1932

Abstract

The discovery of alternative methods of producing electrical energy that avoid the generation of greenhouse gases and do not contribute to global warming is a compelling problem of our time. Ubiquitous, but often highly distributed, sources of energy on earth exist in the small-temperature-difference regime, 10–250°C. In this review, we discuss a family of methods that can potentially recover this energy based on the use of first-order phase transformations in crystalline materials combined with ferromagnetism or ferroelectricity. The development of this technology will require a better understanding of these phase transformations, especially ferroelectric/ferromagnetic properties, hysteresis, and reversibility, as well as strategies for discovering improved materials.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-matsci-082019-021824
2020-07-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/matsci/50/1/annurev-matsci-082019-021824.html?itemId=/content/journals/10.1146/annurev-matsci-082019-021824&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Giampietro M, Mayumi K 2009. The Biofuel Delusion: The Fallacy of Large-Scale Agro-Biofuels Production Abingdon, UK: Earthscan
  2. 2. 
    Searchinger T, Heimlich R, Houghton RA, Dong F, Elobeid A et al. 2008. Use of US croplands for biofuels increases greenhouse gases through emissions from land-use change. Science 319:1238–40
    [Google Scholar]
  3. 3. 
    York R 2012. Do alternative energy sources displace fossil fuels?. Nat. Clim. Change 2:441–43
    [Google Scholar]
  4. 4. 
    Intergov. Panel Clim. Change 2013. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change TF Stocker, D Qin, GK Plattner, M Tignor, SK Allen, et al Cambridge, UK: Cambridge Univ. Press
  5. 5. 
    Anderson K 2015. Duality in climate science. Nat. Geosci. 8:898–900
    [Google Scholar]
  6. 6. 
    Int. Energy Agency 2008. World Energy Outlook 2008 Paris: Int. Energy Agency
  7. 7. 
    Int. Energy Agency 2018. World Energy Outlook 2018 Paris: Int. Energy Agency
  8. 8. 
    Lawrence Livermore Natl. Lab 2017. Estimated U.S. energy consumption in 2016 Publ. LLNL-MI-410527, Lawrence Livermore Natl. Lab. Livermore, CA:
  9. 9. 
    Miró L, Brückner S, Cabeza LF 2015. Mapping and discussing industrial waste heat (IWH) potentials for different countries. Renew. Sustain. Energy Rev. 51:847–55
    [Google Scholar]
  10. 10. 
    Johnson I, Choate WT, Davidson A 2008. Waste heat recovery: technology and opportunities in the U.S. industry Tech. Rep., US Dep. Energy Washington, DC:
  11. 11. 
    Koomey JG 2011. Growth in data center electricity use 2005 to 2010 Rep., Anal. Press, El Dorado Hills CA:
  12. 12. 
    Corcoran P, Andrae A 2013. Emerging trends in electricity consumption for consumer ICT Tech. Rep., Natl. Univ. Irel. Galway:
  13. 13. 
    Dayarathna M, Wen Y, Fan R 2016. Data center energy consumption modeling: a survey. IEEE Commun. Surv. Tutor. 18:732–94
    [Google Scholar]
  14. 14. 
    Shehabi A, Smith SJ, Horner N, Azevedo I, Brown R et al. 2016. United States data center energy usage report Rep. LBNL-1005775, Lawrence Berkeley Natl. Lab. Berkeley, CA:
  15. 15. 
    Papapetrou M, Kosmadakis G, Cipollina A, Commare UL, Micale G 2018. Industrial waste heat: estimation of the technically available resource in the EU per industrial sector, temperature level and country. Appl. Therm. Eng. 138:207–16
    [Google Scholar]
  16. 16. 
    Ball P 2012. Computer engineering: feeling the heat. Nature 492:174–76
    [Google Scholar]
  17. 17. 
    Wikipedia 2019. List of solar thermal power stations. Wikipedia https://en.wikipedia.org/wiki/List_of_solar_thermal_power_stations
    [Google Scholar]
  18. 18. 
    Vallis GK 2017. Atmospheric and Oceanic Fluid Dynamics: Fundamentals and Large-Scale Circulation Cambridge, UK: Cambridge Univ. Press. 2nd ed.
