1932

Abstract

Photosynthesis evolved in the ocean more than 2 billion years ago and is now performed by a wide range of evolutionarily distinct organisms, including both prokaryotes and eukaryotes. Our appreciation of their abundance, distributions, and contributions to primary production in the ocean has been increasing since they were first discovered in the seventeenth century and has now been enhanced by data emerging from the Oceans project, which performed a comprehensive worldwide sampling of plankton in the upper layers of the ocean between 2009 and 2013. Largely using recent data from Oceans, here we review the geographic distributions of phytoplankton in the global ocean and their diversity, abundance, and standing stock biomass. We also discuss how omics-based information can be incorporated into studies of photosynthesis in the ocean and show the likely importance of mixotrophs and photosymbionts.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-marine-010419-010706
2020-01-03
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/marine/12/1/annurev-marine-010419-010706.html?itemId=/content/journals/10.1146/annurev-marine-010419-010706&mimeType=html&fmt=ahah

Literature Cited

  1. Alberti A, Poulain J, Engelen S, Labadie K, Romac S et al. 2017. Viral to metazoan marine plankton nucleotide sequences from the Tara Oceans expedition. Sci. Data 4:170093
    [Google Scholar]
  2. Antoine D, André J-M, Morel A 1996. Oceanic primary production: 2. Estimation at global scale from satellite (Coastal Zone Color Scanner) chlorophyll. Glob. Biogeochem. Cycles 10:57–69
    [Google Scholar]
  3. Bailleul B, Berne N, Murik O, Petroutsos D, Prihoda J 2015. Energetic coupling between plastids and mitochondria drives CO2 assimilation in diatoms. Nature 524:366–69
    [Google Scholar]
  4. Barbier M, Loreau M. 2019. Pyramids and cascades: a synthesis of food chain functioning and stability. Ecol. Lett. 22:405–19
    [Google Scholar]
  5. Barnett ML, Kemp AES, Hickman AE, Purdie DA 2019. Shelf sea subsurface chlorophyll maximum thin layers have a distinct phytoplankton community structure. Cont. Shelf Res. 174:149–57
    [Google Scholar]
  6. Bar-On YM, Phillips R, Milo R 2018. The biomass distribution on Earth. PNAS 115:6506–11
    [Google Scholar]
  7. Beers JR, Reid FMH, Stewart GL 1975. Microplankton of the North Pacific central gyre. Population structure and abundance, June 1973. Int. Rev. Gesamt. Hydrobiol. 60:607–38
    [Google Scholar]
  8. Behrenfeld MJ. 2010. Abandoning Sverdrup's Critical Depth Hypothesis on phytoplankton blooms. Ecology 91:977–89
    [Google Scholar]
  9. Behrenfeld MJ, Boss ES. 2014. Resurrecting the ecological underpinnings of ocean plankton blooms. Annu. Rev. Mar. Sci. 6:167–94
    [Google Scholar]
  10. Behrenfeld MJ, Boss ES. 2018. Student's tutorial on bloom hypotheses in the context of phytoplankton annual cycles. Glob. Change Biol. 24:55–77
    [Google Scholar]
  11. Behrenfeld MJ, Boss ES, Siegel DA, Shea DM 2005. Carbon-based ocean productivity and phytoplankton physiology from space. Glob. Biogeochem. Cycles 19: GB1006
    [Google Scholar]
  12. Behrenfeld MJ, Falkowski PG. 1997. Photosynthetic rates derived from satellite-based chlorophyll concentration. Limnol. Oceanogr. 42:1–20
    [Google Scholar]
  13. Behrenfeld MJ, Westberry TK, Boss ES, O'Malley RT, Siegel DA et al. 2009. Satellite-detected fluorescence reveals global physiology of ocean phytoplankton. Biogeosciences 6:779–94
    [Google Scholar]
  14. Benoiston A-S, Ibarbalz FM, Bittner L, Guidi L, Jahn O et al. 2017. The evolution of diatoms and their biogeochemical functions. Philos. Trans. R. Soc. Lond. B 372:20160397
    [Google Scholar]
  15. Biard T, Bigeard E, Audic S, Poulain J, Gutierrez-Rodriguez A et al. 2017. Biogeography and diversity of Collodaria (Radiolaria) in the global ocean. ISME J 11:1331–44
    [Google Scholar]
  16. Biard T, Stemmann L, Picheral M, Mayot N, Vandromme P et al. 2016. In situ imaging reveals the biomass of giant protists in the global ocean. Nature 532:504–7
