1932

Abstract

Many large marine predators make excursions from surface waters to the deep ocean below 200 m. Moreover, the ability to access meso- and bathypelagic habitats has evolved independently across marine mammals, reptiles, birds, teleost fishes, and elasmobranchs. Theoretical and empirical evidence suggests a number of plausible functional hypotheses for deep-diving behavior. Developing ways to test among these hypotheses will, however, require new ways to quantify animal behavior and biophysical oceanographic processes at coherent spatiotemporal scales. Current knowledge gaps include quantifying ecological links between surface waters and mesopelagic habitats and the value of ecosystem services provided by biomass in the ocean twilight zone. Growing pressure for ocean twilight zone fisheries creates an urgent need to understand the importance of the deep pelagic ocean to large marine predators.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-marine-032521-103517
2022-01-03
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/marine/14/1/annurev-marine-032521-103517.html?itemId=/content/journals/10.1146/annurev-marine-032521-103517&mimeType=html&fmt=ahah

Literature Cited

  1. Abecassis M, Dewar H, Hawn D, Polovina J. 2012. Modeling swordfish daytime vertical habitat in the North Pacific Ocean from pop-up archival tags. Mar. Ecol. Prog. Ser. 452:219–36
    [Google Scholar]
  2. Abrahms B, Scales KL, Hazen EL, Bograd SJ, Schick RS et al. 2018. Mesoscale activity facilitates energy gain in a top predator. Proc. R. Soc. B 285:20181101
    [Google Scholar]
  3. Afonso AS, Hazin FH. 2015. Vertical movement patterns and ontogenetic niche expansion in the tiger shark, Galeocerdo cuvier. PLOS ONE 10:e0116720
    [Google Scholar]
  4. Aguilar de Soto N, Madsen PT, Tyack P, Arranz P, Marrero J et al. 2012. No shallow talk: cryptic strategy in the vocal communication of Blainville's beaked whales. Mar. Mamm. Sci. 28:75–92
    [Google Scholar]
  5. Aguilar de Soto N, Visser F, Tyack PL, Alcazar J, Ruxton G et al. 2020. Fear of killer whales drives extreme synchrony in deep diving beaked whales. Sci. Rep. 10:13
    [Google Scholar]
  6. Aguilar Soto N, Johnson MP, Madsen PT, Díaz F, Domínguez I et al. 2008. Cheetahs of the deep sea: deep foraging sprints in short-finned pilot whales off Tenerife (Canary Islands). J. Anim. Ecol. 77:936–47
    [Google Scholar]
  7. Alexander RL. 1995. Evidence of a counter-current heat exchanger in the ray, Mobula tarapacana (Chondrichthyes: Elasmobranchii: Batoidea: Myliobatiformes). J. Zool. 237:377–84
    [Google Scholar]
  8. Allen S, Demer DA. 2003. Detection and characterization of yellowfin and bluefin tuna using passive-acoustical techniques. Fish. Res. 63:393–403
    [Google Scholar]
  9. Andrzejaczek S, Gleiss AC, Lear KO, Pattiaratchi C, Chapple TK, Meekan MG. 2020. Depth-dependent dive kinematics suggest cost-efficient foraging strategies by tiger sharks: tiger shark dive kinematics. R. Soc. Open Sci. 7:200789
    [Google Scholar]
  10. Andrzejaczek S, Gleiss AC, Pattiaratchi CB, Meekan MG. 2019. Patterns and drivers of vertical movements of the large fishes of the epipelagic. Rev. Fish Biol. Fish. 29:335–54
    [Google Scholar]
  11. Arostegui M, Gaube P, Berumen M, DiGiulian A, Jones B et al. 2020. Vertical movements of a pelagic thresher shark (Alopias pelagicus): insights into the species' physiological limitations and trophic ecology in the Red Sea. Endanger. Species Res. 43:387–94
    [Google Scholar]
  12. Bailleul F, Cotté C, Guinet C. 2010. Mesoscale eddies as foraging area of a deep-diving predator, the southern elephant seal. Mar. Ecol. Prog. Ser. 408:251–64
    [Google Scholar]
  13. Balli J, Mladineo I, Shirakashi S, Nowak BF 2016. Diseases in tuna aquaculture. Advances in Tuna Aquaculture: From Hatchery to Market DD Benetti, GJ Partridge, A Buentello 253–72 Amsterdam: Elsevier
