1932

Abstract

Exchange of material across the nearshore region, extending from the shoreline to a few kilometers offshore, determines the concentrations of pathogens and nutrients near the coast and the transport of larvae, whose cross-shore positions influence dispersal and recruitment. Here, we describe a framework for estimating the relative importance of cross-shore exchange mechanisms, including winds, Stokes drift, rip currents, internal waves, and diurnal heating and cooling. For each mechanism, we define an exchange velocity as a function of environmental conditions. The exchange velocity applies for organisms that keep a particular depth due to swimming or buoyancy. A related exchange diffusivity quantifies horizontal spreading of particles without enough vertical swimming speed or buoyancy to counteract turbulent velocities. This framework provides a way to determinewhich processes are important for cross-shore exchange for a particular study site, time period, and particle behavior.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-marine-032122-115057
2023-01-16
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/marine/15/1/annurev-marine-032122-115057.html?itemId=/content/journals/10.1146/annurev-marine-032122-115057&mimeType=html&fmt=ahah

Literature Cited

  1. Aristizábal MF, Fewings MR, Washburn L. 2016. Contrasting spatial patterns in the diurnal and semidiurnal temperature variability in the Santa Barbara Channel, California. J. Geophys. Res. Oceans 121:427–40
    [Google Scholar]
  2. Aristizábal MF, Fewings MR, Washburn L. 2017. Effects of the relaxation of upwelling-favorable winds on the diurnal and semidiurnal water temperature fluctuations in the Santa Barbara Channel, California. J. Geophys. Res. Oceans 122:7958–77
    [Google Scholar]
  3. Arthur RS, Fringer OB. 2016. Transport by breaking internal gravity waves on slopes. J. Fluid Mech. 789:93–126
    [Google Scholar]
  4. Austin JA. 1999. The role of the alongshore wind in the heat balance of the North Carolina inner shelf. J. Geophys. Res. Oceans 104:39888–902
    [Google Scholar]
  5. Austin JA, Lentz SJ. 2002. The inner shelf response to wind-driven upwelling and downwelling. J. Phys. Oceanogr. 32:2171–93
    [Google Scholar]
  6. Baines PG. 1982. On internal tide generation models. Deep-Sea Res. A 29:307–38
    [Google Scholar]
  7. Battjes JA, Janssen JPFM. 1978. Energy loss and set-up due to breaking of random waves. Proceedings of the 16th Conference on Coastal Engineering569–87 Reston, VA: Am. Soc. Civil Eng.
    [Google Scholar]
  8. Becherer J, Moum JN, Colosi JA, Lerczak JA, McSweeney JM. 2020. Turbulence asymmetries in bottom boundary layer velocity pulses associated with onshore-propagating nonlinear internal waves. J. Phys. Oceanogr. 50:2373–91
    [Google Scholar]
  9. Boegman L, Ivey GN, Imberger J. 2005. The degeneration of internal waves in lakes with sloping topography. Limnol. Oceanogr. 50:1620–37
    [Google Scholar]
  10. Boegman L, Stastna M. 2019. Sediment resuspension and transport by internal solitary waves. Annu. Rev. Fluid Mech. 51:129–54
    [Google Scholar]
  11. Boehm AB, Ismail NS, Sassoubre LM, Andruszkiewicz EA. 2017. Oceans in peril: grand challenges in applied water quality research for the 21st century. Environ. Eng. Sci. 34:3–15
    [Google Scholar]
  12. Bourgault D, Blokhina MD, Mirshak R, Kelley DE. 2007. Evolution of a shoaling internal solitary wavetrain. Geophys. Res. Lett. 34:L03601
    [Google Scholar]
  13. Bowden KF. 1965. Horizontal mixing in the sea due to a shearing current. J. Fluid Mech. 21:83–95
    [Google Scholar]
  14. Brasseale E, MacCready P. 2021. The shelf sources of estuarine inflow. J. Phys. Oceanogr. 51:2407–21
    [Google Scholar]
  15. Brink KH. 2016. Cross-shelf exchange. Annu. Rev. Mar. Sci. 8:59–78
    [Google Scholar]
  16. Brink KH, Chapman DC, Halliwell GR Jr. 1987. A stochastic model for wind-driven currents over the continental shelf. J. Geophys. Res. Oceans 92:1783–97
    [Google Scholar]
  17. Brink KH, Lentz SJ. 2009. Buoyancy arrest and bottom Ekman transport. Part I: steady flow. J. Phys. Oceanogr. 40:621–35
    [Google Scholar]
  18. Brown JA, MacMahan JH, Reniers AJ, Thornton ED. 2015. Field observations of surf zone-inner shelf exchange on a rip-channeled beach. J. Phys. Oceanogr. 45:2339–55
    [Google Scholar]
  19. Bühler O, Jacobson TE. 2001. Wave-driven currents and vortex dynamics on barred beaches. J. Fluid Mech. 449:313–39
