1932

Abstract

Nitrogen is a major limiting element for biological productivity, and thus understanding past variations in nitrogen cycling is central to understanding past and future ocean biogeochemical cycling, global climate cycles, and biodiversity. Organic nitrogen encapsulated in fossil biominerals is generally protected from alteration, making it an important archive of the marine nitrogen cycle on seasonal to million-year timescales. The isotopic composition of fossil-bound nitrogen reflects variations in the large-scale nitrogen inventory, local sources and processing, and ecological and physiological traits of organisms. The ability to measure trace amounts of fossil-bound nitrogen has expanded with recent method developments. In this article, we review the foundations and ground truthing for three important fossil-bound proxy types: diatoms, foraminifera, and corals. We highlight their utility with examples of high-resolution evidence for anthropogenic inputs of nitrogen to the oceans, glacial–interglacial-scale assessments of nitrogen inventory change, and evidence for enhanced CO drawdown in the high-latitude ocean. Future directions include expanded method development, characterization of ecological and physiological variation, and exploration of extended timescales to push reconstructions further back in Earth's history.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-marine-032122-104001
2023-01-16
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/marine/15/1/annurev-marine-032122-104001.html?itemId=/content/journals/10.1146/annurev-marine-032122-104001&mimeType=html&fmt=ahah

Literature Cited

  1. Adkins JF, Griffin S, Kashgarian M, Cheng H, Druffel ERM et al. 2002. Radiocarbon dating of deep-sea corals. Radiocarbon 44:567–80
    [Google Scholar]
  2. Ai XE, Studer AS, Sigman DM, Martínez-García A, Fripiat F et al. 2020. Southern Ocean upwelling, Earth's obliquity, and glacial-interglacial atmospheric CO2 change. Science 370:1348–52
    [Google Scholar]
  3. Allemand D, Tambutté É, Girard JP, Jaubert J. 1998. Organic matrix synthesis in the scleractinian coral Stylophora pistillata: role in biomineralization and potential target of the organotin tributyltin. J. Exp. Biol. 201:2001–9
    [Google Scholar]
  4. Altabet MA. 1988. Variations in nitrogen isotopic composition between sinking and suspended particles: implications for nitrogen cycling and particle transformation in the open ocean. Deep-Sea Res. A 35:535–54
    [Google Scholar]
  5. Altabet MA, Curry WB. 1989. Testing models of past ocean chemistry using foraminifera 15N/14N. Glob. Biogeochem. Cycles 3:107–19
    [Google Scholar]
  6. Altabet MA, Deuser WG, Honjo S, Stienen C. 1991. Seasonal and depth-related changes in the source of sinking particles in the North Atlantic. Nature 354:136–39
    [Google Scholar]
  7. Altabet MA, Francois R. 1994. Sedimentary nitrogen isotopic ratio as a recorder for surface ocean nitrate utilization. Glob. Biogeochem. Cycles 8:103–16
    [Google Scholar]
  8. Altabet MA, Francois R. 2001. Nitrogen isotope biogeochemistry of the Antarctic Polar Frontal Zone at 170°W. Deep-Sea Res. II 48:4247–73
    [Google Scholar]
  9. Anderson RF, Sachs JP, Fleisher MQ, Allen KA, Yu J et al. 2019. Deep-sea oxygen depletion and ocean carbon sequestration during the last ice age. Glob. Biogeochem. Cycles 33:301–17
    [Google Scholar]
  10. AW, Hemleben C. 1970. Calcification in a living planktonic foraminifer, Globigerinoides sacculifer (Brady). Neues Jahrb. Geol. Paläontol. 134:221–34
    [Google Scholar]
  11. AW, Hemleben C, Anderson OR, Spindler M, Hacunda J, Tuntivate-Choy S. 1977. Laboratory and field observations of living planktonic foraminifera. Micropaleontology 23:155–79
    [Google Scholar]
  12. Bird C, LeKieffre C, Jauffrais T, Meibom A, Geslin E et al. 2020. Heterotrophic foraminifera capable of inorganic nitrogen assimilation. Front. Microbiol. 11:604979
    [Google Scholar]
  13. Boyer TP, Garcia HE, Locarnini RA, Zweng MM, Mishonov AV et al. 2018. World Ocean Atlas 2018 Data Set, Natl. Cent. Environ. Inf., Natl. Ocean. Atmos. Adm. Washington, DC: accessed May 2020. https://www.ncei.noaa.gov/archive/accession/NCEI-WOA18
