1932

Abstract

Over the last four decades, more than 500 sites of seafloor hydrothermal venting have been identified in a range of tectonic environments. These vents represent the seafloor manifestation of hydrothermal convection of seawater through the permeable oceanic basement that is driven by a subsurface heat source. Hydrothermal circulation has fundamental effects on the transfer of heat and mass from the lithosphere to the hydrosphere, the composition of seawater, the physical and chemical properties of the oceanic basement, and vent ecosystems at and below the seafloor. In this review, we compare and contrast the vent fluid chemistry from hydrothermal fields in a range of tectonic settings to assess the relative roles of fluid-mineral equilibria, phase separation, magmatic input, seawater entrainment, and sediment cover in producing the observed range of fluid compositions. We focus particularly on hydrothermal activity in those tectonic environments (e.g., mid-ocean ridge detachment faults, back-arc basins, and island arc volcanoes) where significant progress has been made in the last decade in documenting the variations in vent fluid composition.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-marine-121916-063233
2018-01-03
2024-04-20
Loading full text...

Full text loading...

/deliver/fulltext/marine/10/1/annurev-marine-121916-063233.html?itemId=/content/journals/10.1146/annurev-marine-121916-063233&mimeType=html&fmt=ahah

Literature Cited

  1. Allen DE, Seyfried WE. 2003. Compositional controls on vent fluids from ultramafic-hosted hydrothermal systems at mid-ocean ridges: an experimental study at 400°C, 500 bars. Geochim. Cosmochim. Acta 67:1531–42 [Google Scholar]
  2. Allen DE, Seyfried WE. 2004. Serpentinization and heat generation: constraints from Lost City and Rainbow hydrothermal systems. Geochim. Cosmochim. Acta 68:1347–55 [Google Scholar]
  3. Alt JC. 1995. Subseafloor processes in mid-ocean ridge hydrothermal systems. See Humphris et al. 1995b 83–114
  4. Alt JC, Honnorez J, Laverne L, Emmermann R. 1986. Hydrothermal alteration of a 1 km section through the upper oceanic crust, DSDP Hole 504B: the mineralogy, chemistry, and evolution of seawater-basalt interactions. J. Geophys. Res. 91:10309–35 [Google Scholar]
  5. Alt JC, Laverne C, Coggon RM, Teagle DAH, Banerjee NR. et al. 2010. Subsurface structure of a submarine hydrothermal system in ocean crust formed at the East Pacific Rise, ODP Site 1256. Geochem. Geophys. Geosyst. 11:Q10010 [Google Scholar]
  6. Andreani M, Escartín J, Delacour A, Iledefonse B, Godard M. et al. 2014. Tectonic structure, lithology, and hydrothermal signature of the Rainbow massif (Mid-Atlantic Ridge 36°14′N). Geochem. Geophys. Geosyst. 15:3543–71 [Google Scholar]
  7. Bach W, Jöns J, Klein F. 2013. Metasomatism within the ocean crust. Metasomatism and the Chemical Transformation of Rock, D Harlov, H Austrheim 253–68 Berlin: Springer [Google Scholar]
  8. Bach W, Roberts S, Vanko DA, Binns RA, Yeats CJ. et al. 2003. Controls of fluid chemistry and complexation on rare-earth element contents of anhydrite from the PACMANUS subseafloor hydrothermal system, Manus Basin, Papua New Guinea. Miner. Deposita 38:916–35 [Google Scholar]
  9. Baker ET, Chen YJ, Phipps Morgan J. 1996. The relationship between near-axis hydrothermal cooling and the spreading rate of mid-ocean ridges. Earth Planet. Sci. Lett. 142:137–45 [Google Scholar]
  10. Baker ET, Embley RW, Walker SL, Resing JA, Lupton JL. et al. 2008. Hydrothermal activity and volcano distribution along the Mariana Arc. J. Geophys. Res. 113:B08S09 [Google Scholar]
  11. Baker ET, German CR. 2004. On the global distribution of hydrothermal vent fields. Mid-Ocean Ridges: Hydrothermal Interactions Between the Lithosphere and Oceans CR German, J Lin, LM Parson 245–67 Geophys. Monogr. Ser 148 Washington, DC: Am. Geophys. Union [Google Scholar]
  12. Bazylinski D, Farrington JW, Jannasch HW. 1988. Hydrocarbons in surface sediments from a Guaymas Basin hydrothermal vent site. Org. Geochem. 12:547–58 [Google Scholar]
  13. Beaulieu SE, Baker ET, German CR, Maffei A. 2013. An authoritative global database for active submarine hydrothermal vent fields. Geochem. Geophys. Geosyst. 14:4892–905 [Google Scholar]
  14. Berndt ME, Allen DE, Seyfried WE. 1996. Reduction of CO2 during serpentinization of olivine at 300°C and 500 bar. Geology 24:351–54 [Google Scholar]
  15. Biddle JF, Sylvan JB, Brazelton WJ, Tully BJ, Edwards KJ. et al. 2012. Prospects for the study of evolution in the deep biosphere. Front. Microbiol. 2:285 [Google Scholar]
