1932

Abstract

Ocean ventilation is the transfer of tracers and young water from the surface down into the ocean interior. The tracers that can be transported to depth include anthropogenic heat and carbon, both of which are critical to understanding future climate trajectories. Ventilation occurs in both high- and midlatitude regions, but it is the southern midlatitudes that are responsible for the largest fraction of anthropogenic heat and carbon uptake; such Southern Ocean ventilation is the focus of this review. Southern Ocean ventilation occurs through a chain of interconnected mechanisms, including the zonally averaged meridional overturning circulation, localized subduction, eddy-driven mixing along isopycnals, and lateral transport by subtropical gyres. To unravel the complex pathways of ventilation and reconcile conflicting results, here we assess the relative contribution of each of thesemechanisms, emphasizing the three-dimensional and temporally varying nature of the ventilation of the Southern Ocean pycnocline. We conclude that Southern Ocean ventilation depends on multiple processes and that simplified frameworks that explain ventilation changes through a single process are insufficient.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-marine-010419-011012
2022-01-03
2024-04-18
Loading full text...

Full text loading...

/deliver/fulltext/marine/14/1/annurev-marine-010419-011012.html?itemId=/content/journals/10.1146/annurev-marine-010419-011012&mimeType=html&fmt=ahah

Literature Cited

  1. Abernathey R, Ferreira D. 2015. Southern Ocean isopycnal mixing and ventilation changes driven by winds. Geophys. Res. Lett. 42:10357–65
    [Google Scholar]
  2. Abernathey R, Marshall J, Mazloff M, Shuckburgh E 2010. Enhancement of mesoscale eddy stirring at steering levels in the Southern Ocean. J. Phys. Oceanogr. 40:170–84
    [Google Scholar]
  3. Ajayi A, Le Sommer J, Chassignet EP, Molines JM, Xu X et al. 2021. Diagnosing cross-scale kinetic energy exchanges from two submesoscale permitting ocean models. J. Adv. Model. Earth Syst. 13:e2019MS001923
    [Google Scholar]
  4. Álvarez M, Tanhua T, Brix H, Lo Monaco C, Metzl N et al. 2011. Decadal biogeochemical changes in the subtropical Indian Ocean associated with Subantarctic Mode Water. J. Geophys. Res. 116:C09016
    [Google Scholar]
  5. Armour KC, Marshall J, Scott JR, Donohoe A, Newsom ER. 2016. Southern Ocean warming delayed by circumpolar upwelling and equatorward transport. Nat. Geosci. 9:549–54
    [Google Scholar]
  6. Bachman SD, Taylor JR, Adams KA, Hosegood PJ. 2017. Mesoscale and submesoscale effects on mixed layer depth in the Southern Ocean. J. Phys. Oceanogr. 47:2173–88
    [Google Scholar]
  7. Bahl A, Gnanadesikan A, Pradal MA. 2019. Variations in ocean deoxygenation across earth system models: isolating the role of parameterized lateral mixing. Glob. Biogeochem. Cycles 33:703–24
    [Google Scholar]
  8. Balwada D, LaCasce JH, Speer KG, Ferrari R. 2021. Relative dispersion in the Antarctic Circumpolar Current. J. Phys. Oceanogr. 51:553–74
    [Google Scholar]
  9. Balwada D, Smith KS, Abernathey R. 2018. Submesoscale vertical velocities enhance tracer subduction in an idealized Antarctic Circumpolar Current. Geophys. Res. Lett. 45:9790–802
    [Google Scholar]
  10. Balwada D, Speer KG, LaCasce JH, Brechner Owens W, Marshall J, Ferrari R 2016. Circulation and stirring in the Southeast Pacific Ocean and the Scotia Sea sectors of the Antarctic Circumpolar Current. J. Phys. Oceanogr. 46:2005–27