  19. 19. 
    Bussières N, Granger RJ 2007. Estimation of water temperature of large lakes in cold climate regions during the period of strong coupling between water and air temperature fluctuations. J. Atmos. Ocean. Technol. 24:285–96
    [Google Scholar]
  20. 20. 
    Zhao D, Aili A, Zhai Y, Xu S, Tan G et al. 2019. Radiative sky cooling: fundamental principles, materials, and applications. Appl. Phys. Rev. 6:021306
    [Google Scholar]
  21. 21. 
    Srivastava V, Song Y, Bhatti K, James RD 2011. The direct conversion of heat to electricity using multiferroic alloys. Adv. Energy Mater. 1:97–104
    [Google Scholar]
  22. 22. 
    Song Y, Leighton C, James RD 2016. Thermodynamics and energy conversion in Heusler alloys. Heusler Alloys: Properties, Growth, Applications ed. C Felser, A Hirohata 269–91 Cham, Switz.: Springer
    [Google Scholar]
  23. 23. 
    Zhang C, Song Y, Wegner M, Quandt E, Chen X et al. 2019. Power-source-free analysis of pyroelectric energy conversion. Phys. Rev. Appl. 12:014063
    [Google Scholar]
  24. 24. 
    Bucsek A, Nunn W, Jalan B, James RD 2019. Direct conversion of heat to electricity using first-order phase transformations in ferroelectrics. Phys. Rev. Appl. 12:034043
    [Google Scholar]
  25. 25. 
    Tritt TM 2011. Thermoelectric phenomena, materials, and applications. Annu. Rev. Mater. Res. 41:433–48
    [Google Scholar]
  26. 26. 
    Bell LE 2008. Cooling, heating, generating power, and recovering waste heat with thermoelectric systems. Science 321:1457–61
    [Google Scholar]
  27. 27. 
    Satterthwaite CB, Ure RW 1957. Electrical and thermal properties of Bi2Te3. Phys. Rev. 108:1164–70
    [Google Scholar]
  28. 28. 
    Lee SW, Yang Y, Lee HW, Ghasemi H, Kraemer DM et al. 2014. An electrochemical system for efficiently harvesting low-grade heat energy. Nat. Commun. 5:3942
    [Google Scholar]
  29. 29. 
    Straub AP, Yip NY, Lin S, Lee J, Elimelech M 2016. Harvesting low-grade heat energy using thermo-osmotic vapour transport through nanoporous membranes. Nat. Energy 1:16090
    [Google Scholar]
  30. 30. 
    Hiscock T, Warner M, Palffy-Muhoray P 2011. Solar to electrical conversion via liquid crystal elastomers. J. Appl. Phys. 109:104506
    [Google Scholar]
  31. 31. 
    Schiller EH 2002. Heat engine driven by shape memory alloys: prototyping and design Master's Thesis, Va. Polytech. Inst. State Univ. Blacksburg:
  32. 32. 
    Bhattacharya K, James RD 2005. The material is the machine. Science 307:53–54
    [Google Scholar]
  33. 33. 
    Lang SB 2005. Pyroelectricity: from ancient curiosity to modern imaging tool. Phys. Today 58:31–36
    [Google Scholar]
  34. 34. 
    Giguere A, Foldeaki M, Gopal BR, Chahine R, Bose TK et al. 1999. Direct measurement of the “giant” adiabatic temperature change in Gd5Si2Ge2. Phys. Rev. Lett. 83:2262–65
    [Google Scholar]
  35. 35. 
    Cross LE 1987. Relaxor ferroelectrics. Ferroelectrics 76:241–67
    [Google Scholar]
  36. 36. 
    Bhatti KP, El-Khatib S, Srivastava V, James RD, Leighton C 2012. Small-angle neutron scattering study of magnetic ordering and inhomogeneity across the martensitic phase transformation in Ni50 − xCoxMn40Sn10 alloys. Phys. Rev. B 85:134450
    [Google Scholar]
  37. 37. 
    Monroe JA, Raymond JE, Xu X, Nagasako M, Kainuma R et al. 2015. Multiple ferroic glasses via ordering. Acta Mater. 101:107–15
    [Google Scholar]
  38. 38. 
