1932

Abstract

Argo, an international, global observational array of nearly 4,000 autonomous robotic profiling floats, each measuring ocean temperature and salinity from 0 to 2,000 m on nominal 10-day cycles, has revolutionized physical oceanography. Argo started at the turn of the millennium,growing out of advances in float technology over the previous several decades. After two decades, with well over 2 million profiles made publicly available in real time, Argo data have underpinned more than 4,000 scientific publications and improved countless nowcasts, forecasts, and projections. We review a small subset of those accomplishments, such as elucidating remarkable zonal jets spanning the deep tropical Pacific; increasing understanding of ocean eddies and the roles of mixing in shaping water masses and circulation; illuminating interannual to decadal ocean variability; quantifying, in concert with satellite data, contributions of ocean warming and ice melting to sea level rise; improving coupled numerical weather predictions; and underpinning decadal climate forecasts.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-marine-022521-102008
2022-01-03
2024-04-23
Loading full text...

Full text loading...

/deliver/fulltext/marine/14/1/annurev-marine-022521-102008.html?itemId=/content/journals/10.1146/annurev-marine-022521-102008&mimeType=html&fmt=ahah

Literature Cited

  1. Abraham JP, Baringer M, Bindoff NL, Boyer T, Cheng LJ et al. 2013. A review of global ocean temperature observations: implications for ocean heat content estimates and climate change. Rev. Geophys. 51:450–83
    [Google Scholar]
  2. Argo Sci. Team 1998. On the design and implementation of Argo: an initial plan for a global array of profiling floats Int. CLIVAR Proj. Off. Rep. 21, GODAE Rep. 5 GODAE Int. Proj. Off., Bur. Meteorol. Melbourne: Aust .
  3. Artana C, Provost C, Lellouche J-M, Rio M-H, Ferrari R, Sennéchael N. 2019. The Malvinas Current at the confluence with the Brazil Current: inferences from 25 years of Mercator Ocean reanalysis. J. Geophys. Res. Oceans 124:7178–200
    [Google Scholar]
  4. Balmaseda M, Anderson D 2009. Impact of initialization strategies and observations on seasonal forecast skill. Geophys. Res. Lett. 36:L01701
    [Google Scholar]
  5. Balmaseda M, Mogensen K, Weaver AT. 2013. Evaluation of the ECMWF ocean reanalysis system ORAS4. Q. J. R. Meteorol. Soc. 139:1132–61
    [Google Scholar]
  6. Bell MJ, Schiller A, Le Traon P-Y, Smith NR, Dombrowsky E, Wilmer-Becker K 2015. An introduction to GODAE OceanView. J. Oper. Oceanogr. 8:s1s2–s11
    [Google Scholar]
  7. Bond NA, Cronin MF, Freeland H, Mantua N. 2015. Causes and impacts of the 2014 warm anomaly in the NE Pacific. Geophys. Res. Lett. 42:3414–20
    [Google Scholar]
  8. Boyer TP, Baranova OK, Coleman C, Garcia HE, Grodsky A et al. 2018. World Ocean Database 2018 Tech. ed. AV Mishonov. NOAA Atlas NESDIS 87 Natl. Cent. Environ. Inf., Natl. Ocean. Atmos. Adm Washington, DC: https://www.ncei.noaa.gov/products/world-ocean-database
  9. Brune S, Baehr J. 2020. Preserving the coupled atmosphere-ocean feedback in initializations of decadal climate predictions. WIREs Clim. Change 11:e637
    [Google Scholar]
  10. Buckley MW, DelSole T, Lozier MS, Li L. 2019. Predictability of North Atlantic sea surface temperature and upper-ocean heat content. J. Clim. 32:3005–23
    [Google Scholar]
  11. Carton JA, Giese BS. 2008. A reanalysis of ocean climate using Simple Ocean Data Assimilation (SODA). Mon. Weather Rev. 136:2999–3017
    [Google Scholar]
  12. Cazenave A, Meyssignac B, Ablain M, Balmaseda M, Bamber J et al. 2018. Global sea-level budget 1993–present. Earth Syst. Sci. Data 10:1551–90
    [Google Scholar]