    [Google Scholar]
  20. Castelle B, Scott T, Brander R, McCarroll R. 2016. Rip current types, circulation and hazard. Earth-Sci. Rev. 163:1–21
    [Google Scholar]
  21. CIESIN (Cent. Int. Earth Sci. Inf. Netw.) 2012. National aggregates of geospatial data collection: population, landscape, and climate estimates, version 3 (PLACE III) Data Set, NASA Socioecon. Data Appl. Cent. Palisades, NY: https://doi.org/10.7927/H4F769GP
    [Crossref]
  22. Clark DB, Elgar S, Raubenheimer B. 2012. Vorticity generation by short-crested wave breaking. Geophys. Res. Lett. 39:L24604
    [Google Scholar]
  23. Clark DB, Feddersen F, Guza RT. 2010. Cross-shore surfzone tracer dispersion in an alongshore current. J. Geophys. Res. Oceans 115:C10035
    [Google Scholar]
  24. Clarke AJ, Van Gorder S. 2018. The relationship of near-surface flow, Stokes drift and the wind stress. J. Geophys. Res. Oceans 123:4680–92
    [Google Scholar]
  25. Colford JM Jr., Schiff KC, Griffith JF, Yau V, Arnold BF et al. 2012. Using rapid indicators for Enterococcus to assess the risk of illness after exposure to urban runoff contaminated marine water. Water Res. 46:2176–86
    [Google Scholar]
  26. Colosi JA, Kumar N, Suanda SH, Freismuth TM, MacMahan JH. 2018. Statistics of internal tide bores and internal solitary waves observed on the inner continental shelf off Point Sal, California. J. Phys. Oceanogr. 48:123–43
    [Google Scholar]
  27. Cowen RK, Sponaugle S. 2009. Larval dispersal and marine population connectivity. Annu. Rev. Mar. Sci. 1:443–66
    [Google Scholar]
  28. Cudaback CN, McPhee-Shaw E. 2009. Diurnal-period internal waves near Point Conception, California. Estuar. Coast. Shelf Sci. 83:349–59
    [Google Scholar]
  29. Dalrymple RA, MacMahan JH, Reniers AJ, Nelko V. 2011. Rip currents. Annu. Rev. Fluid Mech. 43:551–81
    [Google Scholar]
  30. Dauhajre DP, McWilliams JC, Uchiyama Y. 2017. Submesoscale coherent structures on the continental shelf. J. Phys. Oceanogr. 47:2949–76
    [Google Scholar]
  31. Davis KA, Arthur RS, Reid EC, Rogers JS, Fringer OB et al. 2020. Fate of internal waves on a shallow shelf. J. Geophys. Res. Oceans 125:e2019JC015377
    [Google Scholar]
  32. Delandmeter P, van Sebille E. 2019. The Parcels v2.0 Lagrangian framework: new field interpolation schemes. Geosci. Model Dev. 12:3571–84
    [Google Scholar]
  33. Dorman CE, Winant CD. 2000. The structure and variability of the marine atmosphere around the Santa Barbara Channel. Mon. Weather Rev. 128:261–82
    [Google Scholar]
  34. Drake PT, Edwards CA, Barth JA. 2011. Dispersion and connectivity estimates along the US west coast from a realistic numerical model. J. Mar. Res. 69:1–37
    [Google Scholar]
  35. Edson JB, Jampana V, Weller RA, Bigorre SP, Plueddemann AJ et al. 2013. On the exchange of momentum over the open ocean. J. Phys. Oceanogr. 43:1589–610
    [Google Scholar]
  36. Elko N, Feddersen F, Foster D, Hapke CJ, McNinch JE et al. 2015. The future of nearshore processes research. Shore Beach 83:113–38
    [Google Scholar]
  37. Estrade P, Marchesiello P, De Verdière AC, Roy C 2008. Cross-shelf structure of coastal upwelling: a two-dimensional extension of Ekman's theory and a mechanism for inner shelf upwelling shut down. J. Mar. Res. 66:589–616
    [Google Scholar]
  38. Feddersen F, MacMahan JH, Freismuth TM, Gough MK, Kovatch M. 2020. Inner-shelf vertical and alongshore temperature variability in the subtidal, diurnal, and semidiurnal bands along the central California coastline with headlands. J. Geophys. Res. Oceans 125:e2019JC015347
    [Google Scholar]
  39. Feddersen F, Trowbridge JH, Williams AJ. 2007. Vertical structure of dissipation in the nearshore. J. Phys. Oceanogr. 37:1764–77
    [Google Scholar]
  40. Fewings MR, Lentz SJ, Fredericks J. 2008. Observations of cross-shelf flow driven by cross-shelf winds over the inner continental shelf. J. Phys. Oceanogr. 38:2358–78
    [Google Scholar]
  41. Fewings MR, Washburn L, Ohlmann JC. 2015. Coastal water circulation patterns around the Northern Channel Islands and Point Conception, California. Prog. Oceanogr. 138:283–304
    [Google Scholar]
  42. Franks PJS, Garwood JC, Ouimet M, Cortes J, Musgrave RC, Lucas AJ. 2020. Stokes drift of plankton in linear internal waves: cross-shore transport of neutrally buoyant and depth-keeping organisms. Limnol. Oceanogr. 65:1286–96
    [Google Scholar]
