1932

Abstract

The development of structural materials with outstanding mechanical response has long been sought for innumerable industrial, technological, and even biomedical applications. However, these compounds tend to derive their fascinating properties from a myriad of interactions spanning multiple scales, from localized chemical bonding to macroscopic interactions between grains. This diversity has limited the ability of researchers to develop new materials on a reasonable timeline. Fortunately, the advent of machine learning in materials science has provided a new approach to analyze high-dimensional space and identify correlations among the structure-composition-property-processing relationships that may have been previously missed. In this review, we examine some successful examples of using data science to improve known structural materials by analyzing fatigue and failure, and we discuss approaches to develop entirely new classes of structural materials in complex composition spaces including high-entropy alloys and bulk metallic glasses. Highlighting the recent advancement in this field demonstrates the power of data-driven methodologies that will hopefully lead to the production of market-ready structural materials.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-matsci-110519-094700
2020-07-01
2024-04-16
Loading full text...

Full text loading...

/deliver/fulltext/matsci/50/1/annurev-matsci-110519-094700.html?itemId=/content/journals/10.1146/annurev-matsci-110519-094700&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Robles Hernandez FC, Herrera Ramírez JM, Mackay R 2017. Applications in the automotive and aerospace industries. Al-Si Alloys: Automotive, Aeronautical, and Aerospace Applications163–71 Cham, Switz.: Springer
    [Google Scholar]
  2. 2. 
    Gayle FW, Goodway M 1994. Precipitation hardening in the first aerospace aluminum alloy: the Wright Flyer crankcase. Science 266:1015–17
    [Google Scholar]
  3. 3. 
    Hobbs LS 1971. The Wright Brothers' Engines and Their Design Smithson. Ann. Flight 5 Washington, DC: Smithson. Inst. Press
  4. 4. 
    Clarke DR, Oechsner M, Padture NP 2012. Thermal-barrier coatings for more efficient gas-turbine engines. MRS Bull. 37:891–98
    [Google Scholar]
  5. 5. 
    Lee CP, Darolia R, Schafrik RE 2002. Turbine blade tip having thermal barrier coating-formed micro cooling channels US Patent 6,461,107
  6. 6. 
    Caron P, Khan T 1999. Evolution of Ni-based superalloys for single crystal gas turbine blade applications. Aerosp. Sci. Technol. 3:513–23
    [Google Scholar]
  7. 7. 
    Roser M, Ortiz-Ospina E, Ritchie H 2019. Life expectancy. Our World in Data https://ourworldindata.org/life-expectancy
    [Google Scholar]
  8. 8. 
    Kremers HM, Larson DR, Crowson CS, Kremers WK, Washington RE et al. 2015. Prevalence of total hip and knee replacement in the United States. J. Bone Joint Surg. 97:1386
    [Google Scholar]
  9. 9. 
    Li H, Zheng Y 2016. Recent advances in bulk metallic glasses for biomedical applications. Acta Biomater. 36:1–20
    [Google Scholar]
  10. 10. 
    Louzguine-Luzgin DV, Inoue A 2013. Bulk metallic glasses: formation, structure, properties, and applications. Handbook of Magnetic Materials ed. KHJ Buschow, Vol 21131–71 Amsterdam: Elsevier
    [Google Scholar]
  11. 11. 
    Aspuru-Guzik A, Persson K 2018. Materials acceleration platform: accelerating advanced energy materials discovery by integrating high-throughput methods and artificial intelligence Report of the Clean Energy Materials Innovation Challenge Expert Workshop, Jan. 1, Mexico City
  12. 12. 
    Thiel PA, Masters B 2014. Zero to One: Notes on Startups, or How to Build the Future New York: Crown
  13. 13. 
    US At Energy Comm 1954. Remarks by Chairman Lewis L. Strauss at the Founder's Day Dinner, National Association of Science Writers Press Release, Sept. 16. https://www.nrc.gov/docs/ML1613/ML16131A120.pdf
  14. 14. 
    Rajan K 2005. Materials informatics. Mater. Today 8:38–45
    [Google Scholar]
  15. 15. 