    [Google Scholar]
  14. Balls R. 1948. Herring fishing with the echometer. ICES J. Mar. Sci. 15:193–206
    [Google Scholar]
  15. Beckert M, Flammang BE, Anderson EJ, Nadler JH. 2016. Theoretical and computational fluid dynamics of an attached remora (Echeneis naucrates). Zoology 119:430–38
    [Google Scholar]
  16. Behrenfeld MJ, Gaube P, Della Penna A, O'Malley RT, Burt WJ et al. 2019. Global satellite-observed daily vertical migrations of ocean animals. Nature 576:257–61
    [Google Scholar]
  17. Beltran RS, Kendall-Bar JM, Pirotta E, Adachi T, Naito Y et al. 2021. Lightscapes of fear: how mesopredators balance starvation and predation in the open ocean. Sci. Adv. 7:eabd9818
    [Google Scholar]
  18. Benoit-Bird KJ, Southall BL, Moline MA, Claridge DE, Dunn CA et al. 2020. Critical threshold identified in the functional relationship between beaked whales and their prey. Mar. Ecol. Prog. Ser. 654:1–16
    [Google Scholar]
  19. Benz GW, Borucinska JD, Lowry LF, Whiteley HE. 2002. Ocular lesions associated with attachment of the copepod Ommatokoita elongata (Lernaeopodidae: Siphonostomatoida) to corneas of Pacific sleeper sharks Somniosus pacificus captured off Alaska in Prince William Sound. J. Parasitol. 88:474–81
    [Google Scholar]
  20. Bernal D, Brill RW, Dickson KA, Shiels HA. 2017. Sharing the water column: physiological mechanisms underlying species-specific habitat use in tunas. Rev. Fish Biol. Fish. 27:843–80
    [Google Scholar]
  21. Bernal D, Sepulveda C, Mathieu-Costello O, Graham JB. 2003. Comparative studies of high performance swimming in sharks: I. Red muscle morphometrics, vascularization and ultrastructure. J. Exp. Biol. 206:2831–43
    [Google Scholar]
  22. Block BA, Jonsen ID, Jorgensen SJ, Winship AJ, Shaffer SA et al. 2011. Tracking apex marine predator movements in a dynamic ocean. Nature 475:86–90
    [Google Scholar]
  23. Bodznick D, Montgomery J, Tricas TC 2003. Electroreception: extracting behaviorally important signals from noise. Sensory Processing in Aquatic Environments SP Collin, NJ Marshall 389–403 New York: Springer
    [Google Scholar]
  24. Bostrom BL, Jones DR. 2007. Exercise warms adult leatherback turtles. Comp. Biochem. Physiol. Mol. Integr. Physiol. 147:323–31
    [Google Scholar]
  25. Bostrom BL, Jones TT, Hastings M, Jones DR. 2010. Behaviour and physiology: the thermal strategy of leatherback turtles. PLOS ONE 5:e13925
    [Google Scholar]
  26. Braun CD, Gaube P, Afonso P, Fontes J, Skomal GB, Thorrold SR. 2019a. Assimilating electronic tagging, oceanographic modelling, and fisheries data to estimate movements and connectivity of swordfish in the North Atlantic. ICES J. Mar. Sci. 76:2305–17
    [Google Scholar]
  27. Braun CD, Gaube P, Sinclair-Taylor TH, Skomal GB, Thorrold SR. 2019b. Mesoscale eddies release pelagic sharks from thermal constraints to foraging in the ocean twilight zone. PNAS 116:17187–92
    [Google Scholar]
  28. Braun CD, Kaplan M, Horodysky A, Llopiz J. 2015. Satellite telemetry reveals physical processes driving billfish behavior. Anim. Biotelem. 3:2
    [Google Scholar]
  29. Braun CD, Skomal GB, Thorrold SR. 2018. Integrating archival tag data and a high-resolution oceanographic model to estimate basking shark (Cetorhinus maximus) movements in the western Atlantic. Front. Mar. Sci. 5:25
    [Google Scholar]
  30. Bray RA. 2020. Digenean parasites of deep-sea teleosts: a progress report. Int. J. Parasitol. Parasites Wildl. 12:251–64
    [Google Scholar]
  31. Brill RW, Lowe TE, Cousins KL 1998. How water temperature really limits the vertical movements of tunas and billfishes - it's the heart stupid. Cardiovascular Function in Fishes K Gamperl, D MacKinlay, A Farrell 57–62 Vancouver, Can: MacWatTec Fish Physiol.
