Scholar]
  93. Lipkind D, Marcus GF, Bemis DK, Sasahara K, Jacoby N et al. 2013. Stepwise acquisition of vocal combinatorial capacity in songbirds and human infants. Nature 498:104–8
    [Google Scholar]
  94. Lipkind D, Zai AT, Hanuschkin A, Marcus GF, Tchernichovski O, Hahnloser RHR 2017. Songbirds work around computational complexity by learning song vocabulary independently of sequence. Nat. Commun. 8:1247
    [Google Scholar]
  95. Liu WC, Gardner TJ, Nottebohm F 2004. Juvenile zebra finches can use multiple strategies to learn the same song. PNAS 10:18177–82
    [Google Scholar]
  96. Liu WC, Nottebohm F. 2007. A learning program that ensures prompt and versatile vocal imitation. PNAS 104:20398–403
    [Google Scholar]
  97. Liu WC, Wada K, Jarvis ED, Nottebohm F 2013. Rudimentary substrates for vocal learning in a suboscine. Nat. Commun. 4:2082
    [Google Scholar]
  98. Ljubičić I, Hyland Bruno J, Tchernichovski O 2016. Social influences on song learning. Curr. Opin. Behav. Sci. 7:101–7
    [Google Scholar]
  99. Logue DM, Hall ML. 2014. Migration and the evolution of duetting in songbirds. Proc. R. Soc. B 281:20140103
    [Google Scholar]
  100. Logue DM, Krupp DB. 2016. Duetting as a collective behavior. Front. Ecol. Evol. 4:7
    [Google Scholar]
  101. Logue DM, Stivers T. 2012. Squawk in interaction: a primer of conversation analysis for students of animal communication. Behaviour 149:1283–98
    [Google Scholar]
  102. Love J, Hoepfner A, Goller F 2019. Song feature specific analysis of isolate song reveals interspecific variation in learned components. Dev. Neurobiol. 79:350–69
    [Google Scholar]
  103. Lovell PV, Huizinga NA, Friedrich SR, Wirthlin M, Mello CV 2018. The constitutive differential transcriptome of a brain circuit for vocal learning. BMC Genom 19:231
    [Google Scholar]
  104. MacDougall-Shackleton EA, MacDougall-Shackleton SA. 2001. Cultural and genetic evolution in mountain white‐crowned sparrows: Song dialects are associated with population structure. Evolution 55:2568–75
    [Google Scholar]
  105. Malavasi R, Farina A. 2013. Neighbours’ talk: interspecific choruses among songbirds. Bioacoustics 22:33–48
    [Google Scholar]
  106. Mann NI, Dingess KA, Slater PJB 2006. Antiphonal four-part synchronized chorusing in a Neotropical wren. Biol. Lett. 2:1–4
    [Google Scholar]
  107. Marler P. 1970a. A comparative approach to vocal learning: song development in white-crowned sparrows. J. Comp. Physiol. Psychol. 71:1–25
    [Google Scholar]
  108. Marler P. 1970b. Birdsong and speech development: Could there be parallels? There may be basic rules governing vocal learning to which many species conform, including man. Am. Sci. 58:669–73
    [Google Scholar]
  109. Marler P. 1997. Three models of song learning: evidence from behavior. J. Neurobiol. 33:501–16
    [Google Scholar]
  110. Marler P, Peters S. 1982. Developmental overproduction and selective attrition: new processes in the epigenesis of birdsong. Dev. Psychobiol. 15:369–78
    [Google Scholar]
  111. Marler P, Peters S. 1987. A sensitive period for song acquisition in the song sparrow, Melospiza melodia: a case of age‐limited learning. Ethology 76:89–100
    [Google Scholar]
  112. Marler P, Tamura M. 1962. Song “dialects” in three populations of white-crowned sparrows. Condor 64:368–77
    [Google Scholar]
  113. Mead AF, Osinalde N, Ørtenblad N, Nielsen J, Brewer J et al. 2017. Fundamental constraints in synchronous muscle limit superfast motor control in vertebrates. eLife 6:e29425
    [Google Scholar]
  114. Mello CV. 2014. The zebra finch, Taeniopygia guttata: an avian model for investigating the neurobiological basis of vocal learning. Cold Spring Harb. Protoc. 12:1237–42
    [Google Scholar]
  115. Mello CV, Vicario DS, Clayton DF 1992. Song presentation induces gene expression in the songbird forebrain. PNAS 89:6818–22
    [Google Scholar]
  116. Morgan A, Fisher SE, Scheffer I, Hildebrand M 2017. FOXP2-related speech and language disorders. GeneReviews® MP Adam, HH Ardinger, RA Pagon Seattle: Univ. Wash.