  16. Binns RA, Barriga FJAS, Miller DJ. 2007. Leg 193 synthesis: anatomy of an active felsic-hosted hydrothermal system, Eastern Manus Basin, Papua New Guinea. Proceedings of the Ocean Drilling Program 193 Sci. Results: Anatomy of an Active Felsic-Hosted Hydrothermal System, Eastern Manus Basin Sites 1188–1191 FJAS Barriga, RA Binns, DJ Miller, PJ Herzig 1–71 College Station, TX: Tex. A&M Univ. Ocean Drill. Program [Google Scholar]
  17. Bischoff JL, Rosenbauer RJ. 1983. A note on the chemistry of seawater in the range 350°–500°C. Geochim. Cosmochim. Acta 47:139–44 [Google Scholar]
  18. Bischoff JL, Rosenbauer RJ. 1987. Phase separation in seafloor geothermal systems: an experimental study on the effects of metal transport. Am. J. Sci. 287:953–78 [Google Scholar]
  19. Bischoff JL, Rosenbauer RJ. 1988. Liquid-vapor relations in the critical region of the system NaCl-H2O from 380°C to 415°C: a refined determination of the critical point and two-phase boundary of seawater. Geochim. Cosmochim. Acta 52:2121–26 [Google Scholar]
  20. Bischoff JL, Seyfried WE. 1978. Hydrothermal chemistry of seawater from 25° to 350°C. Am. J. Sci. 278:838–60 [Google Scholar]
  21. Boschi C, Dini A, Früh-Green G L, Kelley DS. 2008. Isotopic and element exchange during serpentinization and metasomatism at the Atlantis Massif (MAR 30°N): insights from B and Sr isotope data. Geochim. Cosmochim. Acta 72:1801–23 [Google Scholar]
  22. Boschi C, Früh-Green GL, Delacour A, Karson JA, Kelley DS. 2006. Mass transfer and fluid flow during detachment faulting and development of an oceanic core complex, Atlantis Massif (MAR 30°N). Geochem. Geophys. Geosyst. 7:Q01004 [Google Scholar]
  23. Bowers TS, Campbell AC, Measures CI, Spivack AJ, Edmond JM. 1988. Chemical controls on the composition of vent fluids at 13°–11°N and 21°N, East Pacific Rise. J. Geophys. Res. 93:4522–36 [Google Scholar]
  24. Bowers TS, Von Damm KL, Edmond JM. 1985. Chemical evolution of mid-ocean ridge hot spring. Geochim. Cosmochim. Acta 49:2239–52 [Google Scholar]
  25. Brazelton WJ, Nelson B, Schrenk MO. 2012. Metagenomic evidence for H2 oxidation and H2 production by serpentinite-hosted subsurface microbial communities. Front. Microbiol. 2:268 [Google Scholar]
  26. Butterfield DA, Fouquet Y, Halbach PE, Humphris SE, Lilley MD. et al. 2003. Group report: How can we describe fluid-mineral processes and the related energy and material fluxes?. Energy and Mass Transfer in Marine Hydrothermal Systems P Halbach, V Tunnicliffe, JR Hein 183–209 Berlin: Dahlem Univ. Press [Google Scholar]
  27. Butterfield DA, Jonasson IR, Massoth GJ, Feely RA, Roe KK. et al. 1997. Seafloor eruptions and evolution of hydrothermal fluid chemistry. Philos. Trans. R. Soc. Lond. A 355:369–86 [Google Scholar]
  28. Butterfield DA, McDuff RE, Franklin J, Wheat CG. 1994. Geochemistry of hydrothermal vent fluids from Middle Valley, Juan de Fuca Ridge. Proceedings of the Ocean Drilling Program 139 Sci. Results: Middle Valley, Juan De Fuca Ridge Sites 855–858 MJ Mottl, EE Davis, AT Fisher, JF Slack 395–410 College Station, TX: Tex. A&M Univ. Ocean Drill. Program [Google Scholar]
  29. Campbell AC, Bowers TS, Edmond JM. 1988. A time-series of vent fluid compositions from 21°N EPR (1979, 1981, 1985), and the Guaymas Basin Gulf of California (1982, 1985). J. Geophys. Res. 93:4537–49 [Google Scholar]
  30. Canales JP, Detrick RS, Carbotte S, Kent GM, Diebold JB. et al. 2005. Upper crustal structure and axial topography at intermediate spreading ridges: seismic constraints from the southern Juan de Fuca Ridge. J. Geophys. Res. 110:B12104 [Google Scholar]
  31. Canales JP, Dunn RA, Arai R, Sohn RA. 2017. Seismic imaging of magma sills beneath an ultramafic-hosted hydrothermal system. Geology 45:451–54 [Google Scholar]
  32. Cann JR, Blackman DK, Smith DK, McAllister E, Janssen B. et al. 1997. Corrugated slip surfaces formed at North Atlantic ridge-transform intersections. Nature 385:329–32 [Google Scholar]
  33. Cann JR, McCaig AM, Yardley BWD. 2015. Rapid generation of reaction permeability in the roots of black smoker systems, Troodos ophiolite, Cyprus. Geofluids 15:179–92 [Google Scholar]
  34. Cannat M, Sauter D, Mendel V, Ruellan E, Okino K. et al. 2006. Modes of seafloor generation at a melt poor ultraslow-spreading ridge. Geology 34:605–8 [Google Scholar]
  35. Charlou JL, Donval JP, Fouquet Y, Jean-Baptiste P, Holm N. 2002. Geochemistry of high H2 and CH4 vent fluids issuing from ultramafic rocks at the Rainbow hydrothermal field (36°14′N, MAR). Chem. Geol. 191:345–59 [Google Scholar]