  14. Brandes JA, Devol AH. 1997. Isotopic fractionation of oxygen and nitrogen in coastal marine sediments. Geochim. Cosmochim. Acta 61:1793–801
    [Google Scholar]
  15. Brandes JA, Devol AH. 2002. A global marine-fixed nitrogen isotopic budget: implications for Holocene nitrogen cycling. Glob. Biogeochem. Cycles 16:67–71
    [Google Scholar]
  16. Brunner E, Richthammer P, Ehrlich H, Paasch S, Simon P et al. 2009. Chitin-based organic networks: an integral part of cell wall biosilica in the diatom Thalassiosira pseudonana. Angew. Chem. Int. Ed. 48:9724–27
    [Google Scholar]
  17. Cairns SD. 2007. Deep-water corals: an overview with special reference to diversity and distribution of deep-water scleractinian corals. Bull. Mar. Sci. 81:311–22
    [Google Scholar]
  18. Carpenter EJ, Harvey HR, Fry B, Capone DG. 1997. Biogeochemical tracers of the marine cyanobacterium Trichodesmium. Deep-Sea Res. I 44:27–38
    [Google Scholar]
  19. Cline JD, Kaplan IR. 1975. Isotopic fractionation of dissolved nitrate during denitrification in the eastern tropical North Pacific Ocean. Mar. Chem. 3:271–99
    [Google Scholar]
  20. Close HG. 2019. Compound-specific isotope geochemistry in the ocean. Annu. Rev. Mar. Sci. 11:27–56
    [Google Scholar]
  21. Codispoti LA. 1989. Phosphorus versus nitrogen limitation of new and export production. Productivity of the Ocean: Present and Past WH Berger, VS Smetacek, G Wefer 377–94 Chichester, UK: Wiley
    [Google Scholar]
  22. Conti-Jerpe IE, Thompson PD, Wong CWM, Oliveira NL, Duprey NN et al. 2020. Trophic strategy and bleaching resistance in reef-building corals. Sci. Adv. 6:eaaz5443
    [Google Scholar]
  23. De'ath G, Fabricius K 2010. Water quality as a regional driver of coral biodiversity and macroalgae on the Great Barrier Reef. Ecol. Appl. 20:840–50
    [Google Scholar]
  24. Deutsch C, Sigman DM, Thunell RC, Meckler AN, Haug GH. 2004. Isotopic constraints on glacial/interglacial changes in the oceanic nitrogen budget. Glob. Biogeochem. Cycles 18:GB4012
    [Google Scholar]
  25. Devlin MJ, Brodie J. 2005. Terrestrial discharge into the Great Barrier Reef Lagoon: nutrient behavior in coastal waters. Mar. Pollut. Bull. 51:9–22
    [Google Scholar]
  26. Devol AH. 1991. Direct measurement of nitrogen gas fluxes from continental shelf sediments. Nature 349:319–21
    [Google Scholar]
  27. Dubois N, Kienast M, Kienast S, Normandeau C, Calvert SE et al. 2011. Millennial-scale variations in hydrography and biogeochemistry in the Eastern Equatorial Pacific over the last 100 kyr. Quat. Sci. Rev. 30:210–23
    [Google Scholar]
  28. Duce RA, LaRoche J, Altieri K, Arrigo KR, Baker AR et al. 2008. Impacts of atmospheric anthropogenic nitrogen on the open ocean. Science 320:893–97
    [Google Scholar]
  29. Duprey NN, Wang TX, Kim T, Cybulski JD, Vonhof HB et al. 2020. Megacity development and the demise of coastal coral communities: evidence from coral skeleton δ15N records in the Pearl River estuary. Glob. Change Biol. 26:1338–53
    [Google Scholar]
  30. Erisman JW, Galloway JN, Seitzinger S, Bleeker A, Dise NB et al. 2013. Consequences of human modification of the global nitrogen cycle. Philos. Trans. R. Soc. B 368:20130116
    [Google Scholar]
  31. Erler DV, Farid HT, Glaze TD, Carlson-Perret NL, Lough JM. 2020a. Coral skeletons reveal the history of nitrogen cycling in the coastal Great Barrier Reef. Nat. Commun. 11:1500
    [Google Scholar]
  32. Erler DV, Rangel MS, Tagliafico A, Riekenberg J, Farid HT et al. 2020b. Can coral skeletal-bound nitrogen isotopes be used as a proxy for past bleaching?. Biogeochemistry 151:31–41
    [Google Scholar]
  33. Erler DV, Wang XT, Sigman DM, Scheffers SR, Shepherd BO. 2015. Controls on the nitrogen isotopic composition of shallow water corals across a tropical reef flat transect. Coral Reefs 34:329–38
    [Google Scholar]
  34. Fairbanks RG, Mortlock RA, Chiu TC, Cao L, Kaplan A, Guilderson TP. 2005. Radiocarbon calibration curve spanning 0 to 50,000 years BP based on paired 230Th/234U/238U and 14C dates on pristine corals. Quat. Sci. Rev. 24:1781–96
    [Google Scholar]