    Kosogor A, L'vov VA, Chernenko VA, Villa E, Barandiaran JM et al. 2014. Hysteretic and anhysteretic tensile stress–strain behavior of Ni–Fe(Co)–Ga single crystal: experiment and theory. Acta Mater. 66:79–85
    [Google Scholar]
  39. 39. 
    Kakeshita T, Xiao F, Fukuda T 2016. Large elastic strain and elastocaloric effect caused by lattice softening in an iron-palladium alloy. Philos. Trans. R. Soc. A 374:20150312
    [Google Scholar]
  40. 40. 
    Chernenko VA, L'vov VA, Kabra S, Aseguinolaza IR, Kohl M et al. 2018. Large anhysteretic deformation of shape memory alloys at postcritical temperatures and stresses. Phys. Status Solidi B 255:1700273
    [Google Scholar]
  41. 41. 
    Yang Y, Wang L, Dong C, Xu G, Morosuk T, Tsatsaronis G 2013. Comprehensive exergy-based evaluation and parametric study of a coal-fired ultra-supercritical power plant. Appl. Energy 112:1087–99
    [Google Scholar]
  42. 42. 
    Pandya S, Wilbur J, Kim J, Gao R, Dasgupta A et al. 2018. Pyroelectric energy conversion with large energy and power density in relaxor ferroelectric thin films. Nat. Mater. 17:432–38
    [Google Scholar]
  43. 43. 
    Lee FY, Jo HR, Lynch CS, Pilon L 2013. Pyroelectric energy conversion using PLZT ceramics and the ferroelectric–ergodic relaxor phase transition. Smart Mater. Struct. 22:025038
    [Google Scholar]
  44. 44. 
    Sebald G, Pruvost S, Guyomar D 2007. Energy harvesting based on Ericsson pyroelectric cycles in a relaxor ferroelectric ceramic. Smart Mater. Struct. 17:015012
    [Google Scholar]
  45. 45. 
    Khodayari A, Pruvost S, Sebald G, Guyomar D, Mohammadi S 2009. Nonlinear pyroelectric energy harvesting from relaxor single crystals. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 56:693–99
    [Google Scholar]
  46. 46. 
    Clingman WH, Moore RG 1961. Application of ferroelectricity to energy conversion processes. J. Appl. Phys. 32:675–81
    [Google Scholar]
  47. 47. 
    Childress JD 1962. Application of a ferroelectric material in an energy conversion device. J. Appl. Phys. 33:1793–98
    [Google Scholar]
  48. 48. 
    Olsen RB, Evans D 1983. Pyroelectric energy conversion: hysteresis loss and temperature sensitivity of a ferroelectric material. J. Appl. Phys. 54:5941–44
    [Google Scholar]
  49. 49. 
    Navid A, Vanderpool D, Bah A, Pilon L 2010. Towards optimization of a pyroelectric energy converter for harvesting waste heat. Int. J. Heat Mass Transf. 53:4060–70
    [Google Scholar]
  50. 50. 
    Navid A, Pilon L 2011. Pyroelectric energy harvesting using Olsen cycles in purified and porous poly(vinylidene fluoride-trifluoroethylene) [P(VDF-TrFE)] thin films. Smart Mater. Struct. 20:025012
    [Google Scholar]
  51. 51. 
    Olsen RB, Briscoe JM, Bruno DA, Butler WF 1981. A pyroelectric energy converter which employs regeneration. Ferroelectrics 38:975–78
    [Google Scholar]
  52. 52. 
    Olsen RB, Brown DD 1982. High efficiency direct conversion of heat to electrical energy-related pyroelectric measurements. Ferroelectrics 40:17–27
    [Google Scholar]
  53. 53. 
    Olsen RB, Bruno DA, Briscoe JM 1985. Pyroelectric conversion cycles. J. Appl. Phys. 58:4709–16
    [Google Scholar]
  54. 54. 
    Christiaanse T, Brück E 2014. Proof-of-concept static thermomagnetic generator experimental device. Metall. Mater. Trans. E 1:36–40
    [Google Scholar]
  55. 55. 