    [Google Scholar]
  117. Morin PA, Alexander A, Blaxter M, Caballero S, Fedrigo O et al. 2020. Building genomic infrastructure: sequencing platinum‐standard reference‐quality genomes of all cetacean species. Mar. Mamm. Sci. 36:1356–66
    [Google Scholar]
  118. Morton ES. 1996. A comparison of vocal behavior among tropical and temperate passerine birds. Ecology and Evolution of Acoustic Communication in Birds DE Kroodsma, EH Miller 258–68 Ithaca, NY: Cornell Univ. Press
    [Google Scholar]
  119. Murugan M, Harward S, Scharff C, Mooney R 2013. Diminished FoxP2 levels affect dopaminergic modulation of corticostriatal signaling important to song variability. Neuron 80:1464–76
    [Google Scholar]
  120. Nelson DA, Marler P. 1990. The perception of birdsong and an ecological concept of signal space. Comparative Perception 2 Complex Signals, ed. WC Stebbins, MA Berkley 443–78 New York: Wiley
    [Google Scholar]
  121. Nottebohm F. 1972. The origins of vocal learning. Am. Nat. 106:116–40
    [Google Scholar]
  122. Nottebohm F, Liu WC. 2010. The origins of vocal learning: new sounds, new circuits, new cells. Brain Lang 115:3–17
    [Google Scholar]
  123. Odom KJ, Hall ML, Riebel K, Omland KE, Langmore NE 2014. Female song is widespread and ancestral in songbirds. Nat. Commun. 5:3379
    [Google Scholar]
  124. Oller K. 2000. The Emergence of the Speech Capacity Mahwah, NJ: Erlbaum
  125. O'Loghlen AL, Rothstein SI. 1995. Culturally correct song dialects are correlated with male age and female song preferences in wild populations of brown-headed cowbirds. Behav. Ecol. Sociobiol. 36:251–59
    [Google Scholar]
  126. Okobi DE, Banerjee A, Matheson AM, Phelps SM, Long MA 2019. Motor cortical control of vocal interaction in neotropical singing mice. Science 363:983–88
    [Google Scholar]
  127. Petkov CI, Jarvis E. 2012. Birds, primates, and spoken language origins: behavioral phenotypes and neurobiological substrates. Front. Evol. Neurosci. 4:12
    [Google Scholar]
  128. Pfenning AR, Hara E, Whitney O, Rivas MV, Wang R et al. 2014. Convergent transcriptional specializations in the brains of humans and song-learning birds. Science 346:1256846
    [Google Scholar]
  129. Pika S, Wilkinson R, Kendrick KH, Vernes SC 2018. Taking turns: bridging the gap between human and animal communication. Proc. R. Soc. B 285:20180598
    [Google Scholar]
  130. Pipek P, Petrusková T, Petrusek A, Diblíková L, Eaton MA, Pyšek P 2018. Dialects of an invasive songbird are preserved in its invaded but not native source range. Ecography 41:245–54
    [Google Scholar]
  131. Podos J, Warren PS. 2007. The evolution of geographic variation in birdsong. Adv. Study Behav. 37:403–58
    [Google Scholar]
  132. Price PH. 1979. Developmental determinants of structure in zebra finch song. J. Comp. Physiol. Psychol. 93:260–77
    [Google Scholar]
  133. Prior NH, Smith E, Dooling RJ, Ball GF 2020. Familiarity enhances moment-to-moment behavioral coordination in zebra finch (Taeniopygia guttata) dyads. J. Comp. Psychol. 134:135–48
    [Google Scholar]
  134. Ravignani A, Verga L, Greenfield MD 2019. Interactive rhythms across species: the evolutionary biology of animal chorusing and turn‐taking. Ann. N. Y. Acad. Sci. 1453:12–21
    [Google Scholar]
  135. Riebel K. 2003. The “mute” sex revisited: vocal production and perception learning in female songbirds. Adv. Study Behav. 33:49–86