  13. Chaigneau A, Le Texier M, Eldin G, Grados C, Pizarro O 2011. Vertical structure of mesoscale eddies in the eastern South Pacific Ocean: a composite analysis from altimetry and Argo profiling floats. J. Geophys. Res. Oceans 116:C11025
    [Google Scholar]
  14. Cheng L, Zhu J, Cowley R, Boyer T, Wijffels S. 2014. Time, probe type, and temperature variable bias corrections to historical expendable bathythermograph observations. J. Atmos. Ocean. Technol. 31:1793–825
    [Google Scholar]
  15. Cheng L, Zhu J, Sriver RL. 2015. Global representation of tropical cyclone-induced short-term ocean thermal changes using Argo data. Ocean Sci 11:719–41
    [Google Scholar]
  16. Chiswell SM, Sutton PJH. 2020. Relationships between long-term ocean warming, marine heat waves and primary production in the New Zealand region. N. Z. J. Mar. Freshw. Res. 54:614–35
    [Google Scholar]
  17. Cole ST. 2018. Investigating small-scale processes from an abundance of autonomous observations. ALPS II: Autonomous and Lagrangian Platforms and Sensors; A Report of the ALPS II Workshop Held February 21–24, 2017, La Jolla, California D Rudnick, D Costa, K Johnson, C Lee, M-L Timmermans 25–27 https://geo-prose.com/pdfs/ALPS-II.pdf
    [Google Scholar]
  18. Cole ST, Wortham C, Kunze E, Owens WB. 2015. Eddy stirring and horizontal diffusivity from Argo float observations: geographic and depth variability. Geophys. Res. Lett. 42:3989–97
    [Google Scholar]
  19. Colin de Verdière A, Ollitrault M 2016. A direct determination of the world ocean barotropic circulation. J. Phys. Oceanogr. 46:255–73
    [Google Scholar]
  20. Cravatte S, Kestenare E, Marin F, Dutrieux P, Firing E. 2017. Subthermocline and intermediate zonal currents in the tropical Pacific Ocean: paths and vertical structure. J. Phys. Oceanogr. 47:2305–24
    [Google Scholar]
  21. Cummings J, Bertino L, Brasseur P, Fukumori I, Kamachi M et al. 2009. Ocean data assimilation systems for GODAE. Oceanography 22:396–109
    [Google Scholar]
  22. Davis RE. 2005. Intermediate-depth circulation of the Indian and South Pacific Oceans measured by autonomous floats. J. Phys. Oceanogr. 35:683–707
    [Google Scholar]
  23. Davis RE, Webb DC, Regier LA, Dufour J. 1992. The Autonomous Lagrangian Circulation Explorer (ALACE). J. Atmos. Ocean. Technol. 9:264–85
    [Google Scholar]
  24. de Boyer Montegut C, Madec G, Fischer AS, Lazar A, Iudicone D. 2004. Mixed layer depth over the global ocean: an examination of profile data and a profile-based climatology. J. Geophys. Res. 109:C12003
    [Google Scholar]
  25. Domingues CM, Church JA, White NJ, Gleckler PJ, Wijffels SE et al. 2008. Improved estimates of upper-ocean warming and multi-decadal sea-level rise. Nature 453:1090–93
    [Google Scholar]
  26. Dong C, McWilliams JC, Liu Y, Chen D 2014. Global heat and salt transports by eddy movement. Nat. Commun. 5:3294
    [Google Scholar]
  27. Dong S, Sprintall J, Gille ST, Talley L. 2008. Southern Ocean mixed-layer depth from Argo float profiles. J. Geophys. Res. Oceans 113:C06013
    [Google Scholar]
  28. Durack PJ. 2015. Ocean salinity and the global water cycle. Oceanography 28:120–31
    [Google Scholar]
  29. Durack PJ, Wijffels SE. 2010. Fifty-year trends in global ocean salinities and their relationship to broad-scale warming. J. Clim. 23:4342–62
    [Google Scholar]
  30. Emanuel KA. 1999. Thermodynamic control of hurricane intensity. Nature 401:665–69
    [Google Scholar]
  31. Eyring V, Bony S, Meehl GA, Senior CA, Stevens B et al. 2016. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev. 9:1937–58
    [Google Scholar]
  32. Feucher C, Maze G, Mercier H. 2019. Subtropical mode water and permanent pycnocline properties in the World Ocean. J. Geophys. Res. Oceans 124:1139–54
    [Google Scholar]
  33. Folger T 1787. Chart of the Gulf Stream. Philosophical and Miscellaneous Papers B Franklin, facing 122 London: C. Dilly