    Gueltig M, Ossmer H, Ohtsuka M, Miki H, Tsuchiya K et al. 2014. High frequency thermal energy harvesting using magnetic shape memory films. Adv. Energy Mater. 4:1400751
    [Google Scholar]
  56. 56. 
    Gueltig M, Wendler F, Ossmer H, Ohtsuka M, Miki H et al. 2017. High-performance thermomagnetic generators based on Heusler alloy films. Adv. Energy Mater. 7:1601879
    [Google Scholar]
  57. 57. 
    Waske A, Dzekan D, Sellschopp K, Berger D, Stork A et al. 2019. Energy harvesting near room temperature using a thermomagnetic generator with a pretzel-like magnetic flux topology. Nat. Energy 4:68–74
    [Google Scholar]
  58. 58. 
    Tesla N 1890. Pyromagneto-electric generator US Patent 428,057
  59. 59. 
    Guzmán-Verri GG, Littlewood PB, Varma CM 2013. Paraelectric and ferroelectric states in a model for relaxor ferroelectrics. Phys. Rev. B 88:134106
    [Google Scholar]
  60. 60. 
    Hill NA 2000. Why are there so few magnetic ferroelectrics?. J. Phys. Chem. B 104:6694–709
    [Google Scholar]
  61. 61. 
    Eerenstein W, Mathur N, Scott JF 2006. Multiferroic and magnetoelectric materials. Nature 442:759–65
    [Google Scholar]
  62. 62. 
    Spaldin NA 2011. Magnetic Materials: Fundamentals and Applications Cambridge, UK: Cambridge Univ. Press. 2nd ed.
  63. 63. 
    Bain EC 1924. The nature of martensite. Trans. AIME 70:25–35
    [Google Scholar]
  64. 64. 
    Bowles JS, Mackenzie JK 1954. The crystallography of martensitic transformations I. Acta Metall. 2:129–37
    [Google Scholar]
  65. 65. 
    Bowles JS, Mackenzie JK 1954. The crystallography of martensitic transformations II. Acta Metall. 2:138–47
    [Google Scholar]
  66. 66. 
    Wayman CM 1964. Introduction to the Crystallography of Martensitic Transformations New York: Macmillan
  67. 67. 
    Khachaturyan AG 1983. Theory of Structural Transformations in Solids Mineola, NY: Dover
  68. 68. 
    Duerig TW 1990. Engineering Aspects of Shape Memory Alloys London: Butterworth-Heinemann
  69. 69. 
    Bhattacharya K 2003. Microstructure of Martensite: Why It Forms and How It Gives Rise to the Shape Memory Effect Oxford, UK: Oxford Univ. Press
  70. 70. 
    Bhattacharya K, Conti S, Zanzotto G, Zimmer J 2004. Crystal symmetry and the reversibility of martensitic transformations. Nature 428:55–59
    [Google Scholar]
  71. 71. 
    Dawber M, Rabe KM, Scott JF 2005. Physics of thin-film ferroelectric oxides. Rev. Mod. Phys. 77:1083–130
    [Google Scholar]
  72. 72. 
    James RD, Kinderlehrer D 1993. Theory of magnetostriction with applications to TbxDy1 − xFe2. Philos. Mag. B 68:237–74
    [Google Scholar]
  73. 73. 
    Shu YC, Bhattacharya K 2001. Domain patterns and macroscopic behaviour of ferroelectric materials. Philos. Mag. B 81:2021–54
    [Google Scholar]
  74. 74. 
    Post A, Knight C, Kisi E 2013. Thermomagnetic energy harvesting with first order phase change materials. J. Appl. Phys. 114:033915
    [Google Scholar]
  75. 75. 
    Hohenberg P, Kohn W 1964. Inhomogeneous electron gas. Phys. Rev. 136:B864–71
    [Google Scholar]
  76. 76. 
    Song Y, Bhatti KP, Srivastava V, Leighton C, James RD 2013. Thermodynamics of energy conversion via first order phase transformation in low hysteresis magnetic materials. Energy Environ. Sci. 6:1315–27
    [Google Scholar]
  77. 77. 