    Agrawal A, Choudhary A 2016. Perspective: Materials informatics and big data: realization of the fourth paradigm of science in materials science. APL Mater. 4:053208
    [Google Scholar]
  16. 16. 
    Kalidindi SR, Brough DB, Li S, Cecen A, Blekh AL et al. 2016. Role of materials data science and informatics in accelerated materials innovation. MRS Bull. 41:596–602
    [Google Scholar]
  17. 17. 
    Gaultois MW, Oliynyk AO, Mar A, Sparks TD, Mulholland GJ, Meredig B 2016. Perspective: Web-based machine learning models for real-time screening of thermoelectric materials properties. APL Mater. 4:053213
    [Google Scholar]
  18. 18. 
    Sparks TD, Gaultois MW, Oliynyk A, Brgoch J, Meredig B 2016. Data mining our way to the next generation of thermoelectrics. Scr. Mater. 111:10–15
    [Google Scholar]
  19. 19. 
    Seshadri R, Sparks TD 2016. Perspective: interactive material property databases through aggregation of literature data. APL Mater. 4:053206
    [Google Scholar]
  20. 20. 
    Pan Z, Sun H, Zhang Y, Chen C 2009. Harder than diamond: superior indentation strength of wurtzite BN and lonsdaleite. Phys. Rev. Lett. 102:055503
    [Google Scholar]
  21. 21. 
    Mansouri Tehrani A, Ghadbeigi L, Brgoch J, Sparks TD 2017. Balancing mechanical properties and sustainability in the search for superhard materials. Integrating Mater. Manuf. Innov. 6:1–8
    [Google Scholar]
  22. 22. 
    Chung HY, Weinberger MB, Levine JB, Kavner A, Yang JM et al. 2007. Synthesis of ultra-incompressible superhard rhenium diboride at ambient pressure. Science 316:436–39
    [Google Scholar]
  23. 23. 
    Levine JB, Tolbert SH, Kaner RB 2009. Advancements in the search for superhard ultra-incompressible metal borides. Adv. Funct. Mater. 19:3519–33
    [Google Scholar]
  24. 24. 
    Mansouri Tehrani A, Oliynyk AO, Parry M, Rizvi Z, Couper S et al. 2018. Machine learning directed search for ultraincompressible, superhard materials. J. Am. Chem. Soc. 140:9844–53
    [Google Scholar]
  25. 25. 
    Mansouri Tehrani A, Brgoch J 2019. Hard and superhard materials: a computational perspective. J. Solid State Chem. 271:47–58
    [Google Scholar]
  26. 26. 
    Chen XQ, Niu H, Li D, Li Y 2011. Modeling hardness of polycrystalline materials and bulk metallic glasses. Intermetallics 19:1275–81
    [Google Scholar]
  27. 27. 
    Parry M, Couper S, Mansouri Tehrani A, Oliynyk AO, Brgoch J et al. 2019. Lattice strain and texture analysis of superhard Mo0.9W1.1BC and ReWC0.8via diamond anvil cell deformation. J. Mater. Chem. A 7:24012–18
    [Google Scholar]
  28. 28. 
    Mansouri Tehrani A, Lim A, Brgoch J 2019. Mechanism for unconventional nonlinear elasticity. Phys. Rev. B 100:060102
    [Google Scholar]
  29. 29. 
    Mansouri Tehrani A, Oliynyk AO, Rizvi Z, Lotfi S, Parry M et al. 2019. Atomic substitution to balance hardness, ductility, and sustainability in molybdenum tungsten borocarbide. Chem. Mater. 31:7696–703
    [Google Scholar]
  30. 30. 
    Fujii H, Mackay DJC, Bhadeshia HKDH 1996. Bayesian neural network analysis of fatigue crack growth rate in nickel base superalloys. ISIJ Int. 36:1373–82
    [Google Scholar]
  31. 31. 
    Kang JY, Song JH 1998. Neural network applications in determining the fatigue crack opening load. Int. J. Fatigue 20:57–69
    [Google Scholar]
  32. 32. 
    Iacoviello F, Iacoviello D, Cavallini M 2004. Analysis of stress ratio effects on fatigue propagation in a sintered duplex steel by experimentation and artificial neural network approaches. Int. J. Fatigue 26:819–28
    [Google Scholar]
  33. 33. 