    [Google Scholar]
  17. Bonnain C, Breitbart M, Buck KN 2016. The Ferrojan Horse hypothesis: iron-virus interactions in the ocean. Front. Mar. Sci. 3:82
    [Google Scholar]
  18. Bopp L, Resplandy L, Orr JC, Doney SC, Dunne JP et al. 2013. Multiple stressors of ocean ecosystems in the 21st century: projections with CMIP5 models. Biogeosciences 10:6225–45
    [Google Scholar]
  19. Boss E, Behrenfeld M. 2010. In situ evaluation of the initiation of the North Atlantic phytoplankton bloom. Geophys. Res. Lett. 37:L18603
    [Google Scholar]
  20. Boss E, Picheral M, Leeuw T, Chase A, Karsenti E et al. 2013. The characteristics of particulate absorption, scattering and attenuation coefficients in the surface ocean; contribution of the Tara Oceans expedition. Methods Oceanogr 7:52–62
    [Google Scholar]
  21. Boyd PW, Sundby S, Pörtner H-O 2014. Cross-chapter box on net primary production in the ocean. Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change CB Field, VR Barros, DJ Dokken, KJ Mach, MD Mastrandrea et al.133–36 Cambridge, UK: Cambridge University Press
    [Google Scholar]
  22. Brown JH. 2014. Why are there so many species in the tropics?. J. Biogeogr. 41:8–22
    [Google Scholar]
  23. Brum JR, Ignacio-Espinoza JC, Roux S, Doulcier G, Acinas SG et al. 2015. Patterns and ecological drivers of ocean viral communities. Science 348:1261498
    [Google Scholar]
  24. Buitenhuis ET, Li WKW, Vaulot D, Lomas MW, Landry MR et al. 2012. Picophytoplankton biomass distribution in the global ocean. Earth Syst. Sci. Data 4:37–46
    [Google Scholar]
  25. Buitenhuis ET, Vogt M, Moriarty R, Bednaršek N, Doney SC et al. 2013. MAREDAT: towards a world atlas of MARine Ecosystem DATa. Earth Syst. Sci. Data 5:227–39
    [Google Scholar]
  26. Burns JA, Pittis AA, Kim E 2018. Gene-based predictive models of trophic modes suggest Asgard archaea are not phagocytotic. Nat. Ecol. Evol. 2:697–704
    [Google Scholar]
  27. Cabello AM, Cornejo-Castillo FM, Raho N, Blasco D, Vidal M et al. 2016. Global distribution and vertical patterns of a prymnesiophyte-cyanobacteria obligate symbiosis. ISME J 10:693–706
    [Google Scholar]
  28. Caputi L, Carradec Q, Eveillard D, Kirilovsky A, Pelletier E et al. 2019. Community‐level responses to iron availability in open ocean plankton ecosystems. Glob. Biogeochem. Cycles 33:391–419
    [Google Scholar]
  29. Caron DA. 2016. Mixotrophy stirs up our understanding of marine food webs. PNAS 113:2806–8
    [Google Scholar]
  30. Carradec Q, Pelletier E, Da Silva C, Alberti A, Seeleuthner Y et al. 2018. A global ocean atlas of eukaryotic genes. Nat. Commun. 9:373
    [Google Scholar]
  31. Catul V, Gauns M, Karuppasamy PK 2011. A review on mesopelagic fishes belonging to family Myctophidae. Rev. Fish Biol. Fish. 21:339–54
    [Google Scholar]
  32. Chase AP, Boss E, Cetinić I, Slade W 2017. Estimation of phytoplankton accessory pigments from hyperspectral reflectance spectra: toward a global algorithm. J. Geophys. Res. Oceans 122:9725–43
    [Google Scholar]
  33. Chase AP, Boss E, Zaneveld R, Bricaud A, Claustre H et al. 2013. Decomposition of in situ particulate absorption spectra. Methods Oceanogr 7:110–24
    [Google Scholar]
  34. Chavez FP, Messié M, Pennington JT 2011. Marine primary production in relation to climate variability and change. Annu. Rev. Mar. Sci. 3:227–60
    [Google Scholar]
  35. Ciais P, Sabine C, Bala G, Bopp L, Brovkin V et al. 2013. Carbon and other biogeochemical cycles. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change TF Stocker, D Qin, G-K Plattner, M Tignor, SK Allen et al.465–570 Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  36. Clarke A, Gaston KJ. 2006. Climate, energy and diversity. Proc. Biol. Sci. 273:2257–66
    [Google Scholar]
  37. Coelho SM, Simon N, Ahmed S, Cock JM, Partensky F 2013. Ecological and evolutionary genomics of marine photosynthetic organisms. Mol. Ecol. 22:867–907
    [Google Scholar]
  38. Cohen NR, Mann E, Stemple B, Moreno CM, Rauschenberg S et al. 2018. Iron storage capacities and associated ferritin gene expression among marine diatoms. Limnol. Oceanogr. 63:1677–91