  43. Fredsoe J, Deigaard R. 1992. Mechanics of Coastal Sediment Transport Singapore: World Sci.
  44. Fuchs HL, Gerbi GP, Hunter EJ, Christman AJ. 2018. Waves cue distinct behaviors and differentiate transport of congeneric snail larvae from sheltered versus wavy habitats. PNAS 115:E7532–40
    [Google Scholar]
  45. Garcez Faria AF, Thornton EB, Lippmann TC, Stanton TP. 2000. Undertow over a barred beach. J. Geophys. Res. Oceans 105:16999
    [Google Scholar]
  46. Garwood JC. 2022. Tools to generate particle tracks in linear and weakly nonlinear internal waves. Zenodo https://doi.org/10.5281/zenodo.6784256
    [Crossref] [Google Scholar]
  47. Garwood JC, Fuchs HL, Gerbi GP, Hunter EJ, Chant RJ, Wilkin JL. 2022. Estuarine retention of larvae: contrasting effects of behavioral responses to turbulence and waves. Limnol. Oceanogr. 67:992–1005
    [Google Scholar]
  48. Garwood JC, Lucas AJ, Naughton P, Alford MH, Roberts PLD et al. 2020a. A novel cross-shore transport mechanism revealed by subsurface, robotic larval mimics: internal wave deformation of the background velocity field. Limnol. Oceanogr. 65:1456–70
    [Google Scholar]
  49. Garwood JC, Lucas AJ, Naughton P, Roberts PLD, Jaffe JS et al. 2021. Larval cross-shore transport estimated from internal waves with a background flow: the effects of larval vertical position and depth regulation. Limnol. Oceanogr. 66:678–93
    [Google Scholar]
  50. Garwood JC, Musgrave R, Lucas A. 2020b. Life in internal waves. Oceanography 33:338–49
    [Google Scholar]
  51. Geyer WR, MacCready P. 2014. The estuarine circulation. Annu. Rev. Fluid Mech. 46:175–97
    [Google Scholar]
  52. Gough MK, Freismuth TM, MacMahan JH, Colosi JA, Suanda SH, Kumar N. 2020. Heating of the midshelf and inner shelf by warm internal tidal bores. J. Phys. Oceanogr. 50:2609–20
    [Google Scholar]
  53. Grantham BA, Chan F, Nielsen KJ, Fox DS, Barth JA et al. 2004. Upwelling-driven nearshore hypoxia signals ecosystem and oceanographic changes in the northeast Pacific. Nature 429:749–54
    [Google Scholar]
  54. Grimes DJ, Feddersen F. 2021. The self-similar stratified inner-shelf response to transient rip-current-induced mixing. J. Fluid Mech. 915:A82
    [Google Scholar]
  55. Grimes DJ, Feddersen F, Kumar N. 2020. Tracer exchange across the stratified inner-shelf driven by transient rip-currents and diurnal surface heat fluxes. Geophys. Res. Lett. 47:e2019GL086501
    [Google Scholar]
  56. Haas KA, Svendsen IA. 2002. Laboratory measurements of the vertical structure of rip currents. J. Geophys. Res. Oceans 107:15–119
    [Google Scholar]
  57. Hally-Rosendahl K, Feddersen F, Guza RT. 2014. Cross-shore tracer exchange between the surfzone and inner-shelf. J. Geophys. Res. Oceans 119:4367–88
    [Google Scholar]
  58. Hasselmann K, Barnett TP, Bouws E, Carlson H, Cartwright DE et al. 1973. Measurements of Wind-Wave Growth and Swell Decay During the Joint North Sea Wave Project (JONSWAP). Hamburg, Ger: Dtsch. Hydrogr. Inst.