    James RD, Hane KF 2000. Martensitic transformations and shape-memory materials. Acta Mater. 48:197–222
    [Google Scholar]
  78. 78. 
    Brahlek M, Gupta AS, Lapano J, Roth J, Zhang HT et al. 2018. Frontiers in the growth of complex oxide thin films: past, present, and future of hybrid MBE. Adv. Funct. Mater. 28:1702772
    [Google Scholar]
  79. 79. 
    Jalan B, Moetakef P, Stemmer S 2009. Molecular beam epitaxy of SrTiO3 with a growth window. Appl. Phys. Lett. 95:032906
    [Google Scholar]
  80. 80. 
    Prakash A, Xu P, Faghaninia A, Shukla S, Ager JW III et al. 2017. Wide bandgap BaSnO3 films with room temperature conductivity exceeding 104 S cm−1. Nat. Commun. 8:15167
    [Google Scholar]
  81. 81. 
    Prakash A, Jalan B 2019. Wide bandgap perovskite oxides with high room-temperature electron mobility. Adv. Mater. Interfaces 6:1900479
    [Google Scholar]
  82. 82. 
    Li YL, Hu SY, Liu ZK, Chen LQ 2002. Effect of electrical boundary conditions on ferroelectric domain structures in thin films. Appl. Phys. Lett. 81:427–29
    [Google Scholar]
  83. 83. 
    Chluba C, Ge W, de Miranda RL, Strobel J, Kienle L et al. 2015. Ultralow-fatigue shape memory alloy films. Science 348:1004–7
    [Google Scholar]
  84. 84. 
    Cui J, Chu YS, Famodu OO, Furuya Y, Hattrick-Simpers J et al. 2006. Combinatorial search of thermoelastic shape-memory alloys with extremely small hysteresis width. Nat. Mater. 5:286–90
    [Google Scholar]
  85. 85. 
    Zhang Z, James RD, Müller S 2009. Energy barriers and hysteresis in martensitic phase transformations. Acta Mater. 57:4332–52
    [Google Scholar]
  86. 86. 
    Gu H, Bumke L, Chluba C, Quandt E, James RD 2018. Phase engineering and supercompatibility of shape memory alloys. Mater. Today 21:265–77
    [Google Scholar]
  87. 87. 
    Chen X, Song Y, Dabade V, James RD 2013. Study of the cofactor conditions: conditions of supercompatibility between phases. J. Mech. Phys. Solids 61:2566–87
    [Google Scholar]
  88. 88. 
    Eggeler G, Hornbogen E, Yawny A, Heckmann A, Wagner M 2004. Structural and functional fatigue of NiTi shape memory alloys. Mater. Sci. Eng. A 378:24–33
    [Google Scholar]
  89. 89. 
    Norfleet DM, Sarosi PM, Manchiraju S, Wagner MFX, Uchic MD et al. 2009. Transformation-induced plasticity during pseudoelastic deformation in Ni-Ti microcrystals. Acta Mater. 57:3549–61
    [Google Scholar]
  90. 90. 
    Wechsler MS, Lieberman DS, Read TA 1953. On the theory of the formation of martensite. Trans. AIME 197:1503–15
    [Google Scholar]
  91. 91. 
    Lieberman DS, Wechsler MS, Read TA 1955. Cubic to orthorhombic diffusionless phase change—experimental and theoretical studies of AuCd. J. Appl. Phys. 26:473–84
    [Google Scholar]
  92. 92. 
    Ball JM, James RD 1987. Fine phase mixtures as minimizers of energy. Arch. Ration. Mech. Anal. 100:13–52
    [Google Scholar]
  93. 93. 
    Bronstein E, Faran E, Shilo D 2019. Analysis of austenite-martensite phase boundary and twinned microstructure in shape memory alloys: the role of twinning disconnections. Acta Mater. 164:520–29
    [Google Scholar]
  94. 94. 
    Straka L, Drahokoupil J, Veřtát P, Kopeček J, Zelenỳ M et al. 2017. Orthorhombic intermediate phase originating from {110} nanotwinning in Ni50.0Mn28.7Ga21.3 modulated martensite. Acta Mater. 132:335–44
    [Google Scholar]
  95. 95. 