    [Google Scholar]
  39. Coles VJ, Stukel MR, Brooks MT, Burd A, Crump BC et al. 2017. Ocean biogeochemistry modeled with emergent trait-based genomics. Science 358:1149–54
    [Google Scholar]
  40. Colin S, Coelho LP, Sunagawa S, Bowler C, Karsenti E et al. 2017. Quantitative 3D-imaging for cell biology and ecology of environmental microbial eukaryotes. eLife 6:e26066
    [Google Scholar]
  41. Cornejo-Castillo FM, Cabello AM, Salazar G, Sánchez-Baracaldo P, Lima-Mendez G et al. 2016. Cyanobacterial symbionts diverged in the late Cretaceous towards lineage-specific nitrogen fixation factories in single-celled phytoplankton. Nat. Commun. 7:11071
    [Google Scholar]
  42. Cornejo-Castillo FM, Muñoz-Marín MDC, Turk-Kubo KA, Royo-Llonch M, Farnelid H et al. 2019. UCYN-A3, a newly characterized open ocean sublineage of the symbiotic N-fixing cyanobacterium Candidatus Atelocyanobacterium thalassa. Environ. Microbiol. 21:111–24
    [Google Scholar]
  43. Costa JT. 2017. Darwin's Backyard: How Small Experiments Led to a Big Theory New York: Norton
  44. Cullen JJ. 1982. The deep chlorophyll maximum: comparing vertical profiles of chlorophyll a. Can. J. Fish. Aquat. Sci 39:791–803
    [Google Scholar]
  45. Cullen JJ. 2015. Subsurface chlorophyll maximum layers: enduring enigma or mystery solved?. Annu. Rev. Mar. Sci. 7:207–39
    [Google Scholar]
  46. de Vargas C, Audic S, Henry N, Decelle J, Mahé F et al. 2015. Ocean plankton. Eukaryotic plankton diversity in the sunlit ocean. Science 348:1261605
    [Google Scholar]
  47. de Vries J, Gould SB 2018. The monoplastidic bottleneck in algae and plant evolution. J. Cell Sci. 131: jcs203414
    [Google Scholar]
  48. Decelle J, Carradec Q, Pochon X, Henry N, Romac S et al. 2018. Worldwide occurrence and activity of the reef-building coral symbiont Symbiodinium in the open ocean. Curr. Biol. 28:3625–33.e3
    [Google Scholar]
  49. Decelle J, Martin P, Paborstava K, Pond DW, Tarling G et al. 2013. Diversity, ecology and biogeochemistry of cyst-forming Acantharia (Radiolaria) in the oceans. PLOS ONE 8:e53598
    [Google Scholar]
  50. Decelle J, Probert I, Bittner L, Desdevises Y, Colin S et al. 2012. An original mode of symbiosis in open ocean plankton. PNAS 109:18000–5
    [Google Scholar]
  51. Delmont TO, Eren AM. 2018. Linking pangenomes and metagenomes: the Prochlorococcus metapangenome. PeerJ 6:e4320
    [Google Scholar]
  52. De-Luca R, Bernardi A, Meneghesso A, Morosinotto T, Bezzo F 2018. Modelling the photosynthetic electron transport chain in Nannochloropsis gaditana via exploitation of absorbance data. Algal Res 33:430–39
    [Google Scholar]
  53. Dennett MR. 2002. Video plankton recorder reveals high abundances of colonial Radiolaria in surface waters of the central North Pacific. J. Plankton Res. 24:797–805
    [Google Scholar]
  54. Derelle E, Ferraz C, Rombauts S, Rouzé P, Worden AZ et al. 2006. Genome analysis of the smallest free-living eukaryote Ostreococcus tauri unveils many unique features. PNAS 103:11647–52
    [Google Scholar]
  55. Dorrell RG, Azuma T, Nomura M, de Kerdrel GA, Paoli L et al. 2019. Principles of plastid reductive evolution illuminated by nonphotosynthetic chrysophytes. PNAS 116:6914–23
    [Google Scholar]
  56. Dorrell RG, Bowler C. 2017. Secondary plastids of stramenopiles. Adv. Bot. Res. 84:57–103
    [Google Scholar]
  57. Dorrell RG, Smith AG. 2011. Do red and green make brown? Perspectives on plastid acquisitions within chromalveolates. Eukaryot. Cell 10:856–68
    [Google Scholar]
  58. Duarte CM. 2015. Seafaring in the 21st century: the Malaspina 2010 Circumnavigation Expedition. Bull. Limnol. Oceanogr. 24:11–14
    [Google Scholar]
  59. Eiler A. 2006. Evidence for the ubiquity of mixotrophic bacteria in the upper ocean: implications and consequences. Appl. Environ. Microbiol. 72:7431–37
    [Google Scholar]