  59. Helfrich K, Pineda J. 2003. Accumulation of particles in propagating fronts. Limnol. Oceanogr. 48:1509–20
    [Google Scholar]
  60. Henderson SM. 2016. Upslope internal-wave Stokes drift, and compensating downslope Eulerian mean currents, observed above a lakebed. J. Phys. Oceanogr. 46:1947–61
    [Google Scholar]
  61. Herbers THC, Elgar S, Guza RT. 1999. Directional spreading of waves in the nearshore. J. Geophys. Res. Oceans 104:7683–93
    [Google Scholar]
  62. Holman RA, Haller MC. 2013. Remote sensing of the nearshore. Annu. Rev. Mar. Sci. 5:95–113
    [Google Scholar]
  63. Horner-Devine AR, Hetland RD, MacDonald DG. 2015. Mixing and transport in coastal river plumes. Annu. Rev. Fluid Mech. 47:569–94
    [Google Scholar]
  64. Horwitz R, Lentz SJ. 2014. Inner-shelf response to cross-shelf wind stress: the importance of the cross-shelf density gradient in an idealized numerical model and field observations. J. Phys. Oceanogr. 44:86–103
    [Google Scholar]
  65. Horwitz RM, Lentz SJ. 2016. The effect of wind direction on cross-shelf transport on an initially stratified inner shelf. J. Mar. Res. 74:201–27
    [Google Scholar]
  66. Huthnance JM. 1995. Circulation, exchange and water masses at the ocean margin: the role of physical processes at the shelf edge. Prog. Oceanogr. 35:353–431
    [Google Scholar]
  67. Inall ME, Shapiro GI, Sherwin TJ. 2001. Mass transport by non-linear internal waves on the Malin Shelf. Cont. Shelf Res. 21:1449–72
    [Google Scholar]
  68. Johnson D, Pattiaratchi C. 2004. Transient rip currents and nearshore circulation on a swell-dominated beach. J. Geophys. Res. Oceans 109:C02026
    [Google Scholar]
  69. Kelly SM, Nash JD. 2010. Internal-tide generation and destruction by shoaling internal tides. Geophys. Res. Lett. 37:L23611
    [Google Scholar]
  70. Kennedy AB. 2005. Fluctuating circulation forced by unsteady multidirectional breaking waves. J. Fluid Mech. 538:189–98
    [Google Scholar]
  71. Kirincich A, Lentz S, Barth J. 2009. Wave-driven inner-shelf motions on the Oregon coast. J. Phys. Oceanogr. 39:2942–56
    [Google Scholar]
  72. Kovatch M, Feddersen F, Grimes DJ, MacMahan JH. 2021. Vorticity recirculation and asymmetric generation at a small headland with broadband currents. J. Geophys. Res. Oceans 126:e2020JC016639
    [Google Scholar]
  73. Kumar N, Cahl DL, Crosby SC, Voulgaris G. 2017. Bulk versus spectral wave parameters: implications on Stokes drift estimates, regional wave modeling, and HF radars applications. J. Phys. Oceanogr. 47:1413–31
    [Google Scholar]
  74. Kumar N, Feddersen F. 2016. The effect of Stokes drift and transient rip currents on the inner shelf. Part II: with stratification. J. Phys. Oceanogr. 47:243–60
    [Google Scholar]
  75. Kumar N, Feddersen F. 2017a. The effect of Stokes drift and transient rip currents on the inner shelf. Part I: no stratification. J. Phys. Oceanogr. 47:227–41
    [Google Scholar]
  76. Kumar N, Feddersen F. 2017b. A new offshore transport mechanism for shoreline-released tracer induced by transient rip currents and stratification. Geophys. Res. Lett. 44:2843–51
    [Google Scholar]
  77. Kumar N, Lerczak JA, Xu T, Waterhouse AF, Thomson J et al. 2021. The Inner-Shelf Dynamics Experiment. Bull. Am. Meteorol. Soc. 102:E1033–63
    [Google Scholar]
  78. Kumar N, Suanda SH, Colosi JA, Haas K, Di Lorenzo E et al. 2019. Coastal semidiurnal internal tidal incoherence in the Santa Maria Basin, California: observations and model simulations. J. Geophys. Res. Oceans 124:5158–79
    [Google Scholar]
  79. Lamb KG. 1997. Particle transport by nonbreaking, solitary internal waves. J. Geophys. Res. 102:18641
    [Google Scholar]
  80. Lamb KG. 2002. A numerical investigation of solitary internal waves with trapped cores formed via shoaling. J. Fluid Mech. 451:109–44
    [Google Scholar]