  36. Charlou JL, Donval JP, Konn C, Ondreas H, Fouquet Y. et al. 2010. High production and fluxes of H2 and CH4 and evidence of abiotic hydrocarbon synthesis by serpentinization in ultramafic-hosted hydrothermal systems on the Mid-Atlantic Ridge. Diversity of Hydrothermal Systems on Slow Spreading Ocean Ridges PA Rona, CW Devey, J Dyment, BJ Murton 265–96 Geophys. Monogr. Ser. 188 Washington, DC: Am. Geophys. Union [Google Scholar]
  37. Converse DR, Holland HD, Edmond JM. 1984. Flow rates in the axial hot springs of the East Pacific Rise (21°N): implications for the heat budget and the formation of massive sulfide deposits. Earth Planet. Sci. Lett. 69:159–75 [Google Scholar]
  38. Coogan LA. 2008. Reconciling temperatures of metamorphism, fluid fluxes, and heat transport in the upper crust at intermediate to fast spreading mid-ocean ridges. Geochem. Geophys. Geosyst. 9:Q02013 [Google Scholar]
  39. Coumou D, Driesner T, Weis P, Heinrich CA. 2009. Phase separation, brine formation, and salinity variation at black smoker hydrothermal systems. J. Geophys. Res. 114:B03212 [Google Scholar]
  40. Craddock PR, Bach W. 2010. Insights into magmatic-hydrothermal processes in the Manus back-arc basin as recorded by anhydrite. Geochim. Cosmochim. Acta 74:5514–36 [Google Scholar]
  41. Craig H, Lupton JE. 1981. Helium-3 and mantle volatiles in the ocean and the oceanic crust. The Sea: Ideas and Observations on Progress in the Study of the Seas 7 The Oceanic Lithosphere CE Emiliani 391–428 New York: Wiley [Google Scholar]
  42. Cruse AM, Seewald JS. 2001. Metal mobility in sediment-covered ridge-crest hydrothermal systems: experimental and theoretical constraints. Geochim. Cosmochim. Acta 65:3233–47 [Google Scholar]
  43. Cruse AM, Seewald JS. 2006. Low-molecular weight hydrocarbons in hydrothermal fluids from Middle Valley, northern Juan de Fuca Ridge. Geochim. Cosmochim. Acta 70:2073–92 [Google Scholar]
  44. Cruse AM, Seewald JS, Sacoccia PJ, Zierenberg R. 2008. Hydrothermal fluid composition at Middle Valley, Northern Juan de Fuca Ridge: temporal and spatial variability. Magma to Microbe: Modeling Hydrothermal Processes at Oceanic Spreading Centers RP Lowell, JS Seewald, A Metaxas, MR Perfit 145–66 Geophys. Monogr. Ser. Vol 178 Washington, DC: Am. Geophys. Union [Google Scholar]
  45. Davis EE, Villinger H. 1992. Tectonic and thermal structure of the Middle Valley sedimented rift, northern Juan de Fuca Ridge. Proceedings of the Ocean Drilling Program 139 Initial Rep.: Middle Valley, Juan De Fuca Ridge Sites 855–858 MJ Mottl, EE Davis, AT Fisher, JF Slack 9–42 College Station, TX: Tex. A&M Univ. Ocean Drill. Program [Google Scholar]
  46. de Ronde CEJ, Hannington MD, Stoffers P, Wright IC, Ditchburn RG. et al. 2005. Evolution of a submarine magmatic-hydrothermal system: Brothers volcano, southern Kermadec arc, New Zealand. Econ. Geol. 100:1097–133 [Google Scholar]
  47. de Ronde CEJ, Massoth GJ, Baker ET, Lupton JE. 2003. Submarine hydrothermal venting related to volcanic arcs. Volcanic, Geothermal, and Ore-Forming Fluids: Rulers and Witnesses of Processes Within the Earth SF Simmons, IG Graham 91–109 Spec. Publ. Soc. Econ. Geol. No. 10 Littleton, CO: Soc. Econ. Geol. [Google Scholar]
  48. de Ronde CEJ, Massoth GJ, Butterfield DA, Christenson BW, Ishibashi J. et al. 2011. Submarine hydrothermal activity and gold-rich mineralization at Brothers volcano, Kermadec arc, New Zealand. Miner. Deposita 46:541–84 [Google Scholar]
  49. deMartin B, Reves-Sohn R, Canales JP, Humphris SE. 2007. Kinematics and geometry of detachment faulting beneath the TAG hydrothermal field, Mid-Atlantic Ridge. Geology 35:711–14 [Google Scholar]
  50. Denny AR, Kelley DS, Früh-Green GL. 2015. Geologic evolution of the Lost City hydrothermal field. Geochem. Geophys. Geosyst. 17:375–94 [Google Scholar]
  51. Detrick RS, Buhl P, Vera E, Mutter J, Orcutt J. et al. 1987. Multi-channel seismic imaging of a crustal magma chamber along the East Pacific Rise. Nature 326:35–41 [Google Scholar]
  52. Ding K, Seyfried WE. 1994. Effects of conductive cooling on chemistry of mid-ocean ridge hydrothermal fluids: experimental and theoretical constraints. Mineral. Mag. 58A:231–32 [Google Scholar]
  53. Douville E, Charlou JL, Oelkers EH, Bienvenu P, Jove Colon CF. et al. 2002. The Rainbow vent fluids (36°14′N, MAR): the influence of ultramafic rocks and phase separation on trace metal content in Mid-Atlantic Ridge hydrothermal fluids. Chem. Geol. 184:37–48 [Google Scholar]
  54. Edmond JM, Measures C, McDuff RE, Chan LH, Collier R, Grant B. 1979. Ridge crest hydrothermal activity and the balances of the major and minor elements in the ocean. Earth Planet. Sci. Lett. 46:1–18 [Google Scholar]
  55. Edmond JM, Von Damm KL, McDuff RE, Measures CI. 1982. Chemistry of hot springs on the East Pacific Rise and their effluent dispersal. Nature 297:187–91 [Google Scholar]