  60. Estrada M. 1991. Phytoplankton assemblages across a NW Mediterranean front: changes from winter mixing to spring stratification. Homage to Ramon Margalef; Or, Why There Is Such Pleasure in Studying Nature, Vol. 10 J Ros, N Pratt 157–85 Barcelona: Univ. Barcelona
    [Google Scholar]
  61. Estrada M, Delgado M, Blasco D, Latasa M, Cabello AM et al. 2016. Phytoplankton across tropical and subtropical regions of the Atlantic, Indian and Pacific Oceans. PLOS ONE 11:e0151699
    [Google Scholar]
  62. Falkowski PG. 2012. Ocean science: the power of plankton. Nature 483:S17–20
    [Google Scholar]
  63. Falkowski PG, Fenchel T, DeLong EF 2008. The microbial engines that drive Earth's biogeochemical cycles. Science 320:1034–39
    [Google Scholar]
  64. Falkowski PG, Katz ME, Knoll AH, Quigg A, Raven JA et al. 2004. The evolution of modern eukaryotic phytoplankton. Science 305:354–60
    [Google Scholar]
  65. Falkowski PG, Knoll AH. 2011. Evolution of Primary Producers in the Sea San Diego, CA: Academic
  66. Farrant GK, Doré H, Cornejo-Castillo FM, Partensky F, Ratin M et al. 2016. Delineating ecologically significant taxonomic units from global patterns of marine picocyanobacteria. PNAS 113:E3365–74
    [Google Scholar]
  67. Faure E, Not F, Benoiston A-S, Labadie K, Bittner L, Ayata S-D 2019. Mixotrophic protists display contrasted biogeographies in the global ocean. ISME J 13:1072–83
    [Google Scholar]
  68. Field CB, Behrenfeld MJ, Randerson JT, Falkowski P 1998. Primary production of the biosphere: integrating terrestrial and oceanic components. Science 281:237–40
    [Google Scholar]
  69. Fischer WW, Hemp J, Johnson JE 2016. Evolution of oxygenic photosynthesis. Annu. Rev. Earth Planet. Sci. 44:647–83
    [Google Scholar]
  70. Flombaum P, Gallegos JL, Gordillo RA, Rincón J, Zabala LL et al. 2013. Present and future global distributions of the marine cyanobacteria Prochlorococcus and Synechococcus. . PNAS 110:9824–29
    [Google Scholar]
  71. Flynn KJ, Stoecker DK, Mitra A, Raven JA, Glibert PM et al. 2013. Misuse of the phytoplankton–zooplankton dichotomy: the need to assign organisms as mixotrophs within plankton functional types. J. Plankton Res. 35:3–11
    [Google Scholar]
  72. Follows MJ, Dutkiewicz S, Grant S, Chisholm SW 2007. Emergent biogeography of microbial communities in a model ocean. Science 315:1843–46
    [Google Scholar]
  73. Fourqurean JW, Duarte CM, Kennedy H, Marbà N, Holmer M et al. 2012. Seagrass ecosystems as a globally significant carbon stock. Nat. Geosci. 5:505–9
    [Google Scholar]
  74. Grébert T, Doré H, Partensky F, Farrant GK, Boss ES et al. 2018. Light color acclimation is a key process in the global ocean distribution of Synechococcus cyanobacteria. PNAS 115:E2010–19
    [Google Scholar]
  75. Gregory A, Zayed A, Conceição-Neto N, Temperton B, Bolduc B et al. 2019. Marine DNA viral macro- and micro-diversity from pole to pole. Cell 177:1109–23
    [Google Scholar]
  76. Guidi L, Chaffron S, Bittner L, Eveillard D, Larhlimi A et al. 2016. Plankton networks driving carbon export in the oligotrophic ocean. Nature 532:465–70
    [Google Scholar]
  77. Haeckel E. 1998. Art Forms in Nature: The Prints of Ernst Haeckel New York: Prestel
  78. Hairston NG, Hairston NG. 1993. Cause-effect relationships in energy flow, trophic structure, and interspecific interactions. Am. Nat. 142:379–411
    [Google Scholar]
  79. Hingamp P, Grimsley N, Acinas SG, Clerissi C, Subirana L et al. 2013. Exploring nucleo-cytoplasmic large DNA viruses in Tara Oceans microbial metagenomes. ISME J 7:1678–95
    [Google Scholar]
  80. Hutchinson GE. 1961. The paradox of the plankton. Am. Nat. 95:137–45
    [Google Scholar]
  81. Ibarbalz FM, Henry N, Brandão MC, Martini S, Busseni G et al. 2019. Global trends in marine plankton diversity across kingdoms of life. Cell In press
    [Google Scholar]
  82. Irigoien X, Huisman J, Harris RP 2004. Global biodiversity patterns of marine phytoplankton and zooplankton. Nature 429:863–67
    [Google Scholar]
  83. Johnson ZI, Zinser ER, Coe A, McNulty NP, Woodward EMS, Chisholm SW 2006. Niche partitioning among Prochlorococcus ecotypes along ocean-scale environmental gradients. Science 311:1737–40