  35. Falkowski PG. 1997. Evolution of the nitrogen cycle and its influence on the biological sequestration of CO2 in the ocean. Nature 387:272–75
    [Google Scholar]
  36. Ferrier-Pagès C, Martinez S, Grover R, Cybulski J, Shemesh E, Tchernov D. 2021. Tracing the trophic plasticity of the coral-dinoflagellate symbiosis using amino acid compound-specific stable isotope analysis. Microorganisms 9:182
    [Google Scholar]
  37. Fowler D, Coyle M, Skiba U, Sutton MA, Cape JN et al. 2013. The global nitrogen cycle in the twenty-first century. Philos. Trans. R. Soc. B 368:20130164
    [Google Scholar]
  38. Fox MD, Elliott Smith EA, Smith JE, Newsome SD 2019. Trophic plasticity in a common reef-building coral: insights from δ13C analysis of essential amino acids. Funct. Ecol. 33:2203–14
    [Google Scholar]
  39. Furnas M, Mitchell A, Skuza M, Brodie J. 2005. In the other 90%: phytoplankton responses to enhanced nutrient availability in the Great Barrier Reef Lagoon. Mar. Pollut. Bull. 51:253–65
    [Google Scholar]
  40. Galbraith ED, Kienast M, NICOPP Work. Group Memb. 2013. The acceleration of oceanic denitrification during deglacial warming. Nat. Geosci. 6:579–84
    [Google Scholar]
  41. Galbraith ED, Kienast M, Pedersen TF, Calvert SE. 2004. Glacial-interglacial modulation of the marine nitrogen cycle by high-latitude O2 supply to the global thermocline. Paleoceanography 19:PA4007
    [Google Scholar]
  42. Galloway JN, Dentener FJ, Capone DG, Boyer EW, Howarth RW et al. 2004. Nitrogen cycles: past, present, and future. Biogeochemistry 70:153–226
    [Google Scholar]
  43. Glynn DS, McMahon KW, Guilderson TP, McCarthy MD. 2019. Major shifts in nutrient and phytoplankton dynamics in the North Pacific Subtropical Gyre over the last 5000 years revealed by high-resolution proteinaceous deep-sea coral δ15N and δ13C records. Earth Planet. Sci. Lett. 515:145–53
    [Google Scholar]
  44. Goreau TF, Goreau NI, Yonge CM 1971. Reef corals: autotrophs or heterotrophs?. Biol. Bull. 141:247–60
    [Google Scholar]
  45. Gruber N 2004. The dynamics of the marine nitrogen cycle and its influence on atmospheric CO2 variations. The Ocean Carbon Cycle and Climate M Follows, T Oguz 97–148 Dordrecht, Neth: Springer
    [Google Scholar]
  46. Gruber N, Sarmiento JL. 1997. Global patterns of marine nitrogen fixation and denitrification. Glob. Biogeochem. Cycles 11:235–66
    [Google Scholar]
  47. Hedges JI 2002. Why dissolved organics matter. Biogeochemistry of Marine Dissolved Organic Matter DA Hansell, CA Carlson 1–33 London: Academic
    [Google Scholar]
  48. Hemleben C, Spindler M, Anderson OR. 1989. Modern Planktonic Foraminifera New York: Springer
  49. Hemleben C, Spindler M, Breitinger I, Deuser WG. 1985. Field and laboratory studies on the ontogeny and ecology of some globorotaliid species from the Sargasso Sea off Bermuda. J. Foraminifer. Res. 15:254–72
    [Google Scholar]
  50. Hoegh-Guldberg O, Muscatine L, Goiran C, Siggaard D, Marion G. 2004. Nutrient-induced perturbations to δ13C and δ15N in symbiotic dinoflagellates and their coral hosts. Mar. Ecol. Prog. Ser. 280:105–14
    [Google Scholar]
  51. Honjo S, Francois R, Manganini S, Dymond J, Collier R. 2000. Particle fluxes to the interior of the Southern Ocean in the Western Pacific sector along 170°W. Deep-Sea Res. II 47:3521–48
    [Google Scholar]
  52. Horn MG, Robinson RS, Rynearson TA, Sigman DM. 2011. Nitrogen isotopic relationship between diatom-bound and bulk organic matter of cultured polar diatoms. Paleoceanography 26:PA3208
    [Google Scholar]
  53. Houlbrèque F, Ferrier-Pagès C. 2009. Heterotrophy in tropical scleractinian corals. Biol. Rev. 84:1–17
    [Google Scholar]
  54. Jacobel AW, Anderson RF, Jaccard SL, McManus JF, Pavia FJ, Winckler G. 2020. Deep Pacific storage of respired carbon during the last ice age: perspectives from bottom water oxygen reconstructions. Quat. Sci. Rev. 230:106065
    [Google Scholar]
  55. Jacot Des Combes H, Esper O, De La Rocha CL, Abelmann A, Gersonde R et al. 2008. Diatom δ13C, δ15N, and C/N since the Last Glacial Maximum in the Southern Ocean: potential impact of species composition. Paleoceanography 23:PA4209
    [Google Scholar]