  81. Lamb KG. 2003. Shoaling solitary internal waves: on a criterion for the formation of waves with trapped cores. J. Fluid Mech. 478:81–100
    [Google Scholar]
  82. Lamb KG. 2014. Internal wave breaking and dissipation mechanisms on the continental slope/shelf. Annu. Rev. Fluid Mech. 46:231–54
    [Google Scholar]
  83. Largier JL. 2020. Upwelling bays: how coastal upwelling controls circulation, habitat, and productivity in bays. Annu. Rev. Mar. Sci. 12:415–47
    [Google Scholar]
  84. Lentz SJ. 1995. Sensitivity of the inner-shelf circulation to the form of the eddy viscosity profile. J. Phys. Oceanogr. 25:19–28
    [Google Scholar]
  85. Lentz SJ, Chapman DC. 2004. The importance of nonlinear cross-shelf momentum flux during wind-driven coastal upwelling. J. Phys. Oceanogr. 34:2444–57
    [Google Scholar]
  86. Lentz SJ, Fewings MR. 2012. The wind- and wave-driven inner-shelf circulation. Annu. Rev. Mar. Sci. 4:317–43
    [Google Scholar]
  87. Lentz SJ, Fewings MR, Howd P, Fredericks J, Hathaway K. 2008. Observations and a model of undertow over the inner continental shelf. J. Phys. Oceanogr. 38:2341–57
    [Google Scholar]
  88. Lentz SJ, Raubenheimer B. 1999. Field observations of wave setup. J. Geophys. Res. Oceans 104:25867–75
    [Google Scholar]
  89. Li Q, Fox-Kemper B. 2017. Assessing the effects of Langmuir turbulence on the entrainment buoyancy flux in the ocean surface boundary layer. J. Phys. Oceanogr. 47:2863–86
    [Google Scholar]
  90. Lian Q, Smyth WD, Liu Z. 2020. Numerical computation of instabilities and internal waves from in situ measurements via the viscous Taylor-Goldstein problem. J. Atmos. Ocean. Technol. 37:759–76
    [Google Scholar]
  91. Lian Q, Smyth WD, Liu Z. 2022. Matlab tools to solve the viscous Taylor Goldstein equation for both instabilities and waves. Zenodo https://doi.org/10.5281/zenodo.6516994
    [Crossref] [Google Scholar]
  92. Long JW, Özkan-Haller HT. 2009. Low-frequency characteristics of wave group–forced vortices. J. Geophys. Res. Oceans 114:C08004
    [Google Scholar]
  93. Longuet-Higgins MS. 1953. Mass transport in water waves. Philos. Trans. R. Soc. A 245:535–81
    [Google Scholar]
  94. Longuet-Higgins MS, Stewart RW 1964. Radiation stresses in water waves; a physical discussion, with applications. Deep-Sea Res. Oceanogr. Abstr. 11:529–62
    [Google Scholar]
  95. MacKinnon JA, Gregg MC. 2005. Spring mixing: turbulence and internal waves during restratification on the New England shelf. J. Phys. Oceanogr. 35:2425–43
    [Google Scholar]
  96. MacMahan JH, Brown JW, Brown JA, Thornton EB, Reniers AJHM et al. 2010. Mean Lagrangian flow behavior on an open coast rip-channeled beach: a new perspective. Mar. Geol. 268:1–15
    [Google Scholar]
  97. Madsen O. 1977. A realistic model of the wind-induced Ekman boundary layer. J. Phys. Oceanogr. 7:248–55
    [Google Scholar]
  98. Mahadevan A, Tandon A, Ferrari R. 2010. Rapid changes in mixed layer stratification driven by submesoscale instabilities and winds. J. Geophys. Res. Oceans 115:C03017
    [Google Scholar]
  99. Masunaga E, Arthur RS, Fringer OB, Yamazaki H. 2017. Sediment resuspension and the generation of intermediate nepheloid layers by shoaling internal bores. J. Mar. Syst. 170:31–41
    [Google Scholar]
  100. McCabe RM, Hickey BM, Dever EP, MacCready P. 2015. Seasonal cross-shelf flow structure, upwelling relaxation, and the alongshelf pressure gradient in the Northern California Current System. J. Phys. Oceanogr. 45:209–27
    [Google Scholar]
  101. McPhee-Shaw E 2006. Boundary–interior exchange: reviewing the idea that internal-wave mixing enhances lateral dispersal near continental margins. Deep-Sea Res. II 53:42–59
    [Google Scholar]
  102. McSweeney JM, Fewings MR, Lerczak JA, Barth JA. 2021. The evolution of a northward-propagating buoyant coastal plume after a wind relaxation event. J. Geophys. Res. Oceans 126:e2021JC017720