    [Google Scholar]
  136. Riebel K. 2016. Understanding sex differences in form and function of bird song: the importance of studying song learning processes. Front. Ecol. Evol. 4:62
    [Google Scholar]
  137. Riebel K, Odom KJ, Langmore NE, Hall ML 2019. New insights from female bird song: towards an integrated approach to studying male and female communication roles. Biol. Lett. 15:20190059
    [Google Scholar]
  138. Riede T, Goller F. 2010. Peripheral mechanisms for vocal production in birds—differences and similarities to human speech and singing. Brain Lang 115:69–80
    [Google Scholar]
  139. Rivera-Cáceres KD, Quirós-Guerrero E, Araya-Salas M, Searcy WA 2016. Neotropical wrens learn new duet rules as adults. Proc. R. Soc. B 283:20161819
    [Google Scholar]
  140. Rivera-Cáceres KD, Quirós-Guerrero E, Araya-Salas M, Templeton CN, Searcy WA 2018. Early development of vocal interaction rules in a duetting songbird. R. Soc. Open Sci. 5:171791
    [Google Scholar]
  141. Rivera-Cáceres KD, Templeton CN. 2019. A duetting perspective on avian song learning. Behav. Process. 163:71–80
    [Google Scholar]
  142. Roberts TF, Gobes SM, Murugan M, Ölveczky BP, Mooney R 2012. Motor circuits are required to encode a sensory model for imitative learning. Nat. Neurosci. 15:1454–59
    [Google Scholar]
  143. Robinson CM, Snyder KT, Creanza N 2019. Correlated evolution between repertoire size and song plasticity predicts that sexual selection on song promotes open-ended learning. eLife 8:e44454
    [Google Scholar]
  144. Roeske TC, Tchernichovski O, Poeppel D, Jacoby N 2020. Categorical rhythms are shared between humans and songbirds. Curr. Biol. 30:3544–55
    [Google Scholar]
  145. Romanski LM, Averbeck BB. 2009. The primate cortical auditory system and neural representation of conspecific vocalizations. Annu. Rev. Neurosci. 32:315–46
    [Google Scholar]
  146. Rose GJ, Goller F, Gritton HJ, Plamondon SL, Baugh AT, Cooper BG 2004. Species-typical songs in white-crowned sparrows tutored with only phrase pairs. Nature 432:753–58
    [Google Scholar]
  147. Rothenberg D, Roeske TC, Voss HU, Naguib M, Tchernichovski O 2014. Investigation of musicality in birdsong. Hear. Res. 308:71–83
    [Google Scholar]
  148. Sainburg T, Theilman B, Thielk M, Gentner TQ 2019. Parallels in the sequential organization of birdsong and human speech. Nat. Commun. 10:3636
    [Google Scholar]
  149. Salimpoor VN, Benovoy M, Larcher K, Dagher A, Zatorre RJ 2011. Anatomically distinct dopamine release during anticipation and experience of peak emotion to music. Nat. Neurosci. 14:257–62
    [Google Scholar]
  150. Schachner A, Brady TF, Pepperberg IM, Hauser MD 2009. Spontaneous motor entrainment to music in multiple vocal mimicking species. Curr. Biol. 19:831–36
    [Google Scholar]
  151. Schegloff E, Jefferson G, Sacks H 1974. A simplest systematics for the organization of turn-taking for conversation. Language 50:696–735
    [Google Scholar]
  152. Schneider DM, Woolley SMN. 2013. Sparse and background-invariant coding of vocalizations in auditory scenes. Neuron 79:141–52
    [Google Scholar]
  153. Searcy WA, Nowicki S. 2019. Birdsong learning, avian cognition and the evolution of language. Anim. Behav. 151:217–27
    [Google Scholar]