    [Google Scholar]
  32. Caira JN, Healy CJ 2004. Elasmobranchs as hosts of metazoan parasites. Biology of Sharks and Their Relatives JC Carrier, JA Musick, MR Heithaus 523–51 Boca Raton, FL: CRC
    [Google Scholar]
  33. Carey FG. 1982. A brain heater in the swordfish. Science 216:1327–29
    [Google Scholar]
  34. Carey FG 1990. Further acoustic telemetry observations of swordfish. Planning the Future of Billfishes: Research and Management in the 90s and Beyond RH Stroud 103–22 Savannah, GA: Natl. Coalit. Mar. Conserv.
    [Google Scholar]
  35. Carey FG, Robison BH. 1981. Daily patterns in the activities of swordfish, Xiphias gladius, observed by acoustic telemetry. Fish. Bull. 79:277–92
    [Google Scholar]
  36. Carlisle AB, Kochevar RE, Arostegui MC, Ganong JE, Castleton M et al. 2017. Influence of temperature and oxygen on the distribution of blue marlin (Makaira nigricans) in the Central Pacific. Fish. Oceanogr. 26:34–48
    [Google Scholar]
  37. Chambault P, Albertsen CM, Patterson TA, Hansen RG, Tervo O et al. 2018. Sea surface temperature predicts the movements of an Arctic cetacean: the bowhead whale. Sci. Rep. 8:9658
    [Google Scholar]
  38. Chapman DD, Feldheim KA, Papastamatiou YP, Hueter RE. 2015. There and back again: a review of residency and return migrations in sharks, with implications for population structure and management. Annu. Rev. Mar. Sci. 7:547–70
    [Google Scholar]
  39. Church R. 1968. Broadbill swordfish in deep water. Sea Front 14:246–49
    [Google Scholar]
  40. Collin SP. 2018. Scene through the eyes of an apex predator: a comparative analysis of the shark visual system. Clin. Exp. Optom. 101:624–40
    [Google Scholar]
  41. Costello MJ, Breyer S. 2017. Ocean depths: the mesopelagic and implications for global warming. Curr. Biol. 27:R36–38
    [Google Scholar]
  42. Dagorn L, Holland KN, Hallier JP, Taquet M, Moreno G et al. 2006. Deep diving behavior observed in yellowfin tuna (Thunnus albacares). Aquat. Living Resour. 19:85–88
    [Google Scholar]
  43. Davenport J, Fraher J, Fitzgerald E, McLaughlin P, Doyle T et al. 2009. Ontogenetic changes in tracheal structure facilitate deep dives and cold water foraging in adult leatherback sea turtles. J. Exp. Biol. 212:3440–47
    [Google Scholar]
  44. Della Penna A, Gaube P 2020. Mesoscale eddies structure mesopelagic communities. Front. Mar. Sci. 7:454
    [Google Scholar]
  45. Dewar H, Prince ED, Musyl MK, Brill RW, Sepulveda C et al. 2011. Movements and behaviors of swordfish in the Atlantic and Pacific Oceans examined using popup satellite archival tags. Fish. Oceanogr. 20:219–41
    [Google Scholar]
  46. Duffy LM, Kuhnert PM, Pethybridge HR, Young JW, Olson RJ et al. 2017. Global trophic ecology of yellowfin, bigeye, and albacore tunas: understanding predation on micronekton communities at ocean-basin scales. Deep-Sea Res. II 140:55–73
    [Google Scholar]
  47. Dunlop RA. 2018. The communication space of humpback whale social sounds in wind-dominated noise. J. Acoust. Soc. Am. 144:540–51
    [Google Scholar]
  48. Favilla AB, Costa DP. 2020. Thermoregulatory strategies of diving air-breathing marine vertebrates: a review. Front. Ecol. Evol. 8:555509
    [Google Scholar]
  49. Ford JK, Ellis GM, Matkin CO, Wetklo MH, Barrett-Lennard LG, Withler RE 2011. Shark predation and tooth wear in a population of northeastern pacific killer whales. Aquat. Biol. 11:213–24
    [Google Scholar]
  50. Ford TJ, Werth AJ, George JC. 2013. An intraoral thermoregulatory organ in the bowhead whale (Balaena mysticetus), the corpus cavernosum maxillaris. Anat. Rec. 296:701–8
    [Google Scholar]
  51. Fowler SL, Costa DP, Arnould JP, Gales NJ, Burns JM. 2007. Ontogeny of oxygen stores and physiological diving capability in Australian sea lions. Funct. Ecol. 21:922–35