    Kohn RV, Müller S 1992. Branching of twins near an austenite–twinned-martensite interface. Philos. Mag. A 66:697–715
    [Google Scholar]
  96. 96. 
    Seiner H, Plucinsky P, Dabade V, Benešová B, James RD 2019. Branching of twins in shape memory alloys revisited. arXiv:1910.05235 [cond-mat.mtrl-sci]
    [Google Scholar]
  97. 97. 
    Chen X, Srivastava V, Dabade V, James RD 2013. Study of the cofactor conditions: conditions of supercompatibility between phases. J. Mech. Phys. Solids 61:2566–87
    [Google Scholar]
  98. 98. 
    Chen X, Song Y, Tamura N, James RD 2016. Determination of the stretch tensor for structural transformations. J. Mech. Phys. Solids 93:34–43
    [Google Scholar]
  99. 99. 
    James RD, Hane KF 2000. Martensitic transformations and shape-memory materials. Acta Mater. 48:197–222
    [Google Scholar]
  100. 100. 
    Song Y, Chen X, Dabade V, Shield TW, James RD 2013. Enhanced reversibility and unusual microstructure of a phase-transforming material. Nature 502:85–88
    [Google Scholar]
  101. 101. 
    Delville R, Schryvers D, Zhang Z, James RD 2009. Transmission electron microscopy investigation of microstructures in low-hysteresis alloys with special lattice parameters. Scr. Mater. 60:293–96
    [Google Scholar]
  102. 102. 
    Delville R, Kasinathan S, Zhang Z, Humbeeck JV, James RD, Schryvers D 2010. Transmission electron microscopy study of phase compatibility in low hysteresis shape memory alloys. Philos. Mag. 90:177–95
    [Google Scholar]
  103. 103. 
    Shi H, Delville R, Srivastava V, James RD, Schryvers D 2014. Microstructural dependence on middle eigenvalue in Ti–Ni–Au. J. Alloys Compd. 582:703–7
    [Google Scholar]
  104. 104. 
    Bucsek AN, Hudish GA, Bigelow GS, Noebe RD, Stebner AP 2016. Composition, compatibility, and the functional performances of ternary NiTiX high-temperature shape memory alloys. Shape Mem. Superelast. 2:62–79
    [Google Scholar]
  105. 105. 
    Zarnetta R, Takahashi R, Young ML, Savan A, Furuya Y et al. 2010. Identification of quaternary shape memory alloys with near-zero thermal hysteresis and unprecedented functional stability. Adv. Funct. Mater. 20:1917–23
    [Google Scholar]
  106. 106. 
    Wegner M, Gu H, James RD, Quandt E 2020. Correlation between phase compatibility and efficient energy conversion in Zr-doped barium titanate. Sci. Rep. 10:3496
    [Google Scholar]
  107. 107. 
    Jetter J, Gu H, Zhang H, Wuttig M, Chen X et al. 2019. Tuning crystallographic compatibility to enhance shape memory in ceramics. Phys. Rev. Mater. 3:093603
    [Google Scholar]
  108. 108. 
    Liang YG, Lee S, Yu HS, Zhang HR, Bendersky LA et al. 2019. Tuning the hysteresis of a metal-insulator transition via lattice compatibility. arXiv:1905.01398 [cond-mat.mtrl-sci]
    [Google Scholar]
  109. 109. 
    James RD, Zhang Z 2005. A way to search for multiferroic materials with unlikely combinations of physical properties. Magnetism and Structure in Functional Materials ed. A Planes, L Manõsa, A Saxena 159–75 Berlin: Springer-Verlag
    [Google Scholar]
  110. 110. 
    Bilby BA, Crocker AG 1965. The theory of the crystallography of deformation twinning. Proc. R. Soc. A 288:240–55
    [Google Scholar]
  111. 111. 
    Hane KF, Shield TW 1999. Microstructure in the cubic to monoclinic transition in titanium-nickel shape memory alloys. Acta Mater. 47:2603–17
    [Google Scholar]
  112. 112. 
    Pang EL, McCandler CA, Schuh CA 2019. Reduced cracking in polycrystalline ZrO2-CeO2 shape-memory ceramics by meeting the cofactor conditions. Acta Mater. 177:230–39
    [Google Scholar]
  113. 113. 