    [Google Scholar]
  34. Frajka-Williams E, Ansorge IJ, Baehr J, Bryden HL, Chidichimo MP et al. 2019. Atlantic Meridional Overturning Circulation: observed transport and variability. Front. Mar. Sci. 6:260
    [Google Scholar]
  35. Fujii Y, Ishibashi T, Yasuda T, Takaya Y, Kobayashi C, Ishikawa I. 2021. Improvements in tropical precipitation and sea surface air temperature fields in a coupled atmosphere–ocean data assimilation system. Q. J. R. Meteorol. Soc. 147:1317–43
    [Google Scholar]
  36. Fujii Y, Rémy E, Zuo H, Oke P, Halliwell G et al. 2019. Observing system evaluation based on ocean data assimilation and prediction systems: on-going challenges and a future vision for designing and supporting ocean observational networks. Front. Mar. Sci. 6:417
    [Google Scholar]
  37. Gaillard F, Reynaud T, Thierry V, Kolodziejczyk N, von Schuckmann K. 2016. In situ–based reanalysis of the global ocean temperature and salinity with ISAS: variability of the heat content and steric height. J. Clim. 29:1305–23
    [Google Scholar]
  38. Gasparin F, Hamon M, Rémy E, Traon P-YL. 2020. How Deep Argo will improve the deep ocean in an ocean reanalysis. J. Clim. 33:77–94
    [Google Scholar]
  39. Gasparin F, Roemmich D. 2016. The strong freshwater anomaly during the onset of the 2015/2016 El Niño. Geophys. Res. Lett 43:6452–60
    [Google Scholar]
  40. Gasparin F, Roemmich D. 2017. The seasonal march of the equatorial Pacific upper-ocean and its El Niño variability. Prog. Oceanogr. 156:1–16
    [Google Scholar]
  41. Gaube P, McGillicuddy DJ Jr., Moulin AJ. 2019. Mesoscale eddies modulate mixed layer depth globally. Geophys. Res. Lett. 46:1505–12
    [Google Scholar]
  42. Giglio D, Johnson GC. 2016. Subantarctic and polar fronts of the Antarctic Circumpolar Current and Southern Ocean heat and freshwater content variability: a view from Argo. J. Phys. Oceanogr. 46:749–68
    [Google Scholar]
  43. Giglio D, Roemmich D, Cornuelle B. 2013. Understanding the annual cycle in global steric height. Geophys. Res. Lett. 40:4349–54
    [Google Scholar]
  44. Giglio D, Roemmich D, Gille ST. 2012. Wind-driven variability of the subtropical North Pacific Ocean. J. Phys. Oceanogr. 42:2089–100
    [Google Scholar]
  45. Gillis J. 2014. In the ocean, clues to change. New York Times Aug. 12. https://www.nytimes.com/2014/08/12/science/in-the-ocean-clues-to-change.html
    [Google Scholar]
  46. Gouretski V. 2019. A new global ocean hydrographic climatology. Atmos. Ocean. Sci. Lett. 12:226–29
    [Google Scholar]
  47. Gouretski V, Reseghetti F. 2010. On depth and temperature biases in bathythermograph data: development of a new correction scheme based on analysis of a global ocean database. Deep-Sea Res. I 57:812–33
    [Google Scholar]
  48. Gray AR, Riser SC. 2014. A global analysis of Sverdrup balance using absolute geostrophic velocities from Argo. J. Phys. Oceanogr. 44:1213–29
    [Google Scholar]
  49. Hanawa K, Talley LD 2001. Mode waters. Ocean Circulation and Climate: Observing and Modelling the Global Ocean G Siedler, J Church, J Gould 373–86 San Diego, CA: Academic
    [Google Scholar]
  50. Hartmann DL, Klein Tank AMG, Rusticucci M, Alexander LV, Brönnimann S et al. 2014. Observations: atmosphere and surface. Climate Change 2013: The Physical Science Basis; Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change TF Stocker, D Qin, G-K Plattner, M Tignor, SK Allen et al.159–254 Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  51. Helm KP, Bindoff NL, Church JA. 2010. Changes in the global hydrological-cycle inferred from ocean salinity. Geophys. Res. Lett. 37:L18701
    [Google Scholar]
  52. Holte JW, Talley LD. 2009. A new algorithm for finding mixed layer depths with applications to Argo data and Subantarctic Mode Water formation. J. Atmos. Ocean. Technol. 26:1920–39