  56. Jones CA. 2020. Raise your glass: a culture evaluation of diatoms as archives of past nutrient consumption PhD Thesis Univ. R.I. Kingston:
  57. Kalansky JF, Robinson RS, Popp BN. 2011. Insights into nitrogen cycling in the western Gulf of California from the nitrogen isotopic composition of diatom-bound organic matter. Geochem. Geophys. Geosyst. 12:Q06015
    [Google Scholar]
  58. Karl D, Letelier R, Tupas L, Dore J, Christian J, Hebel D. 1997. The role of nitrogen fixation in biogeochemical cycling in the subtropical North Pacific Ocean. Nature 388:533–38
    [Google Scholar]
  59. Karl D, Michaels A, Bergman B, Capone D, Carpenter E et al. 2002. Dinitrogen fixation in the world's oceans. Biogeochemistry 57:47–98
    [Google Scholar]
  60. Kast ER, Stolper DA, Auderset A, Higgins JA, Ren H et al. 2019. Nitrogen isotope evidence for expanded ocean suboxia in the early Cenozoic. Science 364:386–89
    [Google Scholar]
  61. King K Jr., Hare PE. 1972. Amino acid composition of the test as a taxonomic character for living and fossil planktonic foraminifera. Micropaleontology 18:285–93
    [Google Scholar]
  62. Kleypas JA, McManus JW, Meñez LA. 1999. Environmental limits to coral reef development: Where do we draw the line?. Am. Zool. 39:146–59
    [Google Scholar]
  63. Kröger N, Deutzmann R, Bergsdorf C, Sumper M. 2000. Species-specific polyamines from diatoms control silica morphology. PNAS 97:14133–38
    [Google Scholar]
  64. Kuypers MMM, Sliekers AO, Lavik G, Schmid M, Jørgensen BB et al. 2003. Anaerobic ammonium oxidation by anammox bacteria in the Black Sea. Nature 422:608–11
    [Google Scholar]
  65. Lehmann MF, Bernasconi SM, Barbieri A, McKenzie JA. 2002. Preservation of organic matter and alteration of its carbon and nitrogen isotope composition during simulated and in situ early sedimentary diagenesis. Geochim. Cosmochim. Acta 66:3573–84
    [Google Scholar]
  66. LeKieffre C, Jauffrais T, Geslin E, Jesus B, Bernhard JM et al. 2018. Inorganic carbon and nitrogen assimilation in cellular compartments of a benthic kleptoplastic foraminifer. Sci. Rep. 8:10140
    [Google Scholar]
  67. LeKieffre C, Spero HJ, Fehrenbacher JS, Russell AD, Ren H et al. 2020. Ammonium is the preferred source of nitrogen for planktonic foraminifer and their dinoflagellate symbionts. Proc. R. Soc. B 287:20200620
    [Google Scholar]
  68. Li DW, Xiang R, Wu Q, Kao SJ. 2019. Planktic foraminifera-bound organic nitrogen isotopic composition in contemporary water column and sediment trap. Deep-Sea Res. I 143:28–34
    [Google Scholar]
  69. Liu KK, Kaplan IR. 1984. Denitrification rates and availability of organic matter in marine environments. Earth Planet. Sci. Lett. 68:88–100
    [Google Scholar]
  70. Lourey MJ, Trull TW, Sigman DM. 2003. Sensitivity of δ15N of nitrate, surface suspended and deep sinking particulate nitrogen to seasonal nitrate depletion in the Southern Ocean. Glob. Biogeochem. Cycles 17:1081
    [Google Scholar]
  71. Lueders-Dumont JA, Wang XT, Jensen OP, Sigman DM, Ward BB. 2018. Nitrogen isotopic analysis of carbonate-bound organic matter in modern and fossil fish otoliths. Geochim. Cosmochim. Acta 224:200–22
    [Google Scholar]
  72. Macko SA, Estep ML. 1984. Microbial alteration of stable nitrogen and carbon isotopic compositions of organic matter. Org. Geochem. 6:787–90
    [Google Scholar]
  73. Marconi D, Sigman DM, Casciotti KL, Campbell EC, Weigand A et al. 2017. Tropical dominance of N2 fixation in the North Atlantic Ocean. Glob. Biogeochem. Cycles 31:1608–23
    [Google Scholar]
  74. Marion GS, Dunbar RB, Mucciarone DA, Kremer JN, Lansing JS, Arthawiguna A. 2005. Coral skeletal δ15N reveals isotopic traces of an agricultural revolution. Mar. Pollut. Bull. 50:931–44
    [Google Scholar]
  75. Marion GS, Jupiter SD, Radice VZ, Albert S, Hoegh-Guldberg O. 2021. Linking isotopic signatures of nitrogen in nearshore coral skeletons with sources in catchment runoff. Mar. Pollut. Bull. 173:113054
    [Google Scholar]
  76. Mariotti A, Germon JC, Hubert P, Kaiser P, Letolle R et al. 1981. Experimental determination of nitrogen kinetic isotope fractionation: some principles; illustration for the denitrification and nitrification processes. Plant Soil 62:413–30