    [Google Scholar]
  52. Frid A, Heithaus MR, Dill LM. 2007. Dangerous dive cycles and the proverbial ostrich. Oikos 116:893–902
    [Google Scholar]
  53. Fritsches KA, Brill RW, Warrant EJ. 2005. Warm eyes provide superior vision in swordfishes. Curr. Biol. 15:55–58
    [Google Scholar]
  54. García-Párraga D, Crespo-Picazo JL, De Quirós YB, Cervera V, Martí-Bonmati L et al. 2014. Decompression sickness (‘the bends’) in sea turtles. Dis. Aquat. Org. 111:191–205
    [Google Scholar]
  55. Gaube P, Braun CD, Lawson GL, McGillicuddy DJ Jr., Penna AD et al. 2018. Mesoscale eddies influence the movements of mature female white sharks in the Gulf Stream and Sargasso Sea. Sci. Rep. 8:7363
    [Google Scholar]
  56. Gjøsaeter J, Kawaguchi K. 1980. A review of the world resources of mesopelagic fish Fish. Tech. Rep. 193 Food & Agric. Organ. Rome:
  57. Gleiss AC, Norman B, Wilson RP 2011. Moved by that sinking feeling: variable diving geometry underlies movement strategies in whale sharks. Funct. Ecol. 25:595–607
    [Google Scholar]
  58. Hammel HT, Elsner RW, Heller HC, Maggert JA, Bainton CR. 1977. Thermoregulatory responses to altering hypothalamic temperature in the harbor seal. Am. J. Physiol. 232:R18–26
    [Google Scholar]
  59. Heath ME, Ridgway SH. 1999. How dolphins use their blubber to avoid heat stress during encounters with warm water. Am. J. Physiol. Regul. Integr. Comp. Physiol. 276:R1188–94
    [Google Scholar]
  60. Heithaus MR, Frid A. 2003. Optimal diving under the risk of predation. J. Theor. Biol. 223:79–92
    [Google Scholar]
  61. Hermosilla C, Silva LM, Prieto R, Kleinertz S, Taubert A, Silva MA. 2015. Endo- and ectoparasites of large whales (Cetartiodactyla: Balaenopteridae, Physeteridae): overcoming difficulties in obtaining appropriate samples by non- and minimally-invasive methods. Int. J. Parasitol. Parasites Wildl. 4:414–20
    [Google Scholar]
  62. Hino H, Kitagawa T, Matsumoto T, Aoki Y, Kimura S. 2020. Development of behavioral and physiological thermoregulatory mechanisms with body size in juvenile bigeye tuna Thunnus obesus. Fish. Oceanogr. 30:219–31
    [Google Scholar]
  63. Hogg C, Neveu M, Folkow L, Stokkan KA, Kam JH et al. 2015. The eyes of the deep diving hooded seal (Cystophora cristata) enhance sensitivity to ultraviolet light. Biol. Open 4:812–18
    [Google Scholar]
  64. Hokkanen JE. 1990. Temperature regulation of marine mammals. J. Theor. Biol. 145:465–85
    [Google Scholar]
  65. Hooker SK, Fahlman A, Moore MJ, Aguilar de Soto N, Bernaldo de Quirós Y et al. 2012. Deadly diving? Physiological and behavioural management of decompression stress in diving mammals. Proc. R. Soc. B 279:1041–50
    [Google Scholar]
  66. Houghton JDR, Doyle TK, Davenport J, Wilson RP, Hays GC. 2008. The role of infrequent and extraordinary deep dives in leatherback turtles (Dermochelys coriacea). J. Exp. Biol. 211:2566–75
    [Google Scholar]
  67. Howey LA, Tolentino ER, Papastamatiou YP, Brooks EJ, Abercrombie DL et al. 2016. Into the deep: the functionality of mesopelagic excursions by an oceanic apex predator. Ecol. Evol. 6:5290–304
    [Google Scholar]
  68. Huey RB, Stevenson RD. 1979. Integrating thermal physiology and ecology of ectotherms: a discussion of approaches. Integr. Comp. Biol. 19:357–66
    [Google Scholar]
  69. Humphries NE, Queiroz N, Dyer JRM, Pade NG, Musyl MK et al. 2010. Environmental context explains Lévy and Brownian movement patterns of marine predators. Nature 465:1066–69
    [Google Scholar]
  70. Iosilevskii G, Papastamatiou YP. 2016. Relations between morphology, buoyancy and energetics of requiem sharks. R. Soc. Open Sci. 3:160406
    [Google Scholar]
  71. Iosilevskii G, Papastamatiou YP, Meyer CG, Holland KN. 2012. Energetics of the yo-yo dives of predatory sharks. J. Theor. Biol. 294:172–81