    [Google Scholar]
  103. McSweeney JM, Lerczak JA, Barth JA, Becherer J, MacKinnon JA et al. 2020. Alongshore variability of shoaling internal bores on the inner shelf. J. Phys. Oceanogr. 50:2965–81
    [Google Scholar]
  104. McWilliams JC. 2018. Surface wave effects on submesoscale fronts and filaments. J. Fluid Mech. 843:479–517
    [Google Scholar]
  105. Melton C, Washburn L, Gotschalk C. 2009. Wind relaxations and poleward flow events in a coastal upwelling system on the central California coast. J. Geophys. Res. Oceans 114:C11016
    [Google Scholar]
  106. Molina L, Pawlak G, Wells JR, Monismith SG, Merrifield MA. 2014. Diurnal cross-shore thermal exchange on a tropical forereef. J. Geophys. Res. Oceans 119:6101–20
    [Google Scholar]
  107. Monismith SG. 2019. Stokes drift: theory and experiments. J. Fluid Mech. 884:F1
    [Google Scholar]
  108. Monismith SG, Genin A, Reidenbach MA, Yahel G, Koseff JR. 2006. Thermally driven exchanges between a coral reef and the adjoining ocean. J. Phys. Oceanogr. 36:1332–47
    [Google Scholar]
  109. Morgan SG, Fisher JL, Miller SH, McAfee ST, Largier JL. 2009. Nearshore larval retention in a region of strong upwelling and recruitment limitation. Ecology 90:3489–502
    [Google Scholar]
  110. Morgan SG, Miller SH, Robart MJ, Largier JL. 2018a. Nearshore larval retention and cross-shelf migration of benthic crustaceans at an upwelling center. Front. Mar. Sci. 5:161
    [Google Scholar]
  111. Morgan SG, Shanks AL, MacMahan JH, Reniers AJ, Feddersen F. 2018b. Planktonic subsidies to surf-zone and intertidal communities. Annu. Rev. Mar. Sci. 10:345–69
    [Google Scholar]
  112. Moulton M, Chickadel CC, Thomson J. 2021. Warm and cool nearshore plumes connecting the surf zone to the inner shelf. Geophys. Res. Lett. 48:e2020GL091675
    [Google Scholar]
  113. Moulton M, Elgar S, Raubenheimer B, Warner JC, Kumar N. 2017. Rip currents and alongshore flows in single channels dredged in the surf zone. J. Geophys. Res. Oceans 122:3799–816
    [Google Scholar]
  114. Moulton M, Suanda SH, Garwood JC, Kumar N, Fewings MR, Pringle JM. 2022. Nearshore-exchange toolbox. Zenodo https://doi.org/10.5281/zenodo.6816225
    [Crossref] [Google Scholar]
  115. Moum JN, Klymak JM, Nash JD, Perlin A, Smyth WD. 2007. Energy transport by nonlinear internal waves. J. Phys. Oceanogr. 37:1968–88
    [Google Scholar]
  116. Nash JD, Kelly SM, Shroyer EL, Moum JN, Duda TF. 2012. The unpredictable nature of internal tides on continental shelves. J. Phys. Oceanogr. 42:1981–2000
    [Google Scholar]
  117. O'Dea A, Kumar N, Haller MC. 2021. Simulations of the surf zone eddy field and cross-shore exchange on a nonidealized bathymetry. J. Geophys. Res. Oceans 126:e2020JC016619
    [Google Scholar]
  118. Ohlmann JC, Fewings MR, Melton C. 2012. Lagrangian observations of inner-shelf motions in Southern California: Can surface waves decelerate shoreward-moving drifters just outside the surf zone?. J. Phys. Oceanogr. 42:1313–26
    [Google Scholar]
  119. Pawlowicz R. 2020. The grounding of floating objects in a marginal sea. J. Phys. Oceanogr. 51:537–51
    [Google Scholar]
  120. Pearson B. 2018. Turbulence-induced anti-Stokes flow and the resulting limitations of large-eddy simulation. J. Phys. Oceanogr. 48:117–22
    [Google Scholar]
  121. Peregrine DH. 1998. Surf zone currents. Theor. Comput. Fluid Dyn. 10:295–309
    [Google Scholar]
  122. Pineda J. 1999. Circulation and larval distribution in internal tidal bore warm fronts. Limnol. Oceanogr. 44:1400–14
    [Google Scholar]
  123. Pineda J, Reyns N 2018. Larval transport in the coastal zone: biological and physical processes. Evolutionary Ecology of Marine Invertebrate Larvae TJ Carrier, AM Reitzel, A Heyland 145–63 Oxford, UK: Oxford University Press
    [Google Scholar]