    [Google Scholar]
  77. Martin JH. 1990. Glacial-interglacial CO2 change: the iron hypothesis. Paleoceanography 5:1–13
    [Google Scholar]
  78. Martínez-García A, Sigman DM, Ren H, Anderson RF, Straub M et al. 2014. Iron fertilization of the Subantarctic ocean during the last ice age. Science 343:1347–50
    [Google Scholar]
  79. McIlvin MR, Casciotti KL. 2011. Technical updates to the bacterial method for nitrate isotopic analyses. Anal. Chem. 83:1850–56
    [Google Scholar]
  80. McMahon KW, McCarthy MD. 2016. Embracing variability in amino acid δ15N fractionation: mechanisms, implications, and applications for trophic ecology. Ecosphere 7:e01511
    [Google Scholar]
  81. McMahon KW, McCarthy MD, Sherwood OA, Larsen T, Guilderson TP. 2015. Millennial-scale plankton regime shifts in the subtropical North Pacific Ocean. Science 350:1530–33
    [Google Scholar]
  82. McMahon KW, Williams B, Guilderson TP, Glynn DS, McCarthy MD. 2018. Calibrating amino acid δ13C and δ15N offsets between polyp and protein skeleton to develop proteinaceous deep-sea corals as paleoceanographic archives. Geochim. Cosmochim. Acta 220:261–75
    [Google Scholar]
  83. Meckler AN, Ren H, Sigman DM, Gruber N, Plessen B et al. 2011. Deglacial nitrogen isotope changes in the Gulf of Mexico: evidence from bulk sedimentary and foraminifera-bound nitrogen in Orca Basin sediments. Paleoceanography 26:PA4216
    [Google Scholar]
  84. Misarti N, Gier E, Finney B, Barnes K, McCarthy M. 2017. Compound-specific amino acid δ15N values in archaeological shell: assessing diagenetic integrity and potential for isotopic baseline reconstruction. Rapid Commun. Mass Spectrom. 31:1881–91
    [Google Scholar]
  85. Mitchell BG, Brody EA, Holm-Hansen O, McClain C, Bishop J. 1991. Light limitation of phytoplankton biomass and macronutrient utilization in the Southern Ocean. Limnol. Oceanogr. 36:1662–77
    [Google Scholar]
  86. Montoya JP 1994. Nitrogen isotope fractionation in the modern ocean: implications for the sedimentary record. Carbon Cycling in the Glacial Ocean: Constraints on the Ocean's Role in Global Change R Zahn, TF Pederson, MA Kaminski, L Labeyrie 259–79 Berlin: Springer
    [Google Scholar]
  87. Morales LV, Granger J, Chang BX, Prokopenko MG, Plessen B et al. 2014. Elevated 15N/14N in particulate organic matter, zooplankton, and diatom frustule-bound nitrogen in the ice-covered water column of the Bering Sea eastern shelf. Deep-Sea Res. II 109:100–11
    [Google Scholar]
  88. Morales LV, Sigman DM, Horn MG, Robinson RS. 2013. Cleaning methods for the isotopic determination of diatom-bound nitrogen in non-fossil diatom frustules. Limnol. Oceanogr. Methods 11:101–12
    [Google Scholar]
  89. Muscatine L, Goiran C, Land L, Jaubert J, Cuif JP, Allemand D. 2005. Stable isotopes (δ13C and δ15N) of organic matrix from coral skeleton. PNAS 102:1525–30
    [Google Scholar]
  90. Oczkowski A, Gumbley T, Carter B, Carmichael R, Humphries A. 2016. Establishing an anthropogenic nitrogen baseline using Native American shell middens. Front. Mar. Sci. 3:79
    [Google Scholar]
  91. Ohkouchi N, Chikaraishi Y, Close HG, Fry B, Larsen T et al. 2017. Advances in the application of amino acid nitrogen isotopic analysis in ecological and biogeochemical studies. Org. Geochem. 113:150–74
    [Google Scholar]
  92. Paulmier A, Ruiz-Pino D. 2009. Oxygen minimum zones (OMZs) in the modern ocean. Prog. Oceanogr. 80:113–28
    [Google Scholar]
  93. Polissar PJ, Fulton JM, Junium CK, Turich CC, Freeman KH. 2009. Measurement of 13C and 15N isotopic composition on nanomolar quantities of C and N. Anal. Chem. 81:755–63
    [Google Scholar]
  94. Prouty NG, Goodkin NF, Jones R, Lamborg CH, Storlazzi CD, Hughen KA. 2013. Environmental assessment of metal exposure to corals living in Castle Harbour, Bermuda. . Mar. Chem. 154:55–66
    [Google Scholar]
  95. Rangel MS, Erler D, Tagliafico A, Cowden K, Scheffers S, Christidis L. 2019. Quantifying the transfer of prey δ15N signatures into coral holobiont nitrogen pools. Mar. Ecol. Prog. Ser. 610:33–49
    [Google Scholar]
  96. Ren H, Chen YC, Wang XT, Wong GT, Cohen AL et al. 2017a. 21st-century rise in anthropogenic nitrogen deposition on a remote coral reef. Science 356:749–52