  56. Edmonds HM, German CR, Green DRH, Huh Y, Gamo T, Edmond JM. 1996. Continuation of the hydrothermal fluid chemistry time series, and the effects of ODP drilling. Geophys. Res. Lett. 23:3487–89 [Google Scholar]
  57. Einsele G. 1985. Basaltic sill-sediment complexes in young spreading centers: genesis and significance. Geology 13:249–52 [Google Scholar]
  58. Elderfield H, Schultz A. 1996. Mid-ocean ridge hydrothermal fluxes and the chemical composition of the ocean. Annu. Rev. Earth Planet. Sci. 24:191–224 [Google Scholar]
  59. Escartín J, Smith DK, Cann JR, Schouten H, Langmuir CH, Escrig S. 2008. Central role of detachment faults in accretion of slow-spreading oceanic lithosphere. Nature 455:790–94 [Google Scholar]
  60. Fontaine JF, Wilcock WED. 2006. Dynamics and storage of brine in mid-ocean ridge hydrothermal systems. J. Geophys. Res. 111:B06102 [Google Scholar]
  61. Fouquet Y, Charlou JL, Ondreas H, Radford-Knoery J, Donval JP. et al. 1997. Discovery and first submersible investigations on the Rainbow hydrothermal field on the MAR (36°14′N). Eos Trans. AGU 78:832 [Google Scholar]
  62. Foustoukos DI, Seyfried WE. 2004. Hydrocarbons in hydrothermal vent fluids: the role of chromium-bearing catalysts. Science 304:1002–5 [Google Scholar]
  63. Frost BR, Beard JS. 2007. On silica activity and serpentinization. J. Petrol. 48:1351–68 [Google Scholar]
  64. Früh-Green GL, Kelley DS, Bernasconi SM, Karson JA, Ludwig KA. et al. 2003. 30,000 years of hydrothermal activity at the Lost City vent field. Science 301:495–98 [Google Scholar]
  65. Geiger S, Driesner T, Heinrich CA, Matthäi SK. 2005. On the dynamics of NaCl-H2O fluid convection in the Earth's crust. J. Geophys. Res. 110:B07101 [Google Scholar]
  66. Gena K, Mizuta T, Ishiyama D, Urabe T. 2001. Acid-sulphate type alteration and mineralization in the Desmos cauldron, Manus back-arc basin, Papua New Guinea. Resour. Geol. 51:31–44 [Google Scholar]
  67. German CR, Bennett SA, Connelly DP, Evans AJ, Murton BJ. et al. 2008. Hydrothermal activity on the southern Mid-Atlantic Ridge: tectonically and volcanically controlled venting at 4–5°S. Earth Planet. Sci. Lett. 273:332–44 [Google Scholar]
  68. German CR, Parson LM. 1998. Distributions of hydrothermal activity along the Mid-Atlantic Ridge: interplay of magmatic and tectonic controls. Earth. Planet. Sci. Lett. 160:327–41 [Google Scholar]
  69. German CR, Seyfried WE. 2014. Hydrothermal processes. Treatise on Geochemistry 8 The Oceans and Marine Geochemsistry HD Holland, KK Turekian 191–233 Oxford, UK: Elsevier, 2nd ed.. [Google Scholar]
  70. Gillis KM. 1995. Controls on hydrothermal alteration in a section of fast-spreading oceanic crust. Earth Planet. Sci. Lett. 134:473–89 [Google Scholar]
  71. Gillis KM, Muehlenbachs K, Stewart M, Gleeson T, Karson J. 2001. Fluid flow patterns in fast spreading East Pacific Rise crust exposed at Hess Deep. J. Geophys. Res. 106:26311–29 [Google Scholar]
  72. Gillis KM, Thompson G, Kelley DS. 1993. A view of the lower crustal component of hydrothermal systems at the Mid-Atlantic Ridge. J. Geophys. Res. 98:19597–619 [Google Scholar]
  73. Goodfellow WD, Zierenberg RA. 1999. Genesis of massive sulfide deposits at sediment-covered spreading centers. Rev. Econ. Geol. 8:297–324 [Google Scholar]
  74. Grozeva NG, Klein K, Seewald JS, Sylva SP. 2017. Experimental study of carbonate formation in oceanic peridotite. Geochim. Cosmochim. Acta 199:264–86 [Google Scholar]
  75. Gruen G, Weis P, Driesner T, de Ronde CEJ, Heinrich CA. 2012. Fluid flow patterns at Brothers volcano, southern Kermadec arc: insights from geologically constrained numerical simulations. Econ. Geol. 107:1595–611 [Google Scholar]
  76. Gruen G, Weis P, Driesner T, Heinrich CA, de Ronde CEJ. 2014. Hydrodynamic modeling of magmatic-hydrothermal activity at submarine arc volcanoes and implications for ore formation. Earth Planet Sci. Lett. 404:307–18 [Google Scholar]
  77. Halbach P, Pracejus B, Marten A. 1993. Geology and mineralogy of massive sulfide ores from the central Okinawa trough. Econ. Geol. 88:2210–25 [Google Scholar]
  78. Hannington MD, de Ronde CEJ, Petersen S. 2005. Sea-floor tectonics and submarine hydrothermal systems. Econ. Geol. 100th Anniv 111–41: [Google Scholar]
  79. Hannington MD, Petersen S, Herzig PM, Jonasson IR. 2004. A global database of seafloor hydrothermal systems, including a digital database of geochemical analyses of seafloor polymetallic sulfides Open File 4598 (CD-ROM), Geol. Surv. Can. Ottawa:
  80. Hart SR, Staudigel H. 1982. The control of alkalis and uranium in sea water by ocean crust alteration. Earth Planet. Sci. Lett. 58:202–21 [Google Scholar]