  124. Pollard RT, Rhines PB, Thompson RORY. 1972. The deepening of the wind-mixed layer. Geophys. Astrophys. Fluid Dyn. 4:381–404
    [Google Scholar]
  125. Price J, Weller R, Pinkel R. 1986. Diurnal cycling: observations and models of the upper ocean response to heating, cooling, and wind mixing. J. Geophys. Res. Oceans 91:8411–27
    [Google Scholar]
  126. Pringle JM. 2002. Enhancement of wind-driven upwelling and downwelling by alongshore bathymetric variability. J. Phys. Oceanogr. 32:3101–12
    [Google Scholar]
  127. Pringle JM. 2022. JamiePringle/NearshoreParticleTransport: release v1.0.0. Zenodo https://doi.org/10.5281/zenodo.6812919
    [Crossref] [Google Scholar]
  128. Pringle JM, Brink KH. 1999. High frequency internal waves on a sloping shelf. J. Geophys. Res. Oceans 104:5283–99
    [Google Scholar]
  129. Pringle JM, Franks PJ. 2001. Asymmetric mixing transport: a horizontal transport mechanism for sinking plankton and sediment in tidal flows. Limnol. Oceanogr. 46:381–91
    [Google Scholar]
  130. Prüss A. 1998. Review of epidemiological studies on health effects from exposure to recreational water. Int. J. Epidemiol. 27:1–9
    [Google Scholar]
  131. Raubenheimer B, Guza RT, Elgar S. 2001. Field observations of wave-driven setdown and setup. J. Geophys. Res. Oceans 106:4629–38
    [Google Scholar]
  132. Restrepo JM, Venkataramani SC, Dawson C 2014. Nearshore sticky waters. Ocean Model. 80:49–58
    [Google Scholar]
  133. Richards C, Bourgault D, Galbraith PS, Hay A, Kelley DE. 2013. Measurements of shoaling internal waves and turbulence in an estuary. J. Geophys. Res. Oceans 118:273–86
    [Google Scholar]
  134. Rilov G, Dudas SE, Menge BA, Grantham BA, Lubchenco J, Schiel DR. 2008. The surf zone: a semi-permeable barrier to onshore recruitment of invertebrate larvae?. J. Exp. Mar. Biol. Ecol. 361:59–74
    [Google Scholar]
  135. Romero L, Uchiyama Y, Ohlmann JC, McWilliams JC, Siegel DA. 2013. Simulations of nearshore particle-pair dispersion in Southern California. J. Phys. Oceanogr. 43:1862–79
    [Google Scholar]
  136. Safaie A, Pawlak G, Davis KA. 2022. Diurnal thermally driven cross-shore exchange in steady alongshore currents. J. Geophys. Res. Oceans 127:e2021JC017912
    [Google Scholar]
  137. Savidge DK, Gargett AE. 2017. Langmuir supercells on the middle shelf of the South Atlantic Bight: 1. Cell structure. J. Mar. Res. 75:49–79
    [Google Scholar]
  138. Scotti A, Beardsley RC, Butman B, Pineda J. 2008. Shoaling of nonlinear internal waves in Massachusetts Bay. J. Geophys. Res. Oceans 113:C08031
    [Google Scholar]
  139. Shanks AL. 1995. Orientated swimming by megalopae of several eastern North Pacific crab species and its potential role in their onshore migration. J. Exp. Mar. Biol. Ecol. 186:1–16
    [Google Scholar]
  140. Shroyer EL, Moum JN, Nash JD. 2010. Vertical heat flux and lateral mass transport in nonlinear internal waves. Geophys. Res. Lett. 37:L08601
    [Google Scholar]
  141. Spingys CP, Williams RG, Hopkins JE, Hall RA, Green JAM, Sharples J. 2020. Internal tide-driven tracer transport across the continental slope. J. Geophys. Res. Oceans 125:e2019JC015530
    [Google Scholar]
  142. Spydell MS, Feddersen F. 2009. Lagrangian drifter dispersion in the surf zone: directionally spread, normally incident waves. J. Phys. Oceanogr. 39:809–30
    [Google Scholar]
  143. Spydell MS, Feddersen F, Guza RT. 2009. Observations of drifter dispersion in the surfzone: the effect of sheared alongshore currents. J. Geophys. Res. Oceans 114:C07028
    [Google Scholar]
  144. Spydell MS, Feddersen F, Guza RT, Schmidt WE. 2007. Observing surf-zone dispersion with drifters. J. Phys. Oceanogr. 37:2920–39
    [Google Scholar]
  145. Spydell MS, Feddersen F, Suanda SH. 2019. Inhomogeneous turbulent dispersion across the nearshore induced by surfzone eddies. J. Phys. Oceanogr. 49:1015–34
    [Google Scholar]