    [Google Scholar]
  11. Bower AS, Lozier MS, Gary SF, Böning CW 2009. Interior pathways of the North Atlantic meridional overturning circulation. Nature 459:243–47
    [Google Scholar]
  12. Boyer TP, Garcia HE, Locarnini RA, Zweng MM, Mishonov AV et al. 2018. World Ocean Atlas 2018 Data Set, Natl. Cent. Environ. Inf., Natl. Ocean. Atmos. Adm. Silver Spring, MD: https://accession.nodc.noaa.gov/NCEI-WOA18
  13. Bronselaer B, Zanna L. 2020. Heat and carbon coupling reveals ocean warming due to circulation changes. Nature 584:227–33
    [Google Scholar]
  14. Bronselaer B, Zanna L, Munday DR, Lowe J. 2018. Southern Ocean carbon-wind stress feedback. Clim. Dyn. 51:2743–57
    [Google Scholar]
  15. Cai W. 2006. Antarctic ozone depletion causes an intensification of the Southern Ocean super-gyre circulation. Geophys. Res. Lett. 33:L03712
    [Google Scholar]
  16. Cerovečki I, Mazloff M. 2015. The spatiotemporal structure of diabatic processes governing the evolution of Subantarctic Mode Water in the Southern Ocean. J. Phys. Oceanogr. 46:683–710
    [Google Scholar]
  17. Cerovečki I, Meijers AJS, Mazloff MR, Gille ST, Tamsitt VM, Holland PR. 2019. The effects of enhanced sea ice export from the Ross Sea on recent cooling and freshening of the Southeast Pacific. J. Clim. 32:2013–35
    [Google Scholar]
  18. Cerovečki I, Talley LD, Mazloff MR, Maze G. 2013. Subantarctic Mode Water formation, destruction, and export in the eddy-permitting Southern Ocean State Estimate. J. Phys. Oceanogr. 43:1485–511
    [Google Scholar]
  19. Close SE, Goosse H. 2013. Entrainment-driven modulation of Southern Ocean mixed layer properties and sea ice variability in CMIP5 models. J. Geophys. Res. 118:2811–27
    [Google Scholar]
  20. DeVries T, Holzer M, Primeau F. 2017. Recent increase in oceanic carbon uptake driven by weaker upper-ocean overturning. Nature 542:215–18
    [Google Scholar]
  21. Dong S, Sprintall J, Gille ST, Talley L. 2008. Southern Ocean mixed-layer depth from Argo float profiles. J. Geophys. Res. 113:C06013
    [Google Scholar]
  22. Downes SM, Bindoff NL, Rintoul SR. 2009. Impacts of climate change on the subduction of mode and intermediate water masses in the Southern Ocean. J. Clim. 22:3289–302
    [Google Scholar]
  23. Downes SM, Bindoff NL, Rintoul SR. 2010. Changes in the subduction of Southern Ocean water masses at the end of the twenty-first century in eight IPCC models. J. Clim. 23:6526–41
    [Google Scholar]
  24. Downes SM, Budnick AS, Sarmiento JL, Farneti R. 2011. Impacts of wind stress on the Antarctic Circumpolar Current fronts and associated subduction. Geophys. Res. Lett. 38:L11605
    [Google Scholar]
  25. Downes SM, Hogg AM. 2013. Southern Ocean circulation and eddy compensation in CMIP5 models. J. Clim. 26:7198–220
    [Google Scholar]
  26. Downes SM, Langlais C, Brook JP, Spence P 2017. Regional impacts of the westerly winds on Southern Ocean mode and intermediate water subduction. J. Phys. Oceanogr. 47:2521–30
    [Google Scholar]
  27. England MH, Maier-Reimer E. 2001. Using chemical tracers to assess ocean models. Rev. Geophys. 39:29–70
    [Google Scholar]
  28. Farneti R, Delworth TL, Rosati AJ, Griffies SM, Zeng F. 2010. The role of mesoscale eddies in the rectification of the Southern Ocean response to climate change. J. Phys. Oceanogr. 40:1539–57
    [Google Scholar]
  29. Fine RA, Peacock S, Maltrud ME, Bryan FO. 2017. A new look at ocean ventilation time scales and their uncertainties. J. Geophys. Res. 122:3771–98
    [Google Scholar]