  81. Heft KL, Gillis KM, Pollock MA, Karson JA, Klein EM. 2008. Role of upwelling hydrothermal fluids in the development of alteration patterns at fast spreading ridges: evidence from the sheeted dike complex at Pito Deep. Geochem. Geophys. Geosyst. 9:Q05O07 [Google Scholar]
  82. Horita J, Berndt ME. 1999. Abiogenic methane formation and isotope fractionation under hydrothermal conditions. Science 285:1055–57 [Google Scholar]
  83. Humphris SE, Herzig P, Miller DJ. Leg 158 Shipboard Sci. Party. 1995a. The subsurface nature of an active seafloor hydrothermal system, 26°N, Mid-Atlantic Ridge. Nature 377:713–16 [Google Scholar]
  84. Humphris SE, Thompson G. 1978a. Hydrothermal alteration of oceanic basalts by seawater. Geochim. Cosmochim. Acta 42:107–25 [Google Scholar]
  85. Humphris SE, Thompson G. 1978b. Trace element mobility during hydrothermal alternation of oceanic basalts. Geochim. Cosmochim. Acta 42:127–36 [Google Scholar]
  86. Humphris SE, Zierenberg RA, Mullineaux LS, Thomson RE. 1995b. Seafloor Hydrothermal Systems: Physical, Chemical, Biological, and Geological Interactions Geophys. Monogr. Ser. 95 Washington, DC: Am. Geophys. Union
  87. Ishibashi J, Tsunogai U, Wakita H, Watanabe K, Kajimura T. et al. 1994. Chemical composition of hydrothermal fluids from Suiyo and Mokuyo Seamounts, Izu-Bonin arc. JAMSTEC J. Deep Sea Res. 10:89–97 [Google Scholar]
  88. James RH, Green DRH, Stock MJ, Alker BJ, Banerjee NR. et al. 2014. Composition of hydrothermal fluids and mineralogy of associated chimney material on the East Scotia Ridge back-arc spreading center. Geochim. Cosmochim. Acta 139:47–71 [Google Scholar]
  89. Janecky DR, Seyfried WE. 1984. Formation of massive sulfide deposits on oceanic ridge crests: incremental reaction models for mixing between hydrothermal solutions and seawater. Geochim. Cosmochim. Acta 48:2723–38 [Google Scholar]
  90. Jarrard RD. 2003. Subduction fluxes of water, carbon dioxide, chlorine, and potassium. Geochem. Geophys. Geosyst. 4:8905 [Google Scholar]
  91. John SG, Rouxel OJ, Craddock PR, Engwall AM, Boyle EA. 2008. Zinc stable isotopes in seafloor hydrothermal vent fluids and chimneys. Earth Planet. Sci. Lett. 269:17–28 [Google Scholar]
  92. Jöns N, Bach W, Klein F. 2010. Magmatic influence on reaction paths and element transport during serpentinization. Chem. Geol. 274:196–211 [Google Scholar]
  93. Jupp T, Schultz A. 2000. A thermodynamic explanation for black smoker temperatures. Nature 403:880–83 [Google Scholar]
  94. Kamenetsky VS, Binns RA, Gemmell JB, Crawford AJ, Mernagh TP. et al. 2001. Parental basaltic melts and fluids in eastern Manus backarc basin: implications for hydrothermal mineralisation. Earth Planet. Sci. Lett. 184:685–702 [Google Scholar]
  95. Kawagucci S. 2015. Fluid geochemistry of high-temperature hydrothermal fields in the Okinawa Trough. Subseafloor Biosphere Linked to Hydrothermal Systems: TAIGA Concept J-I Ishibashi, K Okino, M Sunamura 387–403 Berlin: Springer [Google Scholar]
  96. Kawagucci S, Chiba H, Ishibashi J-I, Yamanaka T, Toki T. et al. 2011. Hydrothermal fluid geochemistry at the Iheya North field in the mid-Okinawa Trough: implication for origin of methane in subseafloor fluid circulation systems. Geochem. J. 45:109–24 [Google Scholar]
  97. Kelley DS, Karson JA, Blackman DK, Früh-Green GL, Butterfield DA. et al. 2001. An off-axis hydrothermal vent field near the Mid-Atlantic Ridge at 30°N. Nature 412:145–49 [Google Scholar]
  98. Kelley DS, Karson JA, Früh-Green GL, Yoerger DR, Shank TM. et al. 2005. A serpentinite-hosted ecosystem: the Lost City hydrothermal field. Science 307:1428–34 [Google Scholar]
  99. Kent GM, Harding AJ, Orcutt JA, Detrick RS, Mutter JC, Buhl P. 1994. Uniform accretion of oceanic-crust south of the Garrett Transform at 14°15′S on the East Pacific Rise. J. Geophys. Res. 99:9097–116 [Google Scholar]
  100. Klein F, Bach W. 2009. Fe-Ni-Co-O-S phase relations in peridotite-seawater interactions. J. Petrol. 50:37–59 [Google Scholar]
  101. Klein F, Bach W, Humphris SE, Kahl WA, Jöns N. et al. 2014. Magnetite in seafloor serpentinite—some like it hot. Geology 42:135–38 [Google Scholar]
  102. Klein F, Bach W, Jöns N, McCollom T, Moskowitz B, Berquó T. 2009. Iron partitioning and hydrogen generation during serpentinization of abyssal peridotites from 15°N on the Mid-Atlantic Ridge. Geochim. Cosmochim. Acta 73:6868–93 [Google Scholar]
  103. Klein F, Bach W, McCollom TM. 2013. Compositional controls on hydrogen generation during serpentinization of ultramafic rocks. Lithos 178:55–69 [Google Scholar]