    [Google Scholar]
  97. Ren H, Sigman DM, Chen MT, Kao SJ. 2012a. Elevated foraminifera-bound nitrogen isotopic composition during the last ice age in the South China Sea and its global and regional implications. Glob. Biogeochem. Cycles 26:GB1031
    [Google Scholar]
  98. Ren H, Sigman DM, Martínez-García A, Anderson RF, Chen MT et al. 2017b. Impact of glacial/interglacial sea level change on the ocean nitrogen cycle. PNAS 114:E6759–66
    [Google Scholar]
  99. Ren H, Sigman DM, Meckler AN, Plessen B, Robinson RS et al. 2009. Foraminiferal isotope evidence of reduced nitrogen fixation in the ice age Atlantic Ocean. Science 323:244–48
    [Google Scholar]
  100. Ren H, Sigman DM, Thunell RC, Prokopenko MG. 2012b. Nitrogen isotopic composition of planktonic foraminifera from the modern ocean and recent sediments. Limnol. Oceanogr. 57:1011–24
    [Google Scholar]
  101. Ren H, Studer AS, Serno S, Sigman DM, Winckler G et al. 2015. Glacial-to-interglacial changes in nitrate supply and consumption in the subarctic North Pacific from microfossil-bound N isotopes at two trophic levels. Paleoceanography 30:1217–32
    [Google Scholar]
  102. Robbins LL, Brew K. 1990. Proteins from the organic matrix of core-top and fossil planktonic foraminifera. Geochim. Cosmochim. Acta 54:2285–92
    [Google Scholar]
  103. Robinson LF, Adkins JF, Frank N, Gagnon AC, Prouty NG et al. 2014. The geochemistry of deep-sea coral skeletons: a review of vital effects and applications for palaeoceanography. Deep-Sea Res. II 99:184–98
    [Google Scholar]
  104. Robinson RS, Brunelle BG, Sigman DM. 2004. Revisiting nutrient utilization in the glacial Antarctic: evidence from a new method for diatom-bound N isotopic analysis. Paleoceanography 19:PA3001
    [Google Scholar]
  105. Robinson RS, Jones CA, Kelly RP, Love A, Closset I et al. 2020. A test of the diatom-bound paleoproxy: tracing the isotopic composition of nutrient-nitrogen into Southern Ocean particles and sediments. Glob. Biogeochem. Cycles 34:e2019GB006508
    [Google Scholar]
  106. Robinson RS, Kienast M, Albuquerque AL, Altabet M, Contreras S et al. 2012. A review of nitrogen isotopic alteration in marine sediments. Paleoceanography 27:PA4203
    [Google Scholar]
  107. Robinson RS, Moore TC, Erhardt AM, Scher HD. 2015. Evidence for changes in subsurface circulation in the late Eocene equatorial Pacific from radiolarian-bound nitrogen isotope values. Paleoceanography 30:912–22
    [Google Scholar]
  108. Robinson RS, Sigman DM. 2008. Nitrogen isotopic evidence for a poleward decrease in surface nitrate within the ice age. Antarct. Quat. Sci. Rev. 27:1076–90
    [Google Scholar]
  109. Robinson RS, Sigman DM, DiFiore PJ, Rohde MM, Mashiotta TA, Lea DW. 2005. Diatom-bound 15N/14N: new support for enhanced nutrient consumption in the ice age subantarctic. Paleoceanography 20:PA3003
    [Google Scholar]
  110. Scheffel A, Poulsen N, Shian S, Kröger N. 2011. Nanopatterned protein microrings from a diatom that direct silica morphogenesis. PNAS 108:3175–80
    [Google Scholar]
  111. Schiebel R, Smart SM, Jentzen A, Jonkers L, Morard R et al. 2018. Advances in planktonic foraminifer research: new perspectives for paleoceanography. Rev. Micropaleontol. 61:113–38
    [Google Scholar]
  112. Shemesh A, Burckle LH, Hays JD. 1995. Late Pleistocene oxygen isotope records of biogenic silica from the Atlantic sector of the Southern Ocean. Paleoceanography 10:179–96
    [Google Scholar]
  113. Shemesh A, Macko SA, Charles CD, Rau GH. 1993. Isotopic evidence for reduced productivity in the glacial Southern Ocean. Science 262:407–10
    [Google Scholar]
  114. Sherwood OA, Guilderson TP, Batista FC, Schiff JT, McCarthy MD. 2014. Increasing subtropical North Pacific Ocean nitrogen fixation since the little ice age. Nature 505:78–81
    [Google Scholar]
  115. Sherwood OA, Heikoop JM, Scott DB, Risk MJ, Guilderson TP, McKinney RA. 2005. Stable isotopic composition of deep-sea gorgonian corals Primnoa spp.: a new archive of surface processes. Mar. Ecol. Prog. Ser. 301:135–48
    [Google Scholar]