    [Google Scholar]
  72. Irigoien X, Klevjer TA, Røstad A, Martinez U, Boyra G et al. 2014. Large mesopelagic fishes biomass and trophic efficiency in the open ocean. Nat. Commun. 5:3271
    [Google Scholar]
  73. Jorgensen SJ, Arnoldi NS, Estess EE, Chapple TK, Rückert M et al. 2012. Eating or meeting? Cluster analysis reveals intricacies of white shark (Carcharodon carcharias) migration and offshore behavior. PLOS ONE 7:e47819
    [Google Scholar]
  74. Josse E, Bach P, Dagorn L. 1998. Simultaneous observations of tuna movements and their prey by sonic tracking and acoustic surveys. Hydrobiologia 371:61–69
    [Google Scholar]
  75. Joyce TW, Durban JW, Claridge DE, Dunn CA, Fearnbach H et al. 2017. Physiological, morphological, and ecological tradeoffs influence vertical habitat use of deep-diving toothed-whales in the Bahamas. PLOS ONE 12:e0185113
    [Google Scholar]
  76. Kaartvedt S, Røstad A, Christiansen S, Klevjer TA. 2020. Diel vertical migration and individual behavior of nekton beyond the ocean's twilight zone. Deep-Sea Res. I 160:103280
    [Google Scholar]
  77. Kalmijn AJ. 1982. Electric and magnetic field detection in elasmobranch fishes. Science 218:916–18
    [Google Scholar]
  78. Kerstetter DW, Polovina JJ, Graves JE. 2004. Evidence of shark predation and scavenging on fishes equipped with pop-up satellite archival tags. Fish. Bull. 102:750–56
    [Google Scholar]
  79. Klimley AP. 1993. Highly directional swimming by scalloped hammerhead sharks, Sphyrna lewini, and subsurface irradiance, temperature, bathymetry, and geomagnetic field. Mar. Biol. 117:1–22
    [Google Scholar]
  80. Klimley AP, Flagg M, Hammerschlag N, Hearn A. 2017. The value of using measurements of geomagnetic field in addition to irradiance and sea surface temperature to estimate geolocations of tagged aquatic animals. Anim. Biotelem. 5:19
    [Google Scholar]
  81. Klimpel S, Kuhn T, Busch MW, Karl H, Palm HW 2011. Deep-water life cycle of Anisakis paggiae (Nematoda: Anisakidae) in the Irminger Sea indicates kogiid whale distribution in north Atlantic waters. Polar Biol 34:899–906
    [Google Scholar]
  82. Kröger RH, Fritsches KA, Warrant EJ. 2009. Lens optical properties in the eyes of large marine predatory teleosts. J. Comp. Physiol. A 195:175–82
    [Google Scholar]
  83. Lam CH, Tam C, Kobayashi DR, Lutcavage ME. 2020. Complex dispersal of adult yellowfin tuna from the main Hawaiian Islands. Front. Mar. Sci. 7:138
    [Google Scholar]
  84. Le Croizier G, Lorrain A, Sonke JE, Hoyos-Padilla EM, Galván-Magaña F et al. 2020. The twilight zone as a major foraging habitat and mercury source for the great white shark. Environ. Sci. Technol. 54:15872–82
    [Google Scholar]
  85. Legendre LJ, Davesne D. 2020. The evolution of mechanisms involved in vertebrate endothermy. Philos. Trans. R. Soc. B 375:20190136
    [Google Scholar]
  86. Liwanag HE, Berta A, Costa DP, Budge SM, Williams TM. 2012a. Morphological and thermal properties of mammalian insulation: the evolutionary transition to blubber in pinnipeds. Biol. J. Linn. Soc. 107:774–87
    [Google Scholar]
  87. Liwanag HEM, Berta A, Costa DP, Abney M, Williams TM. 2012b. Morphological and thermal properties of mammalian insulation: the evolution of fur for aquatic living. Biol. J. Linn. Soc. 106:926–39
    [Google Scholar]
  88. Lohmann KJ, Lohmann CMF, Endres CS. 2008. The sensory ecology of ocean navigation. J. Exp. Biol. 211:1719–28
    [Google Scholar]
  89. Lohmann KJ, Lohmann CMF, Putman NF. 2007. Magnetic maps in animals: nature's GPS. J. Exp. Biol. 210:3697–705
    [Google Scholar]
  90. Lowe TE, Brill RW, Cousins KL. 2000. Blood oxygen-binding characteristics of bigeye tuna (Thunnus obesus), a high-energy-demand teleost that is tolerant of low ambient oxygen. Mar. Biol. 136:1087–98
    [Google Scholar]