    [Google Scholar]
  53. Holte JW, Talley LD, Chereskin TK, Sloyan BM. 2013. Subantarctic Mode Water in the southeast Pacific: effect of exchange across the Subantarctic Front. J. Geophys. Res. Oceans 118:2052–66
    [Google Scholar]
  54. Holte JW, Talley LD, Gilson J, Roemmich D. 2017. An Argo mixed layer climatology and database. Geophys. Res. Lett. 44:5618–26
    [Google Scholar]
  55. Hosoda S, Ohira T, Sato K, Suga T. 2010. Improved description of global mixed-layer depth using Argo profiling floats. J. Oceanogr. 66:773–87
    [Google Scholar]
  56. Hosoda S, Suga T, Shikama N, Mizuno K. 2009. Global surface layer salinity change detected by Argo and its implication for hydrological cycle intensification. J. Oceanogr. 65:579–86
    [Google Scholar]
  57. Hou AY, Kakar RK, Neeck S, Azarbarzin AA, Kummerow CD et al. 2014. The Global Precipitation Measurement mission. Bull. Am. Meteorol. Soc 95:701–22
    [Google Scholar]
  58. Huang B, Shin C-S, Kumar A, L'Heureux M, Balmaseda MA 2021. The relative roles of decadal climate variations and changes in the ocean observing system on seasonal prediction skill of tropical Pacific SST. Clim. Dyn. 56:3045–63
    [Google Scholar]
  59. Johnson GC, Birnbaum AN. 2017. As El Niño builds, Pacific Warm Pool expands, ocean gains more heat. Geophys. Res. Lett. 44:438–45
    [Google Scholar]
  60. Johnson GC, Cadot C, Lyman JM, McTaggart KE, Steffen EL. 2020. Antarctic Bottom Water warming in the Brazil Basin: 1990s through 2020, from WOCE to Deep Argo. Geophys. Res. Lett. 47:e2020GL089191
    [Google Scholar]
  61. Johnson GC, Lyman JM. 2020. Warming trends increasingly dominate global ocean. Nat. Clim. Change 10:757–61
    [Google Scholar]
  62. Johnson GC, Lyman JM, Boyer T, Cheng L, Domingues CM et al. 2019a. Ocean heat content. Bull. Am. Meteorol. Soc. 100:S74–76
    [Google Scholar]
  63. Johnson GC, Lyman JM, Loeb NG. 2016. Improving estimates of Earth's energy imbalance. Nat. Clim. Change 6:639–40
    [Google Scholar]
  64. Johnson GC, Lyman JM, Purkey SG. 2015. Informing Deep Argo array design using Argo and full-depth hydrographic section data. J. Atmos. Ocean. Technol. 32:2187–98
    [Google Scholar]
  65. Johnson GC, Purkey SG, Zilberman NV, Roemmich D. 2019b. Deep Argo quantifies bottom water warming rates in the southwest Pacific basin. Geophys. Res. Lett. 46:2662–69
    [Google Scholar]
  66. Johnson GC, Schmidtko S, Lyman JM. 2012. Relative contributions of temperature and salinity to seasonal mixed layer density changes and horizontal density gradients. J. Geophys. Res. Oceans 117:C04015
    [Google Scholar]
  67. Jones DC, Holt HJ, Meijers AJS, Shuckburgh E. 2019. Unsupervised clustering of Southern Ocean Argo float temperature profiles. J. Geophys. Res. Oceans 124:390–402
    [Google Scholar]
  68. Katsumata K. 2016. Eddies observed by Argo Floats. Part I: eddy transport in the upper 1000 dbar. J. Phys. Oceanogr. 46:3471–86
    [Google Scholar]
  69. Kawai Y, Hosoda S, Uehara K, Suga T. 2021. Heat and salinity transport between the permanent pycnocline and the mixed layer due to the obduction process evaluated from a gridded Argo dataset. J. Oceanogr. 77:75–92
    [Google Scholar]
  70. King BA, Firing E, Joyce TM 2001. Shipboard observations during WOCE. Ocean Circulation and Climate: Observing and Modelling the Global Ocean G Siedler, J Church, J Gould 99–122 San Diego, CA: Academic
    [Google Scholar]
  71. King RR, Lea DJ, Martin MJ, Mirouze I, Heming J. 2020. The impact of Argo observations in a global weakly coupled ocean-atmosphere data assimilation and short-range prediction system. Q. J. R. Meteorol. Soc. 146:401–14
    [Google Scholar]