  116. Sherwood OA, Lehmann MF, Schubert CJ, Scott DB, McCarthy MD. 2011. Nutrient regime shift in the western North Atlantic indicated by compound-specific δ15N of deep-sea gorgonian corals. PNAS 108:1011–15
    [Google Scholar]
  117. Sigman DM, Altabet MA, Francois R, McCorkle DC, Gaillard JF. 1999. The isotopic composition of diatom-bound nitrogen in Southern Ocean sediments. Paleoceanography 14:118–34
    [Google Scholar]
  118. Sigman DM, Casciotti KL, Andreani M, Barford C, Galanter MBJK, Böhlke JK. 2001. A bacterial method for the nitrogen isotopic analysis of nitrate in seawater and freshwater. Anal. Chem. 73:4145–53
    [Google Scholar]
  119. Sigman DM, DiFiore PJ, Hain MP, Deutsch C, Karl DM. 2009. Sinking organic matter spreads the nitrogen isotope signal of pelagic denitrification in the North Pacific. Geophys. Res. Lett. 36:L08605
    [Google Scholar]
  120. Sigman DM, Fripiat F, Studer AS, Kemeny PC, Martínez-García A et al. 2021. The Southern Ocean during the ice ages: a review of the Antarctic surface isolation hypothesis, with comparison to the North Pacific. Quat. Sci. Rev. 254:106732
    [Google Scholar]
  121. Smart SM, Fawcett SE, Ren H, Schiebel R, Tompkins EM et al. 2020. The nitrogen isotopic composition of tissue and shell-bound organic matter of planktic foraminifera in Southern Ocean surface waters. Geochem. Geophys. Geosyst. 21:e2019GC008440
    [Google Scholar]
  122. Smart SM, Ren H, Fawcett SE, Schiebel R, Conte M et al. 2018. Ground-truthing the planktic foraminifer-bound nitrogen isotope paleo-proxy in the Sargasso Sea. Geochim. Cosmochim. Acta 235:463–82
    [Google Scholar]
  123. Spero HJ. 1988. Ultrastructural examination of chamber morphogenesis and biomineralization in the planktonic foraminifer Orbulina universa. Mar. Biol. 99:9–20
    [Google Scholar]
  124. Spero HJ, Eggins SM, Russell AD, Vetter L, Kilburn MR, Hönisch B. 2015. Timing and mechanism for intratest Mg/Ca variability in a living planktic foraminifer. Earth Planet. Sci. Lett. 409:32–42
    [Google Scholar]
  125. Stoecker DK, Hansen PJ, Caron DA, Mitra A. 2017. Mixotrophy in the marine plankton. Annu. Rev. Mar. Sci. 9:311–35
    [Google Scholar]
  126. Straub M, Sigman DM, Ren H, Martínez-García A, Meckler AN et al. 2013a. Changes in North Atlantic nitrogen fixation controlled by ocean circulation. Nature 501:200–3
    [Google Scholar]
  127. Straub M, Tremblay MM, Sigman DM, Studer AS, Ren H et al. 2013b. Nutrient conditions in the subpolar North Atlantic during the last glacial period reconstructed from foraminifera-bound nitrogen isotopes. Paleoceanography 28:79–90
    [Google Scholar]
  128. Strzepek KM, Thresher RE, Revill AT, Smith CI, Komugabe AF, Fallon SF. 2014. Preservation effects on the isotopic and elemental composition of skeletal structures in the deep-sea bamboo coral Lepidisis spp. (Isididae). Deep-Sea Res. II 99:199–206
    [Google Scholar]
  129. Studer AS, Mekik F, Ren H, Hain MP, Oleynik S et al. 2021. Ice age-Holocene similarity of foraminifera-bound nitrogen isotope ratios in the eastern equatorial Pacific. Paleoceanogr. Paleoclimatol. 36:e2020PA004063
    [Google Scholar]
  130. Studer AS, Sigman DM, Martínez-García A, Benz V, Winckler G et al. 2015. Antarctic Zone nutrient conditions during the last two glacial cycles. Paleoceanography 30:845–62
    [Google Scholar]
  131. Sumper M, Kröger N. 2004. Silica formation in diatoms: the function of long-chain polyamines and silaffins. J. Mater. Chem. 14:2059–65
    [Google Scholar]
  132. Takagi H, Kimoto K, Fujiki T, Saito H, Schmidt C et al. 2019. Characterizing photosymbiosis in modern planktonic foraminifera. Biogeosciences 16:3377–96
    [Google Scholar]
  133. Tesson B, Hildebrand M. 2013. Characterization and localization of insoluble organic matrices associated with diatom cell walls: insight into their roles during cell wall formation. PLOS ONE 8:e61675
    [Google Scholar]
  134. Thompson DM. 2022. Environmental records from coral skeletons: a decade of novel insights and innovation. WIREs Clim. Change 13:e745
    [Google Scholar]
  135. Tornabene C, Martindale RC, Wang XT, Schaller MF. 2017. Detecting photosymbiosis in fossil scleractinian corals. Sci. Rep. 7:9465
    [Google Scholar]