  104. Klein F, Grozeva NG, Seewald JS, McCollom TM, Humphris SE. 2015. Experimental constraints on fluid-rock reactions during incipient serpentinization of harzburgite. Am. Mineral. 100:991–1002 [Google Scholar]
  105. Klinkhammer GP, Chin CS, Keller RA, Dählmann A, Sahling H. et al. 2001. Discovery of new hydrothermal vent sites in Bransfield Strait, Antarctica. Earth Planet Sci. Lett. 193:395–407 [Google Scholar]
  106. Kodolanyi J, Pettke T, Spandler C, Kamber BS, Gmeling K. 2012. Geochemistry of ocean floor and fore-arc serpentinites: constraints on the ultramafic input to subduction zones. J. Petrol. 53:235–70 [Google Scholar]
  107. Konn C, Charlou JL, Donval JP, Holm NG, Dehairs F, Bouillon S. 2009. Hydrocarbon and oxidized organic compounds in hydrothermal fluids from Rainbow and Lost City ultramafic-hosted vents. Chem. Geol. 258:299–314 [Google Scholar]
  108. Koschinsky A, Garbe-Schönberg D, Sander S, Schmidt K, Gennerich H-H, Strauss H. 2008. Hydrothermal venting at pressure-temperature conditions above the critical point of seawater, 5°S on the Mid-Atlantic Ridge. Geology 36:615–18 [Google Scholar]
  109. Koski RA, Lonsdale PF, Shanks WC, Berndt ME, Howe SS. 1985. Mineralogy and geochemistry of a sediment-hosted hydrothermal sulfide deposit from the southern trough of Guaymas Basin, Gulf of California. J. Geophys. Res. 90:6695–707 [Google Scholar]
  110. Lackschewitz KS, Devey CW, Stoffers P, Botz R, Eisanhauer A. et al. 2004. Mineralogical, geochemical and isotopic characteristics of hydrothermal alteration processes in the active, submarine, felsic-hosted PACMANUS field, Manus Basin, Papua New Guinea. Geochim. Cosmochim. Acta 68:4405–27 [Google Scholar]
  111. Lang SQ, Butterfield DA, Schulte M, Kelley DS, Lilley MD. 2010. Elevated concentrations of formate, acetate and dissolved organic carbon found at the Lost City hydrothermal field. Geochim. Cosmochim. Acta 74:941–52 [Google Scholar]
  112. Lang SQ, Früh-Green GL, Bernasconi SM, Lilley MD, Proskurowski G. et al. 2012. Microbial utilization of abiogenic carbon and hydrogen in a serpentinite-hosted system. Geochim. Cosmochim. Acta 92:82–99 [Google Scholar]
  113. Letouzey J, Kimura M. 1986. The Okinawa Trough: genesis of a backarc basin developing along a continental margin. Tectonophysics 125:209–30 [Google Scholar]
  114. Leybourne MI, Schwarz-Schampera U, de Ronde CEJ, Baker ET, Faure K. 2012. Submarine magmatic-hydrothermal systems at the Monowai volcanic center, Kermadec Arc. Econ. Geol. 107:1669–94 [Google Scholar]
  115. Lilley MD, Lupton JE, Butterfield DA, Olson E. 2003. Magmatic events produce rapid changes in hydrothermal vent chemistry. Nature 422:878–81 [Google Scholar]
  116. Lizarralde D, Soule AS, Seewald JS, Proskurowski G. 2011. Carbon release by off-axis magmatism in a young sedimented spreading centre. Nat. Geosci. 4:50–54 [Google Scholar]
  117. MacLeod CJ, Searle RC, Murton BJ, Casey JF, Mallows C. et al. 2009. Life cycle of oceanic core complexes. Earth Planet Sci. Lett. 287:333–44 [Google Scholar]
  118. Martens CS. 1990. Generation of short chain organic acid anions in hydrothermally altered sediments of the Guaymas Basin, Gulf of California. Appl. Geochem. 5:71–76 [Google Scholar]
  119. McCaig AM, Cliff RA, Escartín J, Fallick AE, MacLeod CJ. 2007. Oceanic detachment faults focus very large volumes of black smoker fluids. Geology 35:935–38 [Google Scholar]
  120. McCollom TM, Seewald JS. 2001. A reassessment of the potential for reduction of dissolved CO2 to hydrocarbons during serpentinization of olivine. Geochim. Cosmochim. Acta 65:3769–78 [Google Scholar]
  121. McCollom TM, Seewald JS. 2006. Carbon isotope composition of organic compounds produced by abiotic synthesis under hydrothermal conditions. Earth Planet. Sci. Lett. 243:74–84 [Google Scholar]
  122. McDermott JM. 2015. Geochemistry of deep-sea hydrothermal vent fluids from the Mid-Cayman Rise, Caribbean Sea PhD Thesis Joint Program Oceanogr./Appl. Ocean Sci. Eng., Mass. Inst. Technol., Cambridge, MA, and Woods Hole Oceanogr. Inst. Woods Hole, MA:
  123. McDermott JM, Seewald JS, German CR, Sylva SP. 2015. Pathways for abiotic organic synthesis at submarine hydrothermal fields. PNAS 112:7668–72 [Google Scholar]
  124. Mottl MJ. 1983. Metabasalts, axial hot springs, and the structure of hydrothermal systems at mid-ocean ridges. Geol. Soc. Am. Bull. 94:161–80 [Google Scholar]
  125. Mottl MJ. 2003. Partitioning of energy and mass fluxes between mid-ocean ridge axes and flanks at high and low temperature. Energy and Mass Transfer in Marine Hydrothermal Systems P Halbach, V Tunnicliffe, JR Hein 272–86 Berlin: Dahlem Univ. Press [Google Scholar]