  72. Kolodziejczyk N, Llovel W, Portela E. 2019. Interannual variability of upper ocean water masses as inferred from Argo array. J. Geophys. Res. Oceans 124:6067–85
    [Google Scholar]
  73. Kumar A, Chen M, Xue Y, Behringer D. 2015. An analysis of the temporal evolution of ENSO prediction skill in the context of the equatorial Pacific Ocean observing system. Mon. Weather Rev. 143:3204–13
    [Google Scholar]
  74. Kushnir Y, Scaife AA, Arritt R, Balsamo G, Boer G et al. 2019. Towards operational predictions of the near-term climate. Nat. Clim. Change 9:94–101
    [Google Scholar]
  75. Kwon YO, Riser SC. 2004. North Atlantic Subtropical Mode Water: a history of ocean-atmosphere interaction 1961–2000. Geophys. Res. Lett. 31:L19307
    [Google Scholar]
  76. Lavender KL, Davis RE, Owens WB. 2000. Mid-depth recirculation observed in the interior Labrador and Irminger seas by direct velocity measurements. Nature 407:66–69
    [Google Scholar]
  77. Laxenaire R, Speich S, Stegner A. 2019. Evolution of the thermohaline structure of one Agulhas ring reconstructed from satellite altimetry and Argo floats. J. Geophys. Res. Oceans 124:8969–9003
    [Google Scholar]
  78. Laxenaire R, Speich S, Stegner A. 2020. Agulhas ring heat content and transport in the South Atlantic estimated by combining satellite altimetry and Argo profiling floats data. J. Geophys. Res. Oceans 125:e2019JC015511
    [Google Scholar]
  79. Lea DJ, Mirouze I, Martin MJ, King RR, Hines A et al. 2015. Assessing a new coupled data assimilation system based on the Met Office Coupled Atmosphere-Land-Ocean-Sea Ice Model. Mon. Weather Rev. 143:4678–94
    [Google Scholar]
  80. Leuliette EW. 2015. The balancing of the sea-level budget. Curr. Clim. Change Rep. 1:185–91
    [Google Scholar]
  81. Levitus S, Antonov J, Boyer T. 2005. Warming of the world ocean, 1955–2003. Geophys. Res. Lett. 32:L02604
    [Google Scholar]
  82. Li G, Cheng L, Zhu J, Trenberth KE, Mann ME, Abraham JP. 2020. Increasing ocean stratification over the past half-century. Nat. Clim. Change 10:1116–23
    [Google Scholar]
  83. Lin I-I, Chen C-H, Pun I-F, Liu WT, Wu C-C. 2009. Warm ocean anomaly, air sea fluxes, and the rapid intensification of tropical cyclone Nargis (2008). Geophys. Res. Lett. 36:L03817
    [Google Scholar]
  84. Lozier MS, Dave AC, Palter JB, Gerber LM, Barber RT. 2011. On the relationship between stratification and primary productivity in the North Atlantic. Geophys. Res. Lett. 38:L18609
    [Google Scholar]
  85. Majumder S, Schmid C, Halliwell G. 2016. An observations and model-based analysis of meridional transports in the South Atlantic. J. Geophys. Res. Oceans 121:5622–38
    [Google Scholar]
  86. Meehl GA, Goddard L, Boer G, Burgman R, Branstator G et al. 2014. Decadal climate prediction: an update from the trenches. Bull. Am. Meteorol. Soc 95:243–67
    [Google Scholar]
  87. Meehl GA, Goddard L, Murphy J, Stouffer RJ, Boer G et al. 2009. Decadal prediction: Can it be skillful?. Bull. Am. Meteorol. Soc 90:1467–85
    [Google Scholar]
  88. Mrvaljevic RK, Black PG, Centurioni LR, Chang Y-T, D'Asaro EA et al. 2013. Observations of the cold wake of Typhoon Fanapi (2010). Geophys. Res. Lett. 40:316–21
    [Google Scholar]
  89. Munk W. 2003. Ocean freshening, sea level rising. Science 300:2041–43
    [Google Scholar]
  90. Nagano A, Hasegawa T, Ueki I, Ando K. 2017. El Niño–Southern Oscillation-time scale covariation of sea surface salinity and freshwater flux in the western tropical and northern subtropical Pacific. Geophys. Res. Lett. 44:6895–903
    [Google Scholar]
  91. Oka E, Kouketsu S, Toyama K, Uehara K, Kobayashi T et al. 2011. Formation and subduction of central mode water based on profiling float data, 2003–08. J. Phys. Oceanogr. 41:113–29
    [Google Scholar]