  136. Tyrrell T. 1999. The relative influences of nitrogen and phosphorus on oceanic primary production. Nature 400:525–31
    [Google Scholar]
  137. Uhle ME, Macko SA, Spero HJ, Lea DW, Ruddiman WF, Engel MH. 1999. The fate of nitrogen in the Orbulina universa foraminifera-symbiont system determined by nitrogen isotope analyses of shell-bound organic matter. Limnol. Oceanogr. 44:1968–77
    [Google Scholar]
  138. Vane K, Wallsgrove NJ, Ekau W, Popp BN. 2018. Reconstructing lifetime nitrogen baselines and trophic position of Cynoscion acoupa from δ15N values of amino acids in otoliths. Mar. Ecol. Prog. Ser. 597:1–11
    [Google Scholar]
  139. Voss M, Bange HW, Dippner JW, Middelburg JJ, Montoya JP, Ward B. 2013. The marine nitrogen cycle: recent discoveries, uncertainties and the potential relevance of climate change. Philos. Trans. R. Soc. B 368:20130121
    [Google Scholar]
  140. Wall CB, Wallsgrove NJ, Gates RD, Popp BN. 2021. Amino acid δ13C and δ15N analyses reveal distinct species-specific patterns of trophic plasticity in a marine symbiosis. Limnol. Oceanogr. 66:2033–50
    [Google Scholar]
  141. Wang XT, Prokopenko MG, Sigman DM, Adkins JF, Robinson LF et al. 2014. Isotopic composition of carbonate-bound organic nitrogen in deep-sea scleractinian corals: a new window into past biogeochemical change. Earth Planet. Sci. Lett. 400:243–50
    [Google Scholar]
  142. Wang XT, Sigman DM, Cohen AL, Sinclair DJ, Sherrell RM et al. 2015. Isotopic composition of skeleton-bound organic nitrogen in reef-building symbiotic corals: a new method and proxy evaluation at Bermuda. Geochim. Cosmochim. Acta 148:179–90
    [Google Scholar]
  143. Wang XT, Sigman DM, Cohen AL, Sinclair DJ, Sherrell RM et al. 2016. Influence of open ocean nitrogen supply on the skeletal δ15N of modern shallow-water scleractinian corals. Earth Planet. Sci. Lett. 441:125–32
    [Google Scholar]
  144. Wang XT, Sigman DM, Prokopenko MG, Adkins JF, Robinson LF et al. 2017. Deep-sea coral evidence for lower Southern Ocean surface nitrate concentrations during the last ice age. PNAS 114:3352–57
    [Google Scholar]
  145. Weigand MA, Foriel J, Barnett B, Oleynik S, Sigman DM. 2016. Updates to instrumentation and protocols for isotopic analysis of nitrate by the denitrifier method. Rapid Commun. Mass Spectrom. 30:1365–83
    [Google Scholar]
  146. Wellman RP, Cook FD, Krouse HR. 1968. Nitrogen-15: microbiological alteration of abundance. Science 161:269–70
    [Google Scholar]
  147. Whitney NM, Johnson BJ, Dostie PT, Luzier K, Wanamaker AD Jr. 2019. Paired bulk organic and individual amino acid δ15N analyses of bivalve shell periostracum: a paleoceanographic proxy for water source variability and nitrogen cycling processes. Geochim. Cosmochim. Acta 254:67–85
    [Google Scholar]
  148. Williams B. 2020. Proteinaceous corals as proxy archives of paleo-environmental change. Earth Sci. Rev. 209:103326
    [Google Scholar]
  149. Williams B, Thibodeau B, Chikaraishi Y, Ohkouchi N, Walnum A et al. 2017. Consistency in coral skeletal amino acid composition offshore of Palau in the western Pacific warm pool indicates no impact of decadal variability in nitricline depth on primary productivity. Limnol. Oceanogr. 62:399–407
    [Google Scholar]
  150. Wooldridge SA, Done TJ. 2009. Improved water quality can ameliorate effects of climate change on corals. Ecol. Appl. 19:1492–99
    [Google Scholar]
  151. Yamazaki A, Watanabe T, Takahata N, Sano Y, Tsunogai U. 2013. Nitrogen isotopes in intra-crystal coralline aragonites. Chem. Geol. 351:276–80
    [Google Scholar]
  152. Young SD. 1971. Organic material from scleractinian coral skeletons—I. Variation in composition between several species. Comp. Biochem. Physiol. B 40:113–20
    [Google Scholar]
  153. Young SD, O'Connor JD, Muscatine L 1971. Organic material from scleractinian coral skeletons—II. Incorporation of 14C into protein, chitin and lipid. Comp. Biochem. Physiol. B 40:945–58
    [Google Scholar]
/content/journals/10.1146/annurev-marine-032122-104001
Loading
/content/journals/10.1146/annurev-marine-032122-104001
Loading

Data & Media loading...

Supplemental Material

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error