  126. Mottl MJ, Holland HD. 1978. Chemical exchange during hydrothermal alteration of basalt by seawater. I. Experimental results for major and minor components of seawater. Geochim. Cosmochim. Acta 42:1103–15 [Google Scholar]
  127. Mottl MJ, Seewald JS, Wheat CG, Tivey MK, Michael PJ. et al. 2011. Chemistry of hot springs along the Eastern Lau Spreading Center. Geochim. Cosmochim. Acta 75:1013–38 [Google Scholar]
  128. Nakamura K, Watanabe H, Miyazaki J, Takai K, Kawagucci S. et al. 2012. Discovery of new hydrothermal activity and chemosynthetic fauna on the Central Indian Ridge at 18–20°S. PLOS ONE 7:e32965 [Google Scholar]
  129. Pedersen RB, Rapp HT, Thorseth RH, Lilley MD, Barriga FJ. et al. 2010. Discovery of a black smoker vent field and vent fauna at the Arctic Mid-Ocean Ridge. Nat. Commun. 1:126 [Google Scholar]
  130. Perfit MR, Chadwick WW. 1998. Magmatism at mid-ocean ridges: constraints from volcanological and geochemical investigations. Faulting and Magmatism at Mid-Ocean Ridges WR Buck, PT Delaney, JA Karson, Y Lagabrielle 59–115 Geophys. Monogr. Ser. 106 Washington, DC: Am. Geophys. Union [Google Scholar]
  131. Perfit MR, Davidson JP. 2000. Plate tectonics and volcanism. Encyclopedia of Volcanoes H Sigurdsson, BF Houghton, SR McNutt, H Rymer, J Stix, RD Ballard 89–113 San Diego, CA: Academic [Google Scholar]
  132. Peter JM, Scott SD. 1988. Mineralogy, composition, and fluid-inclusion microthermometry of seafloor hydrothermal deposits in the southern trough of Guaymas Basin, Gulf of California. Can. Mineral. 26:567–87 [Google Scholar]
  133. Proskurowski G, Lilley MD, Kelley DS, Olson EJ. 2006. Low temperature volatile production at the Lost City hydrothermal field, evidence from a hydrogen stable isotope geothermometer. Chem. Geol. 229:331–43 [Google Scholar]
  134. Proskurowski G, Lilley MD, Seewald JS, Früh-Green GL, Olson EJ. et al. 2008. Abiogenic hydrocarbon production at Lost City Hydrothermal Field. Science 319:604–7 [Google Scholar]
  135. Reeves EP, Seewald JS, Sacoccia P, Bach W, Craddock PR. et al. 2011. Geochemistry of hydrothermal fluids from the PACMANUS, northeast Pual and Vienna Woods hydrothermal fields, Manus Basin, Papua, New Guinea. Geochim. Cosmochim. Acta 75:1088–123 [Google Scholar]
  136. Roberts S, Bach W, Binns RA, Vanko DA, Yeats CJ. et al. 2003. Contrasting evolution of hydrothermal fluids in the PACMANUS system, Manus Basin: the Sr and S isotope evidence. Geology 31:805–8 [Google Scholar]
  137. Sakai H, Gamo T, Kim E-S, Tsutsumi M, Tanaka T. et al. 1990. Venting of carbon dioxide-rich fluid and hydrate formation in mid-Okinawa Trough back-arc basin. Science 248:1093–96 [Google Scholar]
  138. Schmidt K, Koschinsky A, Garbe-Schönberg D, de Carvalho LM, Seifert R. 2007. Geochemistry of hydrothermal fluids from the ultramafic-hosted Logatchev hydrothermal field, 15°N on the Mid-Atlantic Ridge: temporal and spatial investigation. Chem. Geol. 242:1–21 [Google Scholar]
  139. Seewald JS, Cruse A, Saccocia PJ. 2003. Aqueous volatiles in hydrothermal fluids from the Main Endeavour Field, northern Juan de Fuca ridge: temporal variability following earthquake activity. Earth Planet. Sci. Lett. 216:575–90 [Google Scholar]
  140. Seewald JS, Seyfried WE, Shanks WC. 1994. Variations in the chemical and stable isotope composition of carbon and sulfur species during organic-rich sediment alteration: an experimental and theoretical study of hydrothermal activity at Guaymas basin, Gulf of California. Geochim. Cosmochim. Acta 58:5065–82 [Google Scholar]
  141. Seewald JS, Seyfried WE, Thornton EC. 1990. Organic-rich sediment alteration: an experimental and theoretical study at elevated temperatures and pressures. Appl. Geochem. 5:193–209 [Google Scholar]
  142. Seyfried WE. 1987. Experimental and theoretical constraints on hydrothermal alteration processes at mid-ocean ridges. Annu. Rev. Earth Planet. Sci. 15:317–35 [Google Scholar]
  143. Seyfried WE, Berndt ME, Seewald JS. 1988. Hydrothermal alteration processes at mid-ocean ridges: constraints from diabae alteration experiments, hot-spring fluids and composition of the oceanic crust. Can. Mineral. 26:787–804 [Google Scholar]
  144. Seyfried WE, Bischoff JL. 1979. Low temperature basalt interaction with seawater: an experimental study at 70°C and 150°C. Geochim. Cosmochim. Acta 43:1937–47 [Google Scholar]
  145. Seyfried WE, Ding K. 1995. Phase equilibria in subseafloor hydrothermal systems: a review of the role of redox, temperature, pH and dissolved Cl on the chemistry of hot spring fluids at mid-ocean ridges. See Humphris et al. 1995b 249–72
  146. Seyfried WE, Foustoukos DI, Fu Q. 2007. Redox evolution and mass transfer during serpentinization: an experimental and theoretical study at 200°C, 500 bar with implications for ultramafic-hosted hydrothermal systems at Mid-Ocean Ridges. Geochim. Cosmochim. Acta 71:3872–86 [Google Scholar]