    Pike NA, Matt A, Løvvik OM 2019. Determining the optimal phase-change material via high-throughput calculations. MRS Adv. 4:2679–87
    [Google Scholar]
  114. 114. 
    Xiao F, Fukuda T, Kakeshita T 2015. Critical point of martensitic transformation under stress in an Fe-31.2Pd (at.%) shape memory alloy. Philos. Mag. 95:1390–98
    [Google Scholar]
  115. 115. 
    Seiner H, Stoklasová P, Sedlák P, Ševčík M, Janovská M et al. 2016. Evolution of soft-phonon modes in Fe-Pd shape memory alloy under large elastic-like strains. Acta Mater. 105:182–88
    [Google Scholar]
  116. 116. 
    Wang YL, Tagantsev AK, Damjanovic D, Setter N, Yarmarkin VK et al. 2007. Landau thermodynamic potential for BaTiO3. J. Appl. Phys. 101:104115
    [Google Scholar]
  117. 117. 
    Srivastava V, Chen X, James RD 2010. Hysteresis and unusual magnetic properties in the singular Heusler alloy Ni45Co5Mn40Sn10. Appl. Phys. Lett. 97:014101
    [Google Scholar]
  118. 118. 
    Devi P, Mejía CS, Zavareh MG, Dubey KK, Kushwaha P et al. 2019. Improved magnetostructural and magnetocaloric reversibility in magnetic Ni-Mn-In shape-memory Heusler alloy by optimizing the geometric compatibility condition. Phys. Rev. Mater. 3:062401
    [Google Scholar]
  119. 119. 
    Bhatti KP, Srivastava V, Phelan DP, El-Khatib S, James RD, Leighton C 2016. Magnetic phase competition in off-stoichiometric martensitic Heusler alloys: the NiCoxMn25 + ySn25 − y system. Heusler Alloys: Properties, Growth, Applications ed. C Felser, A Hirohata 193–216 Cham, Switz.: Springer
    [Google Scholar]
  120. 120. 
    Brown WF 1963. Micromagnetics New York: Interscience
  121. 121. 
    Krishnan SN 2012. Asymptotic models in magnetostriction with application to design of sensors. PhD Diss., Univ. Minn. Minneapolis:
    [Google Scholar]
  122. 122. 
    Erturun U, Waxman R, Green C, Richeson ML, Mossi K 2010. Energy scavenging combining piezoelectric and pyroelectric effects. Proceedings of the ASME 2010 Conference on Smart Materials, Adaptive Structures and Intelligent Systems 253–59 New York: Am. Soc. Mech. Eng.
    [Google Scholar]
  123. 123. 
    Wang ZL 2013. Triboelectric nanogenerators as new energy technology for self-powered systems and as active mechanical and chemical sensors. ACS Nano 7:9533–57
    [Google Scholar]
  124. 124. 
    Bowen CR, Taylor J, LeBoulbar E, Zabek D, Chauhan A, Vaish R 2014. Pyroelectric materials and devices for energy harvesting applications. Energy Environ. Sci. 7:3836–56
    [Google Scholar]
  125. 125. 
    Mischenko AS, Zhang Q, Scott JF, Whatmore RW, Mathur ND 2006. Giant electrocaloric effect in thin-film PbZr0.95Ti0.05O3. Science 311:1270–71
    [Google Scholar]
  126. 126. 
    Leo PH, Shield TW, Bruno OP 1993. Transient heat transfer effects on the pseudoelastic behavior of shape-memory wires. Acta Metall. Mater. 41:2477–85
    [Google Scholar]
  127. 127. 
    Shaw JA, Kyriakides S 1995. Thermomechanical aspects of NiTi. J. Mech. Phys. Solids 43:1243–81
    [Google Scholar]
  128. 128. 
    Saito Y, Takao H, Tani T, Nonoyama T, Takatori K et al. 2004. Lead-free piezoceramics. Nature 432:84–87
    [Google Scholar]
  129. 129. 
    Takenaka T, Nagata H 2005. Current status and prospects of lead-free piezoelectric ceramics. J. Eur. Ceram. Soc. 25:2693–700
    [Google Scholar]
  130. 130. 