  91. Macdonald KC, Miller SP, Huestis SP, Spiess FN. 1980. Three-dimensional modeling of a magnetic reversal boundary from inversion of deep-tow measurements. J. Geophys. Res. Solid Earth 85:3670–80
    [Google Scholar]
  92. Mahadevan A. 2016. The impact of submesoscale physics on primary productivity of plankton. Annu. Rev. Mar. Sci. 8:161–84
    [Google Scholar]
  93. Mass AM, Supin AY. 2007. Adaptive features of aquatic mammals' eye. Anat. Rec. 290:701–15
    [Google Scholar]
  94. McDonald BI, Ponganis PJ. 2012. Lung collapse in the diving sea lion: hold the nitrogen and save the oxygen. Biol. Lett. 8:1047–49
    [Google Scholar]
  95. McGillicuddy DJ Jr. 2016. Mechanisms of physical-biological-biogeochemical interaction at the oceanic mesoscale. Annu. Rev. Mar. Sci. 8:125–59
    [Google Scholar]
  96. McIntyre T, Bornemann H, Plötz J, Tosh CA, Bester MN. 2012. Deep divers in even deeper seas: habitat use of male southern elephant seals from Marion Island. Antarct. Sci. 24:561–70
    [Google Scholar]
  97. McMahon CR, Hindell MA, Charrassin JB, Corney S, Guinet C et al. 2019. Finding mesopelagic prey in a changing Southern Ocean. Sci. Rep. 9:19013
    [Google Scholar]
  98. Meir JU, Ponganis PJ. 2009. High-affinity hemoglobin and blood oxygen saturation in diving emperor penguins. J. Exp. Biol. 212:3330–38
    [Google Scholar]
  99. Meyer CG, Holland KN, Papastamatiou YP. 2005. Sharks can detect changes in the geomagnetic field. J. R. Soc. Interface 2:129–30
    [Google Scholar]
  100. Mirceta S, Signore AV, Burns JM, Cossins AR, Campbell KL, Berenbrink M. 2013. Evolution of mammalian diving capacity traced by myoglobin net surface charge. Science 340:1234192
    [Google Scholar]
  101. Mouritsen H. 2018. Long-distance navigation and magnetoreception in migratory animals. Nature 558:50–59
    [Google Scholar]
  102. Naito Y, Costa DP, Adachi T, Robinson PW, Fowler M, Takahashi A. 2013. Unravelling the mysteries of a mesopelagic diet: a large apex predator specializes on small prey. Funct. Ecol. 27:710–17
    [Google Scholar]
  103. Naito Y, Costa DP, Adachi T, Robinson PW, Peterson SH et al. 2017. Oxygen minimum zone: an important oceanographic habitat for deep-diving northern elephant seals, Mirounga angustirostris. Ecol. Evol. 7:6259–70
    [Google Scholar]
  104. Nakamura I, Goto Y, Sato K. 2015. Ocean sunfish rewarm at the surface after deep excursions to forage for siphonophores. J. Anim. Ecol. 84:590–603
    [Google Scholar]
  105. Nakamura I, Matsumoto R, Sato K. 2020. Body temperature stability in the whale shark, the world's largest fish. J. Exp. Biol. 223:jeb210286
    [Google Scholar]
  106. Nakamura I, Watanabe YY, Papastamatiou YP, Sato K, Meyer CG. 2011. Yo-yo vertical movements suggest a foraging strategy for tiger sharks Galeocerdo cuvier. Mar. Ecol. Prog. Ser. 424:237–46
    [Google Scholar]
  107. Oliveira C, Wahlberg M, Johnson M, Miller PJO, Madsen PT. 2013. The function of male sperm whale slow clicks in a high latitude habitat: communication, echolocation, or prey debilitation?. J. Acoust. Soc. Am. 133:3135–44
    [Google Scholar]
  108. Oliver SP, Hussey NE, Turner JR, Beckett AJ. 2011. Oceanic sharks clean at coastal seamount. PLOS ONE 6:e14755
    [Google Scholar]
  109. Paladino FV, O'Connor MP, Spotila JR. 1990. Metabolism of leatherback turtles, gigantothermy, and thermoregulation of dinosaurs. Nature 344:858–60
    [Google Scholar]
  110. Papastamatiou YP, Iosilevskii G, Leos-Barajas V, Brooks EJ, Howey LA et al. 2018. Optimal swimming strategies and behavioral plasticity of oceanic whitetip sharks. Sci. Rep. 8:551
    [Google Scholar]
  111. Payne R, Webb D. 1971. Orientation by means of long range acoustic signaling in baleen whales. Ann. N. Y. Acad. Sci. 188:110–41
    [Google Scholar]