  92. Oka E, Qiu B, Takatani Y, Enyo K, Sasano D et al. 2015. Decadal variability of Subtropical Mode Water subduction and its impact on biogeochemistry. J. Oceanogr. 71:389–400
    [Google Scholar]
  93. Oke PR, Balmaseda MA, Benkiran M, Cummings JA, Dombrowsky E et al. 2009. Observing system evaluations using GODAE systems. Oceanography 22:3144–53
    [Google Scholar]
  94. Olita A, Capet A, Claret M, Mahadevan A, Poulain PM et al. 2017. Frontal dynamics boost primary production in the summer stratified Mediterranean sea. Ocean Dyn 67:767–82
    [Google Scholar]
  95. Oliver ECJ, Benthuysen JA, Darmaraki S, Donat MG, Hobday AJ et al. 2021. Marine heatwaves. Annu. Rev. Mar. Sci. 13:313–42
    [Google Scholar]
  96. Ollitrault M, Colin de Verdière A 2014. The ocean general circulation near 1000-m depth. J. Phys. Oceanogr. 44:384–409
    [Google Scholar]
  97. Ollitrault M, Rannou J-P. 2013. ANDRO: an Argo-based deep displacement dataset. J. Atmos. Ocean. Technol. 30:759–88
    [Google Scholar]
  98. Park JJ, Kwon Y-O, Price JF. 2011. Argo array observation of ocean heat content changes induced by tropical cyclones in the North Pacific. J. Geophys. Res. 116:C12025
    [Google Scholar]
  99. Pauthenet E, Roquet F, Madec G, Sallée J-B, Nerini D. 2019. The thermohaline modes of the global ocean. J. Phys. Oceanogr. 49:2535–52
    [Google Scholar]
  100. Piecuch CG, Quinn KJ. 2016. El Niño, La Niña, and the global sea level budget. Ocean Sci 12:1165–77
    [Google Scholar]
  101. Piron A, Thierry V, Mercier H, Caniaux G. 2017. Gyre-scale deep convection in the subpolar North Atlantic Ocean during winter 2014–2015. Geophys. Res. Lett. 44:1439–47
    [Google Scholar]
  102. Portela E, Kolodziejczyk N, Maes C, Thierry V. 2020. Interior water-mass variability in the Southern Hemisphere oceans during the last decade. J. Phys. Oceanogr. 50:361–81
    [Google Scholar]
  103. Purkey SG, Johnson GC. 2013. Antarctic Bottom Water warming and freshening: contributions to sea level rise, ocean freshwater budgets, and global heat gain. J. Clim. 26:6105–22
    [Google Scholar]
  104. Qu T, Gao S, Fukumori I, Fine RA, Lindstrom EJ. 2008. Subduction of South Pacific waters. Geophys. Res. Lett. 35:L02610
    [Google Scholar]
  105. Qu T, Yu J-Y. 2014. ENSO indices from sea surface salinity observed by Aquarius and Argo. J. Oceanogr. 70:367–75
    [Google Scholar]
  106. Qu T, Zhang L, Schneider N. 2016. North Atlantic subtropical underwater and its year-to-year variability in annual subduction rate during the Argo period. J. Phys. Oceanogr. 46:1901–16
    [Google Scholar]
  107. Riser SC, Freeland HJ, Roemmich D, Wijffels S, Troisi A et al. 2016. Fifteen years of ocean observations with the global Argo array. Nat. Clim. Change 6:145–53
    [Google Scholar]
  108. Roach CJ, Balwada D, Speer K. 2016. Horizontal mixing in the Southern Ocean from Argo float trajectories. J. Geophys. Res. Oceans 121:5570–86
    [Google Scholar]
  109. Roach CJ, Balwada D, Speer K. 2018. Global observations of horizontal mixing from Argo float and surface drifter trajectories. J. Geophys. Res. Oceans 123:4560–75
    [Google Scholar]
  110. Roberts MJ, Jackson LC, Roberts CD, Meccia V, Docquier D et al. 2020. Sensitivity of the Atlantic Meridional Overturning Circulation to model resolution in CMIP6 HighResMIP simulations and implications for future changes. J. Adv. Model. Earth Syst. 12:e2019MS002014
    [Google Scholar]
  111. Robson JI, Aksenov Y, Bracegirdle TJ, Dimdore-Miles O, Griffiths PT et al. 2020. The evaluation of the North Atlantic Climate System in UKESM1 historical simulations for CMIP6. J. Adv. Model. Earth Syst. 12:e2020MS002126
    [Google Scholar]
  112. Robson JI, Sutton RT, Smith DM. 2012. Initialized decadal predictions of the rapid warming of the North Atlantic Ocean in the mid 1990s. Geophys. Res. Lett. 39:L19713
    [Google Scholar]