    [Google Scholar]
  84. Joos F, Plattner GK, Stocker TF, Marchal O, Schmittner A 1999. Global warming and marine carbon cycle feedbacks on future atmospheric CO2. Science 284:464–67
    [Google Scholar]
  85. Karsenti E, Acinas SG, Bork P, Bowler C, de Vargas C et al. 2011. A holistic approach to marine eco-systems biology. PLOS Biol 9:e1001177
    [Google Scholar]
  86. Keeling PJ, del Campo J 2017. Marine protists are not just big bacteria. Curr. Biol. 27: PR541–49
    [Google Scholar]
  87. Kemp AES, Villareal TA. 2013. High diatom production and export in stratified waters – a potential negative feedback to global warming. Prog. Oceanogr. 119:4–23
    [Google Scholar]
  88. Kemp AES, Villareal TA. 2018. The case of the diatoms and the muddled mandalas: time to recognize diatom adaptations to stratified waters. Prog. Oceanogr. 167:138–49
    [Google Scholar]
  89. Knoll AH, Follows MJ. 2016. A bottom-up perspective on ecosystem change in Mesozoic oceans. Proc. Biol. Sci. 283:20161755
    [Google Scholar]
  90. Knoll AH, Summons RE, Waldbauer JR, Zumberge JE 2007. The geological succession of primary producers in the oceans. Evolution of Primary Producers in the Sea PG Falkowski, AH Knoll 133–63 San Diego, CA: Academic
    [Google Scholar]
  91. Kolber ZS, Prášil O, Falkowski PG 1998. Measurements of variable chlorophyll fluorescence using fast repetition rate techniques: defining methodology and experimental protocols. Biochim. Biophys. Acta Bioenerg. 1367:88–106
    [Google Scholar]
  92. Kopf A, Bicak M, Kottmann R, Schnetzer J, Kostadinov I et al. 2015. The ocean sampling day consortium. Gigascience 4:27
    [Google Scholar]
  93. Kreft H, Jetz W. 2007. Global patterns and determinants of vascular plant diversity. PNAS 104:5925–30
    [Google Scholar]
  94. Krueger T. 2017. Concerning the cohabitation of animals and algae – an English translation of K. Brandt's 1881 presentation “Ueber das Zusammenleben von Thieren und Algen.”. Symbiosis 71:167–74
    [Google Scholar]
  95. Latasa M, Cabello AM, Morán XAG, Massana R, Scharek R 2017. Distribution of phytoplankton groups within the deep chlorophyll maximum. Limnol. Oceanogr. 62:665–86
    [Google Scholar]
  96. Le Bescot N, Mahé F, Audic S, Dimier C, Garet M-J et al. 2016. Global patterns of pelagic dinoflagellate diversity across protist size classes unveiled by metabarcoding. Environ. Microbiol. 18:609–26
    [Google Scholar]
  97. Le Quéré C, Harrison SP, Prentice IC, Buitenhuis ET, Aumont O et al. 2005. Ecosystem dynamics based on plankton functional types for global ocean biogeochemistry models. Glob. Change Biol. 11:2016–40
    [Google Scholar]
  98. Leblanc K, Queguiner B, Diaz F, Cornet V, Michel-Rodriguez M et al. 2018. Nanoplanktonic diatoms are globally overlooked but play a role in spring blooms and carbon export. Nat. Commun. 9:953
    [Google Scholar]
  99. Letelier RM, Karl DM. 1989. Phycoerythrin-containing cyanobacteria in surface waters of the Drake Passage during February 1987. Antarct. J. U.S. 24:185–88
    [Google Scholar]
  100. Lewitus E, Bittner L, Malviya S, Bowler C, Morlon H 2018. Author correction: clade-specific diversification dynamics of marine diatoms since the Jurassic. Nat. Ecol. Evol. 2:1993
    [Google Scholar]
  101. Li WKW. 2002. Macroecological patterns of phytoplankton in the northwestern North Atlantic Ocean. Nature 419:154–57
    [Google Scholar]
  102. Li X, Patena W, Fauser F, Jinkerson RE, Saroussi S et al. 2019. A genome-wide algal mutant library and functional screen identifies genes required for eukaryotic photosynthesis. Nat. Genet. 51:627–35
    [Google Scholar]
  103. Lima-Mendez G, Faust K, Henry N, Decelle J, Colin S et al. 2015. Ocean plankton. Determinants of community structure in the global plankton interactome. Science 348:1262073
    [Google Scholar]
  104. Lopes Dos Santos A, Gourvil P, Tragin M, Noël M-H, Decelle J et al. 2017. Diversity and oceanic distribution of prasinophytes clade VII, the dominant group of green algae in oceanic waters. ISME J 11:512–28