  112. Pérez JM, Jensen FH, Rojano-Doñate L, Aguilar de Soto N. 2017. Different modes of acoustic communication in deep-diving short-finned pilot whales (Globicephala macrorhynchus). Mar. Mamm. Sci. 33:59–79
    [Google Scholar]
  113. Ponganis PJ. 2016. Diving Physiology of Marine Mammals and Seabirds Cambridge, UK: Cambridge Univ. Press
  114. Proud R, Cox MJ, Brierley AS. 2017. Biogeography of the global ocean's mesopelagic zone. Curr. Biol. 27:113–19
    [Google Scholar]
  115. Richmond JP, Burns JM, Rea LD. 2006. Ontogeny of total body oxygen stores and aerobic dive potential in Steller sea lions (Eumetopias jubatus). J. Comp. Physiol. B 176:535–45
    [Google Scholar]
  116. Ritz DA, Hobday AJ, Montgomery JC, Ward AJW. 2011. Social aggregation in the pelagic zone with special reference to fish and invertebrates. Adv. Mar. Biol. 60:161–227
    [Google Scholar]
  117. Rivas LR. 1953. The pineal apparatus of tunas and related scombrid fishes as a possible light receptor controlling phototactic movements. Bull. Mar. Sci. 3:168–80
    [Google Scholar]
  118. Rivière P, Jaud T, Siegelman L, Klein P, Cotté C et al. 2019. Sub-mesoscale fronts modify elephant seals foraging behavior. Limnol. Oceanogr. Lett. 4:193–204
    [Google Scholar]
  119. Robinson PW, Costa DP, Crocker DE, Gallo-Reynoso JP, Champagne CD et al. 2012. Foraging behavior and success of a mesopelagic predator in the northeast Pacific Ocean: insights from a data-rich species, the northern elephant seal. PLOS ONE 7:e36728
    [Google Scholar]
  120. Rohde K 2010. Marine parasite diversity and environmental gradients. The Biogeography of Host–Parasite Interactions S Morand, B Krasnov 73–88 Oxford, UK: Oxford Univ. Press
    [Google Scholar]
  121. Roman J, McCarthy JJ. 2010. The whale pump: Marine mammals enhance primary productivity in a coastal basin. PLOS ONE 5:e13255
    [Google Scholar]
  122. Rossiter W, Sukhdeo MV. 2011. Exploitation of asymmetric predator-prey interactions by trophically transmitted parasites. Oikos 120:607–14
    [Google Scholar]
  123. Sato K, Aoki K, Watanabe YY, Miller PJ. 2013. Neutral buoyancy is optimal to minimize the cost of transport in horizontally swimming seals. Sci. Rep. 3:2205
    [Google Scholar]
  124. Sato K, Naito Y, Kato A, Niizuma Y, Watanuki Y et al. 2002. Buoyancy and maximal diving depth in penguins: Do they control inhaling air volume?. J. Exp. Biol. 205:1189–97
    [Google Scholar]
  125. Schorr GS, Falcone EA, Moretti DJ, Andrews RD. 2014. First long-term behavioral records from Cuvier's beaked whales (Ziphius cavirostris) reveal record-breaking dives. PLOS ONE 9:e92633
    [Google Scholar]
  126. Schusterman RJ, Kastak D, Levenson DH, Reichmuth CJ, Southall BL. 2000. Why pinnipeds don't echolocate. J. Acoust. Soc. Am. 107:2256–64
    [Google Scholar]
  127. Shabangu F, Andrew R, Yemane D, Findlay K. 2020. Acoustic seasonality, behaviour and detection ranges of Antarctic blue and fin whales under different sea ice conditions off Antarctica. Endanger. Species Res. 43:21–37
    [Google Scholar]
  128. Somiya H, Takei S, Mitani I. 2000. Guanine and its retinal distribution in the tapetum of the bigeye tuna, Thunnus obesus. Ichthyol. Res. 47:367–72
    [Google Scholar]
  129. Speakman JR, Król E. 2010. Maximal heat dissipation capacity and hyperthermia risk: neglected key factors in the ecology of endotherms. J. Anim. Ecol. 79:726–46
    [Google Scholar]
  130. Standora EA, Spotila JR, Foley RE. 1982. Regional endothermy in the sea turtle. J. Therm. Biol. 7:159–65
    [Google Scholar]
  131. Stimpert AK, DeRuiter SL, Falcone EA, Joseph J, Douglas AB et al. 2015. Sound production and associated behavior of tagged fin whales (Balaenoptera physalus) in the Southern California Bight. Anim. Biotelem. 3:23
    [Google Scholar]