  113. Roemmich D, Gilson J. 2009. The 2004–2008 mean and annual cycle of temperature, salinity, and steric height in the global ocean from the Argo Program. Prog. Oceanogr. 82:81–100
    [Google Scholar]
  114. Roemmich D, Gilson J. 2011. The global ocean imprint of ENSO. Geophys. Res. Lett. 38:L13606
    [Google Scholar]
  115. Roemmich D, Gilson J, Sutton P, Zilberman N. 2016. Multidecadal change of the South Pacific Gyre circulation. J. Phys. Oceanogr. 46:1871–83
    [Google Scholar]
  116. Roemmich D, Gould WJ, Gilson J. 2012. 135 years of global ocean warming between the Challenger expedition and the Argo Programme. Nat. Clim. Change 2:425–28
    [Google Scholar]
  117. Roullet G, Capet X, Maze G. 2014. Global interior eddy available potential energy diagnosed from Argo floats. Geophys. Res. Lett. 41:1651–56
    [Google Scholar]
  118. Sallee JB, Speer K, Rintoul S, Wijffels S. 2010. Southern Ocean thermocline ventilation. J. Phys. Oceanogr. 40:509–29
    [Google Scholar]
  119. Sasaki YN, Schneider N, Maximenko N, Lebedev K. 2010. Observational evidence for propagation of decadal spiciness anomalies in the North Pacific. Geophys. Res. Lett. 37:L07708
    [Google Scholar]
  120. Scannell HA, Johnson GC, Thompson L, Lyman JM, Riser SC. 2020. Subsurface evolution and persistence of marine heatwaves in the northeast Pacific. Geophys. Res. Lett. 47:e2020GL090548
    [Google Scholar]
  121. Schanze JJ, Schmitt RW, Yu LL. 2010. The global oceanic freshwater cycle: a state-of-the-art quantification. J. Mar. Res. 68:569–95
    [Google Scholar]
  122. Schmidtko S, Johnson GC, Lyman JM. 2013. MIMOC: a global monthly isopycnal upper-ocean climatology with mixed layers. J. Geophys. Res. Oceans 118:1658–72
    [Google Scholar]
  123. Stockdale T, Alonso-Balmaseda M, Johnson S, Ferranti L, Molteni F et al. 2018. SEAS5 and the future evolution of the long-range forecast system Tech. Memo. 835 Eur. Cent. Medium-Range Weather Forecasts Berkshire, UK: https://doi.org/10.21957/z3e92di7y
    [Crossref]
  124. Stommel H. 1957. Abyssal circulation of the ocean. Nature 180:733–34
    [Google Scholar]
  125. Storto A, Alvera-Azcárate A, Balmaseda MA, Barth A, Chevallier M et al. 2019. Ocean reanalyses: recent advances and unsolved challenges. Front. Mar. Sci. 6:418
    [Google Scholar]
  126. Sun B, Liu C, Wang F. 2019. Global meridional eddy heat transport inferred from Argo and altimetry observations. Sci. Rep. 9:1345
    [Google Scholar]
  127. Thompson PR, Widlansky MJ, Leuliette E, Sweet W, Chambers DP et al. 2020. Sea level variability and change. Bull. Am. Meteorol. Soc. 101:S153–56
    [Google Scholar]
  128. Tizard TH, Moseley HN, Buchanan JY, Murray J 1965. 1885. Chapter III. The Voyage of H.M.S. Challenger: Narrative of the Cruise of H.M.S. Challenger with a General Account of the Scientific Results of the Expedition C Wyville Thompson, J Murray, Vol. I, First Part 83–120 New York: Johnson Repr. Corp https://archimer.ifremer.fr/doc/00000/4751
    [Google Scholar]
  129. Toyama K, Iwasaki A, Suga T. 2015. Interannual variation of annual subduction rate in the North Pacific estimated from a gridded Argo product. J. Phys. Oceanogr. 45:2276–93
    [Google Scholar]
  130. Trenberth KE, Fasullo JT. 2017. Atlantic meridional heat transports computed from balancing Earth's energy locally. Geophys. Res. Lett. 44:1919–27
    [Google Scholar]
  131. Trossman DS, Thompson L, Kelly KA, Kwon YO. 2009. Estimates of North Atlantic ventilation and mode water formation for winters 2002–06. J. Phys. Oceanogr. 39:2600–17
    [Google Scholar]
  132. Vellinga M, Copsey D, Graham T, Milton S, Johns T 2020. Evaluating benefits of two-way ocean–atmosphere coupling for global NWP forecasts. Weather Forecast 35:2127–44
    [Google Scholar]