    [Google Scholar]
  105. López-Sandoval DC, Delgado-Huertas A, Agustí S 2018. The 13C method as a robust alternative to 14C-based measurements of primary productivity in the Mediterranean Sea. J. Plankton Res. 40:544–54
    [Google Scholar]
  106. Louca S, Parfrey LW, Doebeli M 2016. Decoupling function and taxonomy in the global ocean microbiome. Science 353:1272–77
    [Google Scholar]
  107. Malviya S, Scalco E, Audic S, Vincent F, Veluchamy A et al. 2016. Insights into global diatom distribution and diversity in the world's ocean. PNAS 113:E1516–25
    [Google Scholar]
  108. Marchetti A, Parker MS, Moccia LP, Lin EO, Arrieta AL et al. 2009. Ferritin is used for iron storage in bloom-forming marine pennate diatoms. Nature 457:467–70
    [Google Scholar]
  109. Massana R, del Campo J, Sieracki ME, Audic S, Logares R 2014. Exploring the uncultured microeukaryote majority in the oceans: reevaluation of ribogroups within stramenopiles. ISME J 8:854–66
    [Google Scholar]
  110. McClain CR. 2009. A decade of satellite ocean color observations. Annu. Rev. Mar. Sci. 1:19–42
    [Google Scholar]
  111. Michaels AF, Caron DA, Swanberg NR, Howse FA, Michaels CM 1995. Planktonic sarcodines (Acantharia, Radiolaria, Foraminifera) in surface waters near Bermuda: abundance, biomass and vertical flux. J. Plankton Res. 17:131–63
    [Google Scholar]
  112. Mihara T, Koyano H, Hingamp P, Grimsley N, Goto S, Ogata H 2018. Taxon richness of “Megaviridae” exceeds those of Bacteria and Archaea in the ocean. Microbes Environ 33:162–71
    [Google Scholar]
  113. Mitra A, Flynn KJ, Tillmann U, Raven JA, Caron D et al. 2016. Defining planktonic protist functional groups on mechanisms for energy and nutrient acquisition: incorporation of diverse mixotrophic strategies. Protist 167:106–20
    [Google Scholar]
  114. Monier A, Chambouvet A, Milner DS, Attah V, Terrado R et al. 2017. Host-derived viral transporter protein for nitrogen uptake in infected marine phytoplankton. PNAS 114:E7489–98
    [Google Scholar]
  115. Monier A, Worden AZ, Richards TA 2016. Phylogenetic diversity and biogeography of the Mamiellophyceae lineage of eukaryotic phytoplankton across the oceans. Environ. Microbiol. Rep. 8:461–69
    [Google Scholar]
  116. Mordret S, Romac S, Henry N, Colin S, Carmichael M et al. 2016. The symbiotic life of Symbiodinium in the open ocean within a new species of calcifying ciliate (Tiarina sp.). ISME J 10:1424–36
    [Google Scholar]
  117. O'Brien CJ, Peloquin JA, Vogt M, Heinle M, Gruber N et al. 2012. Global marine plankton functional type biomass distributions: coccolithophores. Earth Syst. Sci. Data 5:259–76
    [Google Scholar]
  118. Oehri J, Schmid B, Schaepman-Strub G, Niklaus PA 2017. Biodiversity promotes primary productivity and growing season lengthening at the landscape scale. PNAS 114:10160–65
    [Google Scholar]
  119. Pagarete A, Le Corguillé G, Tiwari B, Ogata H, de Vargas C et al. 2011. Unveiling the transcriptional features associated with coccolithovirus infection of natural Emiliania huxleyi blooms. FEMS Microbiol. Ecol. 78:555–64
    [Google Scholar]
  120. Partensky F, Blanchot J, Vaulot D 1999. Differential distribution and ecology of Prochlorococcus and Synechococcus in oceanic waters: a review. Bull. Inst. Oceanogr. Monaco. No. Spéc 19:457–76
    [Google Scholar]
  121. Pesant S, Not F, Picheral M, Kandels-Lewis S, Le Bescot N et al. 2015. Open science resources for the discovery and analysis of Tara Oceans data. Sci. Data 2:150023
    [Google Scholar]
  122. Pontarp M, Bunnefeld L, Cabral JS, Etienne RS, Fritz SA et al. 2019. The latitudinal diversity gradient: novel understanding through mechanistic eco-evolutionary models. Trends Ecol. Evol. 34:211–23
    [Google Scholar]
  123. Poulton AJ, Holligan PM, Charalampopoulou A, Adey TR 2017. Coccolithophore ecology in the tropical and subtropical Atlantic Ocean: new perspectives from the Atlantic Meridional Transect (AMT) programme. Prog. Oceanogr. 158:150–70
    [Google Scholar]