  30. Fogt RL, Marshall GJ. 2020. The Southern Annular Mode: variability, trends, and climate impacts across the Southern Hemisphere. Wiley Interdiscip. Rev. Clim. Change 11:e652
    [Google Scholar]
  31. Frölicher TL, Sarmiento JL, Paynter DJ, Dunne JP, Krasting JP, Winton M. 2015. Dominance of the Southern Ocean in anthropogenic carbon and heat uptake in CMIP5 models. J. Clim. 28:862–86
    [Google Scholar]
  32. Gao L, Rintoul SR, Yu W. 2018. Recent wind-driven change in Subantarctic Mode Water and its impact on ocean heat storage. Nat. Clim. Change 8:58–63
    [Google Scholar]
  33. Gent PR, McWilliams JC. 1990. Isopycnal mixing in ocean circulation models. J. Phys. Oceanogr. 20:150–55
    [Google Scholar]
  34. Gnanadesikan A, Pradal MA, Abernathey R. 2015a. Exploring the isopycnal mixing and helium-heat paradoxes in a suite of Earth system models. Ocean Sci 11:591–605
    [Google Scholar]
  35. Gnanadesikan A, Pradal MA, Abernathey R. 2015b. Isopycnal mixing by mesoscale eddies significantly impacts oceanic anthropogenic carbon uptake. Geophys. Res. Lett. 42:4249–55
    [Google Scholar]
  36. Groeskamp S, Abernathey RP, Klocker A. 2016. Water mass transformation by cabbeling and thermobaricity. Geophys. Res. Lett. 43:10835–45
    [Google Scholar]
  37. Gruber N, Clement D, Carter BR, Feely RA, Heuven SV et al. 2019a. The oceanic sink for anthropogenic CO2 from 1994 to 2007. Science 363:1193–99
    [Google Scholar]
  38. Gruber N, Gloor M, Fletcher SEM, Doney SC, Dutkiewicz S et al. 2009. Oceanic sources, sinks, and transport of atmospheric CO2. Glob. Biogeochem. Cycles 23:GB1005
    [Google Scholar]
  39. Gruber N, Landsch P, Landschützer P, Lovenduski NS. 2019b. The variable Southern Ocean carbon sink. Annu. Rev. Mar. Sci. 11:159–86
    [Google Scholar]
  40. Haine TW, Hall TM. 2002. A generalized transport theory: water-mass composition and age. J. Phys. Oceanogr. 32:1932–46
    [Google Scholar]
  41. Hall TM, Waugh DW, Haine TW, Robbins PE, Khatiwala S. 2004. Estimates of anthropogenic carbon in the Indian Ocean with allowance for mixing and time-varying air-sea CO2 disequilibrium. Glob. Biogeochem. Cycles 18:GB1031
    [Google Scholar]
  42. Hanawa K, Talley LD 2001. Mode waters. Ocean Circulation and Climate G Siedler, J Church 373–86 San Diego, CA: Academic
    [Google Scholar]
  43. Hiraike Y, Tanaka Y, Hasumi H. 2016. Subduction of Pacific Antarctic Intermediate Water in an eddy-resolving model. J. Geophys. Res. 121:133–47
    [Google Scholar]
  44. Hogg AM, Spence P, Saenko OA, Downes SM. 2017. The energetics of Southern Ocean upwelling. J. Phys. Oceanogr. 47:135–53
    [Google Scholar]
  45. Holte JW, Talley LD, Chereskin TK, Sloyan BM. 2012. The role of air-sea fluxes in Subantarctic Mode Water formation. J. Geophys. Res. 117:C03040
    [Google Scholar]
  46. Ito T, Bracco A, Deutsch C, Frenzel H, Long M, Takano Y 2015. Sustained growth of the Southern Ocean carbon storage in a warming climate. Geophys. Res. Lett. 42:4516–22
    [Google Scholar]
  47. Ito T, Marshall J, Follows M 2004. What controls the uptake of transient tracers in the Southern Ocean?. Glob. Biogeochem. Cycles 18:GB2021
    [Google Scholar]
  48. Iudicone D, Rodgers K, Schopp R, Madec G. 2007. An exchange window for the injection of Antarctic Intermediate Water into the South Pacific. J. Phys. Oceanogr. 37:31–49
    [Google Scholar]
  49. Iudicone D, Rodgers KB, Plancherel Y, Aumont O, Ito T et al. 2016. The formation of the ocean's anthropogenic carbon reservoir. Sci. Rep. 6:35473
    [Google Scholar]