  146. Stull RB. 1988. An Introduction to Boundary Layer Meteorology Boston: Kluwer Acad.
  147. Suanda SH, Feddersen F. 2015. A self-similar scaling for cross-shelf exchange driven by transient rip currents. Geophys. Res. Lett. 42:2015GL063944
    [Google Scholar]
  148. Suanda SH, Feddersen F, Kumar N. 2017. The effect of barotropic and baroclinic tides on coastal stratification and mixing. J. Geophys. Res. Oceans 122:10156–73
    [Google Scholar]
  149. Terray EA, Donelan MA, Agrawal YC, Drennan WM, Kahma KK et al. 1996. Estimates of kinetic energy dissipation under breaking waves. J. Phys. Oceanogr. 26:792–807
    [Google Scholar]
  150. Thorpe S. 1968. On the shape of progressive internal waves. Philos. Trans. R. Soc. A 263:563–614
    [Google Scholar]
  151. Tilburg CE. 2003. Across-shelf transport on a continental shelf: Do across-shelf winds matter?. J. Phys. Oceanogr. 33:2675–88
    [Google Scholar]
  152. Trowbridge J, Madsen OS. 1984. Turbulent wave boundary layers: 2. Second-order theory and mass transport. J. Geophys. Res. Oceans 89:7999–8007
    [Google Scholar]
  153. Trowbridge JH, Lentz SJ. 2018. The bottom boundary layer. Annu. Rev. Mar. Sci. 10:397–420
    [Google Scholar]
  154. Uchiyama Y, McWilliams JC, Shchepetkin AF 2010. Wave-current interaction in an oceanic circulation model with a vortex-force formalism: application to the surf zone. Ocean Model. 34:16–35
    [Google Scholar]
  155. Ulloa HN, Davis KA, Monismith SG, Pawlak G. 2018. Temporal variability in thermally driven cross-shore exchange: the role of semidiurnal tides. J. Phys. Oceanogr. 48:1513–31
    [Google Scholar]
  156. van den Bremer TS, Breivik Ø. 2017. Stokes drift. Philos. Trans. R. Soc. A 376:20170104
    [Google Scholar]
  157. Walter RK, Squibb ME, Woodson CB, Koseff JR, Monismith SG. 2014. Stratified turbulence in the nearshore coastal ocean: dynamics and evolution in the presence of internal bores. J. Geophys. Res. Oceans 119:8709–30
    [Google Scholar]
  158. Walter RK, Woodson CB, Arthur RS, Fringer OB, Monismith SG. 2012. Nearshore internal bores and turbulent mixing in southern Monterey Bay. J. Geophys. Res. Oceans 117:C07017
    [Google Scholar]
  159. Wang P, McWilliams JC, Uchiyama Y. 2021. A nearshore oceanic front induced by wave streaming. J. Phys. Oceanogr. 51:1967–84
    [Google Scholar]
  160. Washburn L, Fewings MR, Melton C, Gotschalk C. 2011. The propagating response of coastal circulation due to wind relaxations along the central California coast. J. Geophys. Res. Oceans 116:C12028
    [Google Scholar]
  161. Weatherly GL, Martin PJ. 1978. On the structure and dynamics of the oceanic bottom boundary layer. J. Phys. Oceanogr. 8:557–70
    [Google Scholar]
  162. Wilson GW, Özkan-Haller HT, Holman RA. 2013. Quantifying the length-scale dependence of surf zone advection. J. Geophys. Res. Oceans 118:2393–407
    [Google Scholar]
  163. Winters KB, Lombard PN, Riley JJ, D'Asaro EA. 1995. Available potential energy and mixing in density-stratified fluids. J. Fluid Mech. 289:115–28
    [Google Scholar]
  164. Woodson CB. 2018. The fate and impact of internal waves in nearshore ecosystems. Annu. Rev. Mar. Sci. 10:421–41
    [Google Scholar]
  165. Woodson CB, McManus MA, Tyburczy JA, Barth JA, Washburn L et al. 2012. Coastal fronts set recruitment and connectivity patterns across multiple taxa. Limnol. Oceanogr. 57:582–96
    [Google Scholar]
  166. Wu X, Feddersen F, Giddings SN. 2021. Characteristics and dynamics of density fronts over the inner to midshelf under weak wind conditions. J. Phys. Oceanogr. 51:789–808
    [Google Scholar]
  167. Zhang S, Alford MH, Mickett JB. 2015. Characteristics, generation, and mass transport of nonlinear internal waves on the Washington continental shelf. J. Geophys. Res. Oceans 120:741–58
    [Google Scholar]
/content/journals/10.1146/annurev-marine-032122-115057
Loading
/content/journals/10.1146/annurev-marine-032122-115057
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error