  124. Probert I, Siano R, Poirier C, Decelle J, Biard T et al. 2014. Brandtodinium gen. nov. and B. nutricula comb. nov. (Dinophyceae), a dinoflagellate commonly found in symbiosis with polycystine radiolarians. J. Phycol. 50:388–99
    [Google Scholar]
  125. Puxty RJ, Millard AD, Evans DJ, Scanlan DJ 2016. Viruses inhibit CO2 fixation in the most abundant phototrophs on Earth. Curr. Biol. 26:1585–89
    [Google Scholar]
  126. R. Bot. Gard. Kew 2017. State of the world's plants 2017 Rep., R. Bot. Gard. Kew Richmond, UK:
  127. Raven JA, Evans MCW, Korb RE 1999. The role of trace metals in photosynthetic electron transport in O2-evolving organisms. Photosynth. Res. 60:111–50
    [Google Scholar]
  128. Reid PC, Colebrook JM, Matthews JBL, Aiken J 2003. The Continuous Plankton Recorder: concepts and history, from Plankton Indicator to undulating recorders. Prog. Oceanogr. 58:117–73
    [Google Scholar]
  129. Reyes-Prieto A, Weber APM, Bhattacharya D 2007. The origin and establishment of the plastid in algae and plants. Annu. Rev. Genet. 41:147–68
    [Google Scholar]
  130. Robineau B. 1999. Ultraphytoplankton abundances and chlorophyll a concentrations in ice-covered waters of northern seas. J. Plankton Res. 21:735–55
    [Google Scholar]
  131. Roux S, Brum JR, Dutilh BE, Sunagawa S, Duhaime MB et al. 2016. Ecogenomics and potential biogeochemical impacts of globally abundant ocean viruses. Nature 537:689–93
    [Google Scholar]
  132. Rusch DB, Halpern AL, Sutton G, Heidelberg KB, Williamson S et al. 2007. The Sorcerer II Global Ocean Sampling expedition: northwest Atlantic through eastern tropical Pacific. PLOS Biol 5:e77
    [Google Scholar]
  133. Sager R, Zalokar M. 1958. Pigments and photosynthesis in a carotenoid-deficient mutant of Chlamydomonas. . Nature 182:98–100
    [Google Scholar]
  134. Salazar G, Paoli L, Alberti A, Huerta-Cepas J, Ruscheweyh H-J et al. 2019. Gene expression changes and community turnover differentially shape the global ocean metatranscriptome. Cell In press
    [Google Scholar]
  135. Sánchez-Baracaldo P, Bianchini G, Di Cesare A, Callieri C, Chrismas NA 2019. Insights into the evolution of picocyanobacteria and phycoerythrin genes (mpeBA and cpeBA). Front. Microbiol. 10:45
    [Google Scholar]
  136. Santoro AE. 2019. Crystal ball: the microbial map of the ocean. Environ. Microbiol. Rep. 11:35–37
    [Google Scholar]
  137. Sardet C. 2015. Plankton: Wonders of the Drifting World Chicago: Univ. Chicago Press
  138. Seeleuthner Y, Mondy S, Lombard V, Carradec Q, Pelletier E et al. 2018. Single-cell genomics of multiple uncultured stramenopiles reveals underestimated functional diversity across oceans. Nat. Commun. 9:310
    [Google Scholar]
  139. Selosse M-A, Charpin M, Not F 2017. Mixotrophy everywhere on land and in water: the grand écart hypothesis. Ecol. Lett. 20:246–63
    [Google Scholar]
  140. Sigman DM, Hain MP. 2012. The biological productivity of the ocean. Nat. Educ. Knowl. 3:21
    [Google Scholar]
  141. Simon N, Cras A-L, Foulon E, Lemée R 2009. Diversity and evolution of marine phytoplankton. C. R. Biol. 332:159–70
    [Google Scholar]
  142. Šímová I, Storch D. 2017. The enigma of terrestrial primary productivity: measurements, models, scales and the diversity-productivity relationship. Ecography 40:239–52
    [Google Scholar]
  143. Six C, Thomas JC, Garczarek L, Ostrowski M, Dufresne A et al. 2007. Diversity and evolution of phycobilisomes in marine Synechococcus spp.: a comparative genomics study. Genome Biol 8:R259
    [Google Scholar]
  144. Smetacek V. 1999. Diatoms and the ocean carbon cycle. Protist 150:25–32
    [Google Scholar]
  145. Sournia A, Chrdtiennot-Dinet MJ, Ricard M 1991. Marine phytoplankton: how many species in the world ocean?. J. Plankton Res. 13:1093–99
    [Google Scholar]
  146. Stec KF, Caputi L, Buttigieg PL, D'Alelio D, Ibarbalz FM et al. 2017. Modelling plankton ecosystems in the meta-omics era. Are we ready?. Mar. Genom. 32:1–17
    [Google Scholar]
  147. Steemann Nielsen E. 1960. Productivity of the oceans. Annu. Rev. Plant Physiol. 11:341–62