  133. Voldoire A, Saint-Martin D, Sénési S, Decharme B, Alias A et al. 2019. Evaluation of CMIP6 DECK experiments with CNRM-CM6-1. J. Adv. Model. Earth Syst. 11:2177–213
    [Google Scholar]
  134. von Schuckmann K, Cheng LJ, Palmer MD, Hansen J, Tassone C et al. 2020. Heat stored in the Earth system: Where does the energy go?. Earth Syst. Sci. Data 12:2013–41
    [Google Scholar]
  135. Wang X, Bhatt V, Sun Y-J. 2015. Seasonal and inter-annual variability of western subtropical mode water in the South Pacific Ocean. Ocean Dyn 65:143–54
    [Google Scholar]
  136. Warren B 1981. Deep circulation of the world ocean. Evolution of Physical Oceanography: Scientific Surveys in Honor of Henry Stommel BA Warren, C Wunsch 6–41 Cambridge, MA: MIT Press
    [Google Scholar]
  137. Whalen CB, MacKinnon JA, Talley LD, Waterhouse AF. 2015. Estimating the mean diapycnal mixing using a finescale strain parameterization. J. Phys. Oceanogr. 45:1174–88
    [Google Scholar]
  138. Wijffels S, Roemmich D, Monselesan D, Church J, Gilson J. 2016. Ocean temperatures chronicle the ongoing warming of Earth. Nat. Clim. Change 6:116–18
    [Google Scholar]
  139. Willis JK. 2010. Can in situ floats and satellite altimeters detect long-term changes in Atlantic Ocean overturning?. Geophys. Res. Lett. 37:L06602
    [Google Scholar]
  140. Wong APS, Wijffels SE, Riser SC, Pouliquen S, Hosoda S et al. 2020. Argo data 1999–2019: two million temperature-salinity profiles and subsurface velocity observations from a global array of profiling floats. Front. Mar. Sci. 7:700
    [Google Scholar]
  141. Woolnough SJ, Vitart F, Balmaseda MA. 2007. The role of the ocean in the Madden–Julian Oscillation: implications for MJO prediction. Q. J. R. Meteorol. Soc. 133:117–28
    [Google Scholar]
  142. Yang J, Riser SC, Nystuen JA, Asher WE, Jessup AT. 2015. Regional rainfall measurements using the Passive Aquatic Listener during the SPURS field campaign. Oceanography 28:1124–33
    [Google Scholar]
  143. Yeager S, Karspeck A, Danabasoglu G, Tribbia J, Teng HY. 2012. A decadal prediction case study: late twentieth-century North Atlantic Ocean heat content. J. Clim. 25:5173–89
    [Google Scholar]
  144. Zanowski H, Johnson GC, Lyman JM. 2019. Equatorial Pacific 1,000-dbar velocity and isotherm displacements from Argo data: beyond the mean and seasonal cycle. J. Geophys. Res. Oceans 124:7873–82
    [Google Scholar]
  145. Zhang S, Liu Z, Zhang X, Wu X, Han G et al. 2020. Coupled data assimilation and parameter estimation in coupled ocean-atmosphere models: a review. Clim. Dyn. 54:5127–44
    [Google Scholar]
  146. Zhang Z, Wang W, Qiu B. 2014. Oceanic mass transport by mesoscale eddies. Science 345:322–24
    [Google Scholar]
  147. Zhang Z, Zhang Y, Wang W, Huang RX 2013. Universal structure of mesoscale eddies in the ocean. Geophys. Res. Lett. 40:3677–81
    [Google Scholar]
  148. Zhao M, Hendon HH, Alves O, Liu G, Wang G. 2016. Weakened eastern Pacific El Niño predictability in the early twenty-first century. J. Clim. 29:6805–22
    [Google Scholar]
  149. Zhu Y, Zhang R, Sun J. 2020. North Pacific upper-ocean cold temperature biases in CMIP6 simulations and the role of regional vertical mixing. J. Clim. 33:7523–38
    [Google Scholar]
  150. Zilberman NV, Roemmich DH, Gille ST. 2014. Meridional volume transport in the South Pacific: mean and SAM-related variability. J. Geophys. Res. Oceans 119:2658–78
    [Google Scholar]
  151. Zuo H, Balmaseda MA, Tietsche S, Mogensen K, Mayer M. 2019. The ECMWF operational ensemble reanalysis–analysis system for ocean and sea ice: a description of the system and assessment. Ocean Sci 15:779–808
    [Google Scholar]
/content/journals/10.1146/annurev-marine-022521-102008
Loading
/content/journals/10.1146/annurev-marine-022521-102008
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error