  50. Jones DC, Boland E, Meijers AJS, Forget G, Josey SA et al. 2019. Heat distribution in the Southeast Pacific is only weakly sensitive to high-latitude heat flux and wind stress. J. Geophys. Res. 124:8647–66
    [Google Scholar]
  51. Jones DC, Boland E, Meijers AJS, Forget G, Josey SA et al. 2020. The sensitivity of Southeast Pacific heat distribution to local and remote changes in ocean properties. J. Phys. Oceanogr. 50:773–90
    [Google Scholar]
  52. Jones DC, Ito T, Takano Y, Hsu WC. 2014. Spatial and seasonal variability of the air-sea equilibration timescale of carbon dioxide. Glob. Biogeochem. Cycles 28:1163–78
    [Google Scholar]
  53. Jones DC, Meijers AJS, Shuckburgh E, Sallée JB, Haynes P et al. 2016. How does Subantarctic Mode Water ventilate the Southern Hemisphere subtropics?. J. Geophys. Res. 121:3010–28
    [Google Scholar]
  54. Katsumata K, Sloyan BM, Masuda S. 2013. Diapycnal and isopycnal transports in the Southern Ocean estimated by a box inverse model. J. Phys. Oceanogr. 43:2270–87
    [Google Scholar]
  55. Kessler A, Tjiputra J. 2016. The Southern Ocean as a constraint to reduce uncertainty in future ocean carbon sinks. Earth Syst. Dyn. 7:295–312
    [Google Scholar]
  56. Khatiwala S, Primeau F, Hall T. 2009. Reconstruction of the history of anthropogenic CO2 concentrations in the ocean. Nature 462:346–49
    [Google Scholar]
  57. Khatiwala S, Primeau F, Holzer M. 2012. Ventilation of the deep ocean constrained with tracer observations and implications for radiocarbon estimates of ideal mean age. Earth Planet. Sci. Lett. 325-326:116–25
    [Google Scholar]
  58. Khatiwala S, Tanhua T, Mikaloff Fletcher S, Gerber M, Doney SC et al. 2013. Global ocean storage of anthropogenic carbon. Biogeosciences 10:2169–91
    [Google Scholar]
  59. Kiss AE, Hogg AM, Hannah N, Boeira Dias F, Brassington GB et al. 2020. ACCESS-OM2 v1.0: a global ocean-sea ice model at three resolutions. Geosci. Model Dev. 13:401–42
    [Google Scholar]
  60. Klocker A. 2018. Opening the window to the Southern Ocean: the role of jet dynamics. Sci. Adv. 4:eaao4719
    [Google Scholar]
  61. Kwon EY. 2013. Temporal variability of transformation, formation, and subduction rates of upper Southern Ocean waters. J. Geophys. Res. 118:6285–302
    [Google Scholar]
  62. LaCasce JH, Ferrari R, Marshall J, Tulloch R, Balwada D, Speer K. 2014. Float-derived isopycnal diffusivities in the DIMES experiment. J. Phys. Oceanogr. 44:764–80
    [Google Scholar]
  63. Lachkar Z, Orr JC, Dutay JC, Delectase P. 2007. Effects of mesoscale eddies on global ocean distributions of CFC-11, CO2, and C. Ocean Sci. 3:461–82
    [Google Scholar]
  64. Landschützer P, Gruber N, Haumann FA, Rödenbeck C, Bakker DCE et al. 2015. The reinvigoration of the Southern Ocean carbon sink. Science 349:1221–24
    [Google Scholar]
  65. Langlais CE, Lenton A, Matear R, Monselesan D, Legresy B et al. 2017. Stationary Rossby waves dominate subduction of anthropogenic carbon in the Southern Ocean. Sci. Rep. 7:17076
    [Google Scholar]
  66. Le Quéré C, Raupach MR, Canadell JG, Marland G, Bopp L et al. 2009. Trends in the sources and sinks of carbon dioxide. Nat. Geosci. 2:831–36
    [Google Scholar]
  67. Liu C, Wang Z. 2014. On the response of the global subduction rate to global warming in coupled climate models. Adv. Atmos. Sci. 31:211–18
    [Google Scholar]
  68. Liu W, Lu J, Xie SP, Fedorov A. 2018. Southern Ocean heat uptake, redistribution, and storage in a warming climate: the role of meridional overturning circulation. J. Clim. 31:4727–43