    Ringgaard E, Wurlitzer T 2005. Lead-free piezoceramics based on alkali niobates. J. Eur. Ceram. Soc. 25:2701–6
    [Google Scholar]
  131. 131. 
    Priya S, Nahm S 2011. Lead-Free Piezoelectrics New York: Springer
  132. 132. 
    Coondoo I, Panwar N, Kholkin A 2013. Lead-free piezoelectrics: current status and perspectives. J. Adv. Dielectr. 3:1330002
    [Google Scholar]
  133. 133. 
    Jaffe B, Cook WR Jr., Jaffe H 1971. Piezoelectric Ceramics London: Academic
  134. 134. 
    Rhodes RG 1951. Barium titanate twinning at low temperatures. Acta Crystallogr. 4:105–10
    [Google Scholar]
  135. 135. 
    von Hippel A, Breckenridge RG, Chesley FG, Tisza L 1946. High dielectric constant ceramics. Ind. Eng. Chem. 38:1097–109
    [Google Scholar]
  136. 136. 
    Buhrer CF 1962. Some properties of bismuth perovskites. J. Chem. Phys. 36:798–803
    [Google Scholar]
  137. 137. 
    Curecheriu L, Balmus SB, Buscaglia MT, Buscaglia V, Ianculescu A, Mitoseriu L 1998. Grain size-dependent properties of dense nanocrystalline barium titanate ceramics. J. Am. Ceram. Soc. 95:3912–21
    [Google Scholar]
  138. 138. 
    Kanata T, Yoshikawa T, Kubota K 1987. Grain-size effects on dielectric phase transition of BaTiO3 ceramics. Solid State Commun. 62:765–67
    [Google Scholar]
  139. 139. 
    Wang JJ, Meng FY, Ma XQ, Xu MX, Chen LQ 2010. Lattice, elastic, polarization, and electrostrictive properties of BaTiO3 from first-principles. J. Appl. Phys. 108:034107
    [Google Scholar]
  140. 140. 
    Kwei GH, Lawson AC, Billinge SJL, Cheong SW 1993. Structures of the ferroelectric phases of barium titanate. J. Phys. Chem. 97:2368–77
    [Google Scholar]
  141. 141. 
    Iverson BD, Conboy TM, Pasch JJ, Kruizenga AM 2013. Supercritical CO2 Brayton cycles for solar-thermal energy. Appl. Energy 111:957–70
    [Google Scholar]
  142. 142. 
    McKay T, O'Brien B, Calius E, Anderson I 2012. Self-priming dielectric elastomer generator design. Proceedings of SPIE, Vol. 8340: Electroactive Polymer Actuators and Devices (EAPAD) 201283401Y Bellingham, WA: SPIE
    [Google Scholar]
  143. 143. 
    McKay T, O'Brien B, Calius E, Anderson I 2010. Self-priming dielectric elastomer generators. Smart Mater. Struct. 19:055025
    [Google Scholar]
  144. 144. 
    Heczko O, Straka L, Seiner H 2013. Different microstructures of mobile twin boundaries in 10 M modulated Ni–Mn–Ga martensite. Acta Mater. 61:622–31
    [Google Scholar]
  145. 145. 
    Straka L, Heczko O, Seiner H, Lanska N, Drahokoupil J et al. 2011. Highly mobile twinned interface in 10 M modulated Ni–Mn–Ga martensite: analysis beyond the tetragonal approximation of lattice. Acta Mater. 59:7450–63
    [Google Scholar]
  146. 146. 
    Ganor Y, Dumitrica T, Feng F, James RD 2016. Zig-zag twins and helical phase transformations. Philos. Trans. R. Soc. Lond. A 374:20150208
    [Google Scholar]
  147. 147. 
    Knüpfer H, Kohn RV, Otto F 2013. Nucleation barriers for the cubic-to-tetragonal phase transformation. Commun. Pure Appl. Math. 66:867–904
    [Google Scholar]
/content/journals/10.1146/annurev-matsci-082019-021824
Loading
/content/journals/10.1146/annurev-matsci-082019-021824
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error