    [Google Scholar]
  148. Stemmann L, Youngbluth M, Robert K, Hosia A, Picheral M et al. 2008. Global zoogeography of fragile macrozooplankton in the upper 100–1000 m inferred from the underwater video profiler. ICES J. Mar. Sci. 65:433–42
    [Google Scholar]
  149. Stoecker DK, Hansen PJ, Caron DA, Mitra A 2017. Mixotrophy in the marine plankton. Annu. Rev. Mar. Sci. 9:311–35
    [Google Scholar]
  150. Sunagawa S, Coelho LP, Chaffron S, Kultima JR, Labadie K et al. 2015. Structure and function of the global ocean microbiome. Science 348:1261359
    [Google Scholar]
  151. Suttle CA. 2007. Marine viruses—major players in the global ecosystem. Nat. Rev. Microbiol. 5:801–12
    [Google Scholar]
  152. Suzuki N, Not F. 2015. Biology and ecology of Radiolaria. Marine Protists S Ohtsuka, T Suzaki, T Horiguchi, N Suzuki, F Not 179–222 Tokyo: Springer
    [Google Scholar]
  153. Swenson NG, Enquist BJ. 2007. Ecological and evolutionary determinants of a key plant functional trait: wood density and its community-wide variation across latitude and elevation. Am. J. Bot. 94:451–59
    [Google Scholar]
  154. Thompson AW, Foster RA, Krupke A, Carter BJ, Musat N et al. 2012. Unicellular cyanobacterium symbiotic with a single-celled eukaryotic alga. Science 337:1546–50
    [Google Scholar]
  155. Tittensor DP, Mora C, Jetz W, Lotze HK, Ricard D et al. 2010. Global patterns and predictors of marine biodiversity across taxa. Nature 466:1098–101
    [Google Scholar]
  156. Trebilco R, Baum JK, Salomon AK, Dulvy NK 2013. Ecosystem ecology: size-based constraints on the pyramids of life. Trends Ecol. Evol. 28:423–31
    [Google Scholar]
  157. Vallina SM, Follows MJ, Dutkiewicz S, Montoya JM, Cermeno P, Loreau M 2014. Global relationship between phytoplankton diversity and productivity in the ocean. Nat. Commun. 5:4299
    [Google Scholar]
  158. Vannier T, Leconte J, Seeleuthner Y, Mondy S, Pelletier E et al. 2016. Survey of the green picoalga Bathycoccus genomes in the global ocean. Sci. Rep. 6:37900
    [Google Scholar]
  159. Venrick EL. 1988. The vertical distributions of chlorophyll and phytoplankton species in the North Pacific central environment. J. Plankton Res. 10:987–98
    [Google Scholar]
  160. Villar E, Farrant GK, Follows M, Garczarek L, Speich S et al. 2015. Ocean plankton. Environmental characteristics of Agulhas rings affect interocean plankton transport. Science 348:1261447
    [Google Scholar]
  161. Vincent FJ, Colin S, Romac S, Scalco E, Bittner L et al. 2018. The epibiotic life of the cosmopolitan diatom Fragilariopsis doliolus on heterotrophic ciliates in the open ocean. ISME J 12:1094–108
    [Google Scholar]
  162. Werdell PJ, Proctor CW, Boss E, Leeuw T, Ouhssain M 2013. Underway sampling of marine inherent optical properties on the Tara Oceans expedition as a novel resource for ocean color satellite data product validation. Methods Oceanogr 7:40–51
    [Google Scholar]
  163. Xing X-G, Claustre H, Boss E, Chai F 2018. Toward deeper development of Biogeochemical-Argo floats. Atmos. Ocean. Sci. Lett. 11:287–90
    [Google Scholar]
  164. Yelton AP, Acinas SG, Sunagawa S, Bork P, Pedrós-Alió C, Chisholm SW 2016. Global genetic capacity for mixotrophy in marine picocyanobacteria. ISME J 10:2946–57
    [Google Scholar]
  165. Zehr JP, Waterbury JB, Turner PJ, Montoya JP, Omoregie E et al. 2001. Unicellular cyanobacteria fix N2 in the subtropical North Pacific Ocean. Nature 412:635–38
    [Google Scholar]
  166. Zhang C, Dang H, Azam F, Benner R, Legendre L et al. 2018. Evolving paradigms in biological carbon cycling in the ocean. Natl. Sci. Rev. 5:481–99
    [Google Scholar]
  167. Zubkov MV. 2014. Faster growth of the major prokaryotic versus eukaryotic CO2 fixers in the oligotrophic ocean. Nat. Commun. 5:3776
    [Google Scholar]
/content/journals/10.1146/annurev-marine-010419-010706
Loading
/content/journals/10.1146/annurev-marine-010419-010706
Loading

Data & Media loading...

Supplemental Material

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error