  132. Sutton TT. 2013. Vertical ecology of the pelagic ocean: classical patterns and new perspectives. J. Fish Biol. 83:1508–27
    [Google Scholar]
  133. Teo SLH, Boustany A, Dewar H, Stokesbury MJW, Weng KC et al. 2007. Annual migrations, diving behavior, and thermal biology of Atlantic bluefin tuna, Thunnus thynnus, on their Gulf of Mexico breeding grounds. Mar. Biol. 151:1–18
    [Google Scholar]
  134. Thorrold SR, Afonso P, Fontes J, Braun CD, Skomal GB, Berumen ML. 2014. Extreme diving behavior in devil rays link surface waters and the deep ocean. Nat. Commun. 5:4274
    [Google Scholar]
  135. Thums M, Meekan M, Stevens J, Wilson S, Polovina J 2013. Evidence for behavioural thermoregulation by the world's largest fish. J. R. Soc. Interface 10:20120477
    [Google Scholar]
  136. Thygesen UH, Patterson TA. 2019. Oceanic diel vertical migrations arising from a predator-prey game. Theor. Ecol. 12:17–29
    [Google Scholar]
  137. Tyler RH, Boyer TP, Minami T, Zweng MM, Reagan JR. 2017. Electrical conductivity of the global ocean. Earth Planets Space 69:156
    [Google Scholar]
  138. Vandeperre F, Aires-da-Silva A, Lennert-Cody C, Serrão Santos R, Afonso P 2016. Essential pelagic habitat of juvenile blue shark (Prionace glauca) inferred from telemetry data. Limnol. Oceanogr. 61:1605–25
    [Google Scholar]
  139. Vedor M, Queiroz N, Mucientes G, Couto A, da Costa I et al. 2021. Climate-driven deoxygenation elevates fishing vulnerability for the ocean's widest ranging shark. eLife 10:e62508
    [Google Scholar]
  140. Wallace BP, Williams CL, Paladino FV, Morreale SJ, Lindstrom RT, Spotila JR. 2005. Bioenergetics and diving activity of internesting leatherback turtles Dermochelys coriacea at Parque Nacional Marino Las Baulas, Costa Rica. J. Exp. Biol. 208:3873–84
    [Google Scholar]
  141. Warrant EJ, Locket NA 2004. Vision in the deep sea. Biol. Rev. Camb. Philos. Soc 79:671712
    [Google Scholar]
  142. Watanabe YY, Payne NL, Semmens JM, Fox A, Huveneers C. 2019. Swimming strategies and energetics of endothermic white sharks during foraging. J. Exp. Biol. 222:jeb185603
    [Google Scholar]
  143. Wegner NC, Sepulveda CA, Bull KB, Graham JB. 2010. Gill morphometrics in relation to gas transfer and ram ventilation in high-energy demand teleosts: scombrids and billfishes. J. Morphol. 271:36–49
    [Google Scholar]
  144. Wegner NC, Snodgrass OE, Dewar H, Hyde JR. 2015. Whole-body endothermy in a mesopelagic fish, the opah, Lampris guttatus. Science 348:786–89
    [Google Scholar]
  145. Weihs D, Fish FE, Nicastro AJ. 2007. Mechanics of remora removal by dolphin spinning. Mar. Mamm. Sci. 23:707–14
    [Google Scholar]
  146. Whitehead H. 2003. Sperm Whales: Social Evolution in the Ocean Chicago: Univ. Chicago Press
  147. Williams CL, Hagelin JC, Kooyman GL. 2015. Hidden keys to survival: the type, density, pattern and functional role of emperor penguin body feathers. Proc. R. Soc. B 282:20152033
    [Google Scholar]
  148. Willis J, Phillips J, Muheim R, Diego-Rasilla FJ, Hobday AJ. 2009. Spike dives of juvenile southern bluefin tuna (Thunnus maccoyii): a navigational role?. Behav. Ecol. Sociobiol. 64:57–68
    [Google Scholar]
  149. Yoshino K, Takahashi A, Adachi T, Costa DP, Robinson PW et al. 2020. Acceleration-triggered animal-borne videos show a dominance of fish in the diet of female northern elephant seals. J. Exp. Biol. 223:jeb.212936
    [Google Scholar]
  150. Young JW, Lansdell MJ, Campbell RA, Cooper SP, Juanes F, Guest MA. 2010. Feeding ecology and niche segregation in oceanic top predators off eastern Australia. Mar. Biol. 157:2347–68
    [Google Scholar]
/content/journals/10.1146/annurev-marine-032521-103517
Loading
/content/journals/10.1146/annurev-marine-032521-103517
Loading

Data & Media loading...

Supplemental Material

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error