    [Google Scholar]
  69. Lovenduski NS, Gruber N, Doney SC. 2008. Toward a mechanistic understanding of the decadal trends in the Southern Ocean carbon sink. Glob. Biogeochem. Cycles 22:GB3016
    [Google Scholar]
  70. Lovenduski NS, Ito T. 2009. The future evolution of the Southern Ocean CO2 sink. J. Mar. Res. 67:597–617
    [Google Scholar]
  71. Marinov I, Gnanadesikan A, Toggweiler JR, Sarmiento JL. 2006. The Southern Ocean biogeochemical divide. Nature 441:964–67
    [Google Scholar]
  72. Marshall DP. 1997. Subduction of water masses in an eddying ocean. J. Mar. Res. 55:201–22
    [Google Scholar]
  73. Marshall DP, Zanna L. 2014. A conceptual model of ocean heat uptake under climate change. J. Clim. 27:8444–65
    [Google Scholar]
  74. Marshall J, Radko T 2003. Residual-mean solutions for the Antarctic Circumpolar Current and its associated overturning circulation. J. Phys. Oceanogr. 33:2341–54
    [Google Scholar]
  75. Marshall J, Speer K 2012. Closure of the meridional overturning circulation through Southern Ocean upwelling. Nat. Geosci. 5:171–80
    [Google Scholar]
  76. McCartney M. 1982. The subtropical recirculation of mode waters. J. Mar. Res 40:427–64
    [Google Scholar]
  77. McDougall TJ, McIntosh PC. 2001. The temporal-residual-mean velocity. Part II: isopycnal interpretation and the tracer and momentum equations. J. Phys. Oceanogr. 31:1222–46
    [Google Scholar]
  78. Meijers AJS, Cerovečki I, King BA, Tamsitt V. 2019. A see-saw in Pacific Subantarctic Mode Water formation driven by atmospheric modes. Geophys. Res. Lett. 46:13152–60
    [Google Scholar]
  79. Mignone BK, Gnanadesikan A, Sarmiento JL, Slater RD. 2006. Central role of Southern Hemisphere winds and eddies in modulating the oceanic uptake of anthropogenic carbon. Geophys. Res. Lett. 33:L01604
    [Google Scholar]
  80. Morrison AK, Frölicher TL, Sarmiento JL. 2015. Upwelling in the Southern Ocean. Phys. Today 68:27–32
    [Google Scholar]
  81. Morrison AK, Griffies SM, Winton M, Anderson WG, Sarmiento JL 2016. Mechanisms of Southern Ocean heat uptake and transport in a global eddying climate model. J. Clim. 29:2059–75
    [Google Scholar]
  82. Naveira Garabato AC, MacGilchrist A, Brown PJ, Evans DG, Meijers AJS, Zika JD 2017. High-latitude ocean ventilation and its role in Earth's climate transitions. Philos. Trans. R. Soc. A 375:20160324
    [Google Scholar]
  83. Naveira Garabato AC, Polzin KL, Ferrari R, Zika JD, Forryan A 2016. A microscale view of mixing and overturning across the Antarctic Circumpolar Current. J. Phys. Oceanogr. 46:233–54
    [Google Scholar]
  84. Naveira Garabato AC, Williams AP, Bacon S 2013. The three-dimensional overturning circulation of the Southern Ocean during the WOCE era. Prog. Oceanogr. 120:41–78
    [Google Scholar]
  85. Newsom E, Zanna L, Khatiwala S, Gregory JM 2020. The influence of warming patterns on passive ocean heat uptake. Geophys. Res. Lett. 47:e2020GL088429
    [Google Scholar]
  86. Nycander J, Hieronymus M, Roquet F. 2015. The nonlinear equation of state of sea water and the global water mass distribution. Geophys. Res. Lett. 42:7714–21
    [Google Scholar]
  87. Orsi AH, Johnson GC, Bullister JL 1999. Circulation, mixing, and production of Antarctic Bottom Water. Prog. Oceanogr. 43:55–109
    [Google Scholar]
  88. Patara L, Boening CW, Tanhua T. 2021. Multidecadal changes in Southern Ocean ventilation since the 1960s driven by wind and buoyancy forcing. J. Clim. 34:1485–502
    [Google Scholar]