  154. Sen K, Theunissen FE, Doupe AJ 2001. Feature analysis of natural sounds in the songbird auditory forebrain. J. Neurophysiol. 86:1445–58
    [Google Scholar]
  155. Simmonds AJ, Leech R, Iverson P, Wise RJ 2014. The response of the anterior striatum during adult human vocal learning. J. Neurophysiol. 112:792–801
    [Google Scholar]
  156. Simonyan K, Ackermann H, Chang EF, Greenlee JD 2016. New developments in understanding the complexity of human speech production. J. Neurosci. 36:11440–48
    [Google Scholar]
  157. Slater PJB, Lachlan RF, Riebel K 2000. The significance of learning in signal development: the curious case of the chaffinch. Animal Signals: Adaptive Significance of Signalling and Signal Design in Animal Communication Y Espmark, T Amundsen, G Rosenqvist 401–13 Trondheim, Nor.: Tapir
    [Google Scholar]
  158. Soma MF. 2011. Social factors in song learning: a review of Estrildid finch research. Ornithol. Sci. 10:89–100
    [Google Scholar]
  159. Soma MF, Garamszegi LZ. 2015. Evolution of courtship display in Estrildid finches: dance in relation to female song and plumage ornamentation. Front. Ecol. Evol. 3:4
    [Google Scholar]
  160. Sorjonen J. 1987. Temporal and spatial differences in traditions and repertoires in the song of the thrush nightingale (Luscinia luscinia). Behaviour 102:196–211
    [Google Scholar]
  161. Stivers T, Enfield NJ, Brown P, Englert C, Hayashi M et al. 2009. Universals and cultural variation in turn-taking in conversation. PNAS 106:10587–92
    [Google Scholar]
  162. Takahashi DY, Fenley AR, Ghazanfar AA 2016. Early development of turn-taking with parents shapes vocal acoustics in infant marmoset monkeys. Philos. Trans. R. Soc. B 371:20150370
    [Google Scholar]
  163. Tanaka M, Sun F, Li Y, Mooney R 2018. A mesocortical dopamine circuit enables the cultural transmission of vocal behaviour. Nature 563:117–20
    [Google Scholar]
  164. Tchernichovski O, Benjamini Y, Golani I 1998. The dynamics of long-term exploration in the rat. Biol. Cybern. 78:423–32
    [Google Scholar]
  165. Tchernichovski O, Fehér O, Fimiarz D, Conley D 2017. How social learning adds up to a culture: from birdsong to human public opinion. J. Exp. Biol. 220:124–32
    [Google Scholar]
  166. Tchernichovski O, Mitra PP, Lints T, Nottebohm F 2001. Dynamics of the vocal imitation process: how a zebra finch learns its song. Science 291:2564–69
    [Google Scholar]
  167. Tchernichovski O, Nottebohm F. 1998. Social inhibition of song imitation among sibling male zebra finches. PNAS 95:8951–56
    [Google Scholar]
  168. Tchernichovski O, Oller DK. 2016. Vocal development: how marmoset infants express their feelings. Curr. Biol. 26:R422–24
    [Google Scholar]
  169. Teeling EC, Vernes SC, Dávalos LM, Ray DA, Gilbert MTP et al. 2018. Bat biology, genomes, and the Bat1K project: to generate chromosome-level genomes for all living bat species. Annu. Rev. Anim. Biosci. 6:23–46
    [Google Scholar]
  170. Templeton CN, Greene E, Davis K 2005. Allometry of alarm calls: Black-capped chickadees encode information about predator size. Science 308:1934–37
    [Google Scholar]
  171. Theofanopoulou C, Boeckx C, Jarvis ED 2017. A hypothesis on a role of oxytocin in the social mechanisms of speech and vocal learning. Proc. R. Soc. B 284:20170988
    [Google Scholar]