  147. Seyfried WE, Pester NJ, Ding K, Rough M. 2011. Vent fluid chemistry of the Rainbow Hydrothermal System (36°N, MAR): phase equilibria and in-situ pH controls on subseafloor alteration processes. Geochim. Cosmochim. Acta 75:1574–93 [Google Scholar]
  148. Seyfried WE, Pester NJ, Tutolo BM, Ding K. 2015. The Lost City hydrothermal system: constraints imposed by vent fluid chemistry and reaction path models on subseafloor heat and mass transfer processes. Geochim. Cosmochim. Acta 163:59–79 [Google Scholar]
  149. Simmons SF, Brown KL. 2006. Gold in magmatic-hydrothermal solutions and the rapid formation of a giant ore deposit. Science 314:288–91 [Google Scholar]
  150. Smith DK, Cann JR, Escartín J. 2006. Widespread active detachment faulting and core complex formation near 13°N on the Mid-Atlantic Ridge. Nature 442:440–43 [Google Scholar]
  151. Staudigel H, Plank T, While B, Schmincke H-U. 1996. Geochemical fluxes during seafloor alteration of the basaltic upper oceanic crust: DSDP sites 417 and 418. Subduction Top to Bottom GE Bebout, DW Scholl, SH Kirby, JP Platt 19–38 Geophys. Monogr. Ser. 96 Washington, DC: Am. Geophys. Union [Google Scholar]
  152. Thompson G. 1983. Basalt-seawater interaction. Hydrothermal Processes at Seafloor Spreading Centers PA Rona, K Boström, L Laubier, KL Smith Jr. 225–78 New York: Plenum [Google Scholar]
  153. Thornton EC, Seyfried WE. 1987. Reactivity of organic-rich sediment in seawater at 350°C, 500 bars: experimental and theoretical constraints and implications for the Guaymas basin hydrothermal system. Geochim. Cosmochim. Acta 51:1997–2010 [Google Scholar]
  154. Tivey MK. 2007. Generation of seafloor hydrothermal vent fluids and deposits. Oceanography 20:150–65 [Google Scholar]
  155. Tivey MK, Stakes DS, Cook TL, Hannington MD, Petersen S. 1999. A model for growth of steep-sided vent structures on the Endeavour Segment of the Juan de Fuca Ridge: results of a petrologic and geochemical study. J. Geophys. Res. 105:22859–83 [Google Scholar]
  156. Tsunogai U, Ishibashi J, Wakita H, Gamo T, Watanabe K. et al. 1994. Peculiar features of Suiyo Seamount hydrothermal fluids, Izu-Bonin arc: differences from subaerial volcanism. Earth Planet. Sci. Lett. 126:289–301 [Google Scholar]
  157. Von Damm KL. 1995. Controls on the chemistry and temporal variability of seafloor hydrothermal fluids. See Humphris et al. 1995b 222–47
  158. Von Damm KL. 2000. Chemistry of hydrothermal vent fluids from 9°–10°N, East Pacific Rise: “time zero,” the immediate posteruptive period. J. Geophys. Res. 105:11203–22 [Google Scholar]
  159. Von Damm KL. 2004. Evolution of the hydrothermal system at East Pacific Rise 9°50′N: geochemical evidence for changes in the upper oceanic crust. Mid-Ocean Ridges: Hydrothermal Interactions Between the Lithosphere and Oceans CR German, J Lin, LM Parson 285–302 Geophys. Monogr. Ser. 148 Washington, DC: Am. Geophys. Union [Google Scholar]
  160. Von Damm KL, Buttermore LG, Oosting SE, Bray AM, Fornari DJ. et al. 1997. Direct observation of the evolution of a seafloor “black smoker” from vapor to brine. Earth Planet. Sci. Lett. 149:101–11 [Google Scholar]
  161. Von Damm KL, Edmond JM, Measures CI, Grant B. 1985. Chemistry of submarine hydrothermal solutions at Guaymas Basin, Gulf of California. Geochim. Cosmochim. Acta 49:2221–37 [Google Scholar]
  162. Von Damm KL, Lilley MD, Shanks WC, Brockington M, Bray AM. et al. 2003. Extraordinary phase separation and segregation in vent fluids from the southern East Pacific Rise. Earth Planet. Sci. Lett. 206:365–78 [Google Scholar]
  163. Von Damm KL, Oosting SE, Kozlowski R, Buttermore LG, Colodner DC. 1995. Evolution of East Pacific Rise hydrothermal vent fluids following volcanic eruption. Nature 375:47–50 [Google Scholar]
  164. Welhan JA. 1988. Origins of methane in hydrothermal systems. Chem. Geol. 71:183–98 [Google Scholar]
  165. Wilcock WSD. 1998. Cellular convection models of mid-ocean ridge hydrothermal circulation and the temperatures of black smoker fluids. J. Geophys. Res. 103:2585–96 [Google Scholar]
  166. Yang KH, Scott SD. 2006. Magmatic fluids as a source of metals in seafloor hydrothermal systems. Back-Arc Spreading Systems: Geological, Biological, Chemical, and Physical Interactions DM Christie, CR Fisher, S-M Lee, S Givens 163–84 Geophys. Monogr. Ser 166 Washington DC: Am. Geophys. Union [Google Scholar]
/content/journals/10.1146/annurev-marine-121916-063233
Loading
/content/journals/10.1146/annurev-marine-121916-063233
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error