  89. Portela E, Kolodziejczyk N, Maes C, Thierry V. 2020. Interior water-mass variability in the Southern Hemisphere oceans during the last decade. J. Phys. Oceanogr. 50:361–81
    [Google Scholar]
  90. Pradal MA, Gnanadesikan A. 2014. How does the Redi parameter for mesoscale mixing impact global climate in an earth system model?. J. Adv. Model. Earth Syst. 6:586–601
    [Google Scholar]
  91. Redi MH. 1982. Oceanic isopycnal mixing by coordinate rotation. J. Phys. Oceanogr. 12:1154–58
    [Google Scholar]
  92. Rintoul SR. 2018. The global influence of localized dynamics in the Southern Ocean. Nature 558:209–18
    [Google Scholar]
  93. Rocha CB, Gille ST, Chereskin TK, Menemenlis D. 2016. Seasonality of submesoscale dynamics in the Kuroshio Extension. Geophys. Res. Lett. 43:11304–11
    [Google Scholar]
  94. Roemmich D, Gilson J, Davis R, Sutton P, Wijffels S, Riser S 2007. Decadal spinup of the South Pacific subtropical gyre. J. Phys. Oceanogr. 37:162–73
    [Google Scholar]
  95. Roemmich D, Gilson J, Sutton P, Zilberman N 2016. Multidecadal change of the South Pacific gyre circulation. J. Phys. Oceanogr. 46:1871–83
    [Google Scholar]
  96. Sabine CL, Feely RA, Gruber N, Key RM, Lee K et al. 2004. The oceanic sink for anthropogenic CO2. Science 305:367–71
    [Google Scholar]
  97. Saenko OA, Yang XY, England MH, Lee WG. 2011. Subduction and transport in the Indian and Pacific Oceans in a 2×CO2 climate. J. Clim. 24:1821–38
    [Google Scholar]
  98. Sallée JB. 2018. Southern Ocean warming. Oceanography 31:252–62
    [Google Scholar]
  99. Sallée JB, Matear RJ, Rintoul SR, Lenton A. 2012. Localized subduction of anthropogenic carbon dioxide in the Southern Hemisphere oceans. Nat. Geosci. 5:579–84
    [Google Scholar]
  100. Sallée JB, Shuckburgh E, Bruneau N, Meijers AJS, Bracegirdle TJ, Wang Z. 2013a. Assessment of Southern Ocean mixed-layer depths in CMIP5 models: historical bias and forcing response. J. Geophys. Res. 118:1845–62
    [Google Scholar]
  101. Sallée JB, Shuckburgh E, Bruneau N, Meijers AJS, Bracegirdle TJ et al. 2013b. Assessment of Southern Ocean water mass circulation and characteristics in CMIP5 models: historical bias and forcing response. J. Geophys. Res. 118:1830–44
    [Google Scholar]
  102. Sallée JB, Speer K, Rintoul S, Wijffels S. 2010a. Southern Ocean thermocline ventilation. J. Phys. Oceanogr. 40:509–29
    [Google Scholar]
  103. Sallée JB, Speer KG, Rintoul SR. 2010b. Zonally asymmetric response of the Southern Ocean mixed-layer depth to the Southern Annular Mode. Nat. Geosci. 3:273–79
    [Google Scholar]
  104. Sarmiento J, Gruber N, Brzezinski M, Dunne J. 2004. High-latitude controls of thermocline nutrients and low latitude biological productivity. Nature 427:56–60
    [Google Scholar]
  105. Sen Gupta A, Santoso A, Taschetto AS, Ummenhofer CC, Trevena J, England MH 2009. Projected changes to the Southern Hemisphere ocean and sea ice in the IPCC AR4 climate models. J. Clim. 22:3047–78
    [Google Scholar]
  106. Shi JR, Xie SP, Talley LD. 2018. Evolving relative importance of the Southern Ocean and North Atlantic in anthropogenic ocean heat uptake. J. Clim. 31:7459–79
    [Google Scholar]
  107. Speer K, Rintoul SR, Sloyan B. 2000. The diabatic Deacon cell. J. Phys. Oceanogr. 30:3212–22
    [Google Scholar]
  108. Stommel H. 1979. Determination of water mass properties of water pumped down from the Ekman layer to the geostrophic flow below. PNAS 76:3051–55
    [Google Scholar]