  172. Thorpe WH. 1954. The process of song-learning in the chaffinch as studied by means of the sound spectrograph. Nature 173:465–69
    [Google Scholar]
  173. Thorpe WH. 1958. The learning of song patterns by birds, with especial reference to the song of the chaffinch Fringilla coelebs. . Ibis 100:535–70
    [Google Scholar]
  174. Tobias JA, Sheard C, Seddon N, Meade A, Cotton AJ, Nakagawa S 2016. Territoriality, social bonds, and the evolution of communal signaling in birds. Front. Ecol. Evol. 4:74
    [Google Scholar]
  175. Todt D, Hultsch H. 1998. How songbirds deal with large amounts of serial information: Retrieval rules suggest a hierarchical song memory. Biol. Cybern. 79:487–500
    [Google Scholar]
  176. Tokarev K, Hyland Bruno J, Ljubičić I, Kothari PJ, Helekar SA et al. 2017. Sexual dimorphism in striatal dopaminergic responses promotes monogamy in social songbirds. eLife 6:e25819
    [Google Scholar]
  177. Tokarev K, Tiunova A, Scharff C, Anokhin K 2011. Food for song: expression of c-Fos and ZENK in the zebra finch song nuclei during food aversion learning. PLOS ONE 6:e21157
    [Google Scholar]
  178. Trainer JM, McDonald DB, Learn WA 2002. The development of coordinated singing in cooperatively displaying long-tailed manakins. Behav. Ecol. 13:65–69
    [Google Scholar]
  179. Wang R, Chen CC, Hara E, Rivas MV, Roulhac PL et al. 2015. Convergent differential regulation of SLIT-ROBO axon guidance genes in the brains of vocal learners. J. Comp. Neurol. 523:892–906
    [Google Scholar]
  180. Watson SK, Townsend SW, Schel AM, Wilke C, Wallace EK et al. 2015. Vocal learning in the functionally referential food grunts of chimpanzees. Curr. Biol. 25:495–99
    [Google Scholar]
  181. Webb WH, Brunton DH, Aguirre JD, Thomas DB, Valcu M, Dale J 2016. Female song occurs in songbirds with more elaborate female coloration and reduced sexual dichromatism. Front. Ecol. Evol. 4:22
    [Google Scholar]
  182. West MJ, King AP. 1988. Female visual displays affect the development of male song in the cowbird. Nature 334:244–46
    [Google Scholar]
  183. White SA, Fisher SE, Geschwind DH, Scharff C, Holy TE 2006. Singing mice, songbirds, and more: models for FOXP2 function and dysfunction in human speech and language. J. Neurosci. 26:10376–79
    [Google Scholar]
  184. Williams H. 2004. Birdsong and singing behavior. Ann. N. Y. Acad. Sci. 1016:1–30
    [Google Scholar]
  185. Wirthlin M, Chang EF, Knörnschild M, Krubitzer LA, Mello CV et al. 2019. A modular approach to vocal learning: disentangling the diversity of a complex behavioral trait. Neuron 104:87–99
    [Google Scholar]
  186. Wright TF, Dahlin CR. 2018. Vocal dialects in parrots: patterns and processes of cultural evolution. Emu 118:50–66
    [Google Scholar]
  187. Yi HG, Leonard MK, Chang EF 2019. The encoding of speech sounds in the superior temporal gyrus. Neuron 102:1096–110
    [Google Scholar]
  188. Zann R. 1996. The Zebra Finch: A Synthesis of Field and Laboratory Studies New York: Oxford Univ. Press
  189. Zhao W, Garcia-Oscos F, Dinh D, Roberts TF 2019. Inception of memories that guide vocal learning in the songbird. Science 366:83–89
    [Google Scholar]
/content/journals/10.1146/annurev-linguistics-090420-121034
Loading
/content/journals/10.1146/annurev-linguistics-090420-121034
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error