  109. Talley LD, Feely RA, Sloyan BM, Wanninkhof R, Baringer MO et al. 2016. Changes in ocean heat, carbon content, and ventilation: a review of the first decade of GO-SHIP global repeat hydrography. Annu. Rev. Mar. Sci. 8:185–215
    [Google Scholar]
  110. Talley LD. 2013. Closure of the global overturning circulation through the Indian, Pacific, and Southern Oceans: schematics and transports. Oceanography 26:180–97
    [Google Scholar]
  111. Tanhua T, Waugh DW, Bullister JL. 2013. Estimating changes in ocean ventilation from early 1990s CFC-12 and late 2000s SF6 measurements. Geophys. Res. Lett. 40:927–32
    [Google Scholar]
  112. Taylor JR, Bachman S, Stamper M, Hosegood P, Adams K et al. 2018. Submesoscale Rossby waves on the Antarctic Circumpolar Current. Sci. Adv. 4:eaao2824
    [Google Scholar]
  113. Thompson AF, Naveira Garabato AC. 2014. Equilibration of the Antarctic Circumpolar Current by standing meanders. J. Phys. Oceanogr. 44:1811–28
    [Google Scholar]
  114. Ting YH, Holzer M. 2017. Decadal changes in Southern Ocean ventilation inferred from deconvolutions of repeat hydrographies. Geophys. Res. Lett. 44:5655–64
    [Google Scholar]
  115. Tulloch R, Ferrari R, Jahn O, Klocker A, LaCasce J et al. 2014. Direct estimate of lateral eddy diffusivity upstream of Drake Passage. J. Phys. Oceanogr. 44:2593–616
    [Google Scholar]
  116. Visbeck M, Marshall J, Jones H 1996. Dynamics of isolated convective regions in the ocean. J. Phys. Oceanogr. 26:1721–34
    [Google Scholar]
  117. Wang D, Cane MA 2011. Pacific shallow meridional overturning circulation in a warming climate. J. Clim. 24:6424–39
    [Google Scholar]
  118. Waugh DW. 2014. Changes in the ventilation of the southern oceans. Philos. Trans. R. Soc. A 372:20130269
    [Google Scholar]
  119. Waugh DW, Hall TM, Haine TWN. 2003. Relationships among tracer ages. J. Geophys. Res. 108:3138
    [Google Scholar]
  120. Waugh DW, Hall TM, McNeil BI, Key R, Matear RJ. 2006. Anthropogenic CO2 in the oceans estimated using transit time distributions. Tellus B 58:376–89
    [Google Scholar]
  121. Waugh DW, Hogg AM, Spence P, England MH, Haine TWN. 2019. Response of Southern Ocean ventilation to changes in midlatitude westerly winds. J. Clim. 32:5345–61
    [Google Scholar]
  122. Waugh DW, Primeau F, DeVries T, Holzer M. 2013. Recent changes in the ventilation of the southern oceans. Science 339:568–70
    [Google Scholar]
  123. Waugh DW, Stewart KD, Hogg AM, England MH. 2021. Interbasin differences in ocean ventilation in response to variations in the Southern Annular Mode. J. Geophys. Res. 126:e2020JC016540
    [Google Scholar]
  124. Willey DA, Fine RA, Sonnerup RE, Bullister JL, Smethie WM, Warner MJ. 2004. Global oceanic chlorofluorocarbon inventory. Geophys. Res. Lett. 31:L01303
    [Google Scholar]
  125. Williams RG, Follows MJ. 2011. Ocean dynamics and the carbon cycle Cambridge, UK: Cambridge Univ. Press
  126. Williams RG, Meijers A 2019. Ocean subduction. Encyclopedia of Ocean Sciences JK Cochran, H Bokuniewicz, P Yager 141–57 San Diego, CA: Academic. , 3rd ed..
    [Google Scholar]
  127. Young WR. 2012. An exact thickness-weighted average formulation of the Boussinesq equations. J. Phys. Oceanogr. 42:692–707
    [Google Scholar]
  128. Zanna L, Khatiwala S, Gregory JM, Ison J, Heimbach P. 2019. Global reconstruction of historical ocean heat storage and transport. PNAS 116:1126–31
    [Google Scholar]
/content/journals/10.1146/annurev-marine-010419-011012
Loading
/content/journals/10.1146/annurev-marine-010419-011012
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error