    Mohanty S, Teale R, Chattopadhyay A, Peralta P, Willhauck C 2007. Mixed Gaussian process and state-space approach for fatigue crack growth prediction. Structural Health Monitoring 2007: Quantification, Validation, and Implementation, Proceedings of the Sixth International Workshop on Structural Health Monitoring ed. F-K Chang 1108–15 Lancaster, PA: DEStech Publ.
    [Google Scholar]
  34. 34. 
    Wang H, Zhang W, Sun F, Zhang W 2017. A comparison study of machine learning based algorithms for fatigue crack growth calculation. Materials 10:543
    [Google Scholar]
  35. 35. 
    Dinda S, Kujawski D 2004. Correlation and prediction of fatigue crack growth for different R-ratios using Kmax and ΔK+ parameters. Eng. Fracture Mech. 71:1779–90
    [Google Scholar]
  36. 36. 
    Rovinelli A, Sangid MD, Proudhon H, Ludwig W 2018. Using machine learning and a data-driven approach to identify the small fatigue crack driving force in polycrystalline materials. NPJ Comput. Mater. 4:35
    [Google Scholar]
  37. 37. 
    Canyurt OE 2005. Estimation of welded joint strength using genetic algorithm approach. Int. J. Mech. Sci. 47:1249–61
    [Google Scholar]
  38. 38. 
    Agrawal A, Deshpande PD, Cecen A, Basavarsu GP, Choudhary AN, Kalidindi SR 2014. Exploration of data science techniques to predict fatigue strength of steel from composition and processing parameters. Integrating Mater. Manuf. Innov. 3:8
    [Google Scholar]
  39. 39. 
    Agrawal A, Choudhary A 2016. A fatigue strength predictor for steels using ensemble data mining: steel fatigue strength predictor. CIKM ’16: Proceedings of the 25th ACM International Conference on Information and Knowledge Management2497–500 New York: Assoc. Comput. Mach.
    [Google Scholar]
  40. 40. 
    Agrawal A, Choudhary A 2018. An online tool for predicting fatigue strength of steel alloys based on ensemble data mining. Int. J. Fatigue 113:389–400
    [Google Scholar]
  41. 41. 
    Fullwood DT, Niezgoda SR, Kalidindi SR 2008. Microstructure reconstructions from 2-point statistics using phase-recovery algorithms. Acta Mater. 56:942–48
    [Google Scholar]
  42. 42. 
    Kalidindi SR, Niezgoda SR, Salem AA 2011. Microstructure informatics using higher-order statistics and efficient data-mining protocols. JOM 63:34–41
    [Google Scholar]
  43. 43. 
    Niezgoda S, Fullwood D, Kalidindi S 2008. Delineation of the space of 2-point correlations in a composite material system. Acta Mater. 56:5285–92
    [Google Scholar]
  44. 44. 
    Sundararaghavan V, Zabaras N 2005. Classification and reconstruction of three-dimensional microstructures using support vector machines. Comput. Mater. Sci. 32:223–39
    [Google Scholar]
  45. 45. 
    Xu H, Liu R, Choudhary A, Chen W 2015. A machine learning-based design representation method for designing heterogeneous microstructures. J. Mech. Des. 137:051403
    [Google Scholar]
  46. 46. 
    DeCost BL, Holm EA 2015. A computer vision approach for automated analysis and classification of microstructural image data. Comput. Mater. Sci. 110:126–33
    [Google Scholar]
  47. 47. 
    Liu R, Kumar A, Chen Z, Agrawal A, Sundararaghavan V, Choudhary A 2015. A predictive machine learning approach for microstructure optimization and materials design. Sci. Rep. 5:11551
    [Google Scholar]
  48. 48. 
    DeCost BL, Jain H, Rollett AD, Holm EA 2017. Computer vision and machine learning for autonomous characterization of AM powder feedstocks. JOM 69:456–65
    [Google Scholar]
  49. 49. 
    Cang R, Ren MY 2016.Deep network-based feature extraction and reconstruction of complex material microstructures. In ASME 2016 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference Charlotte, NC: Am. Soc. Mech. Eng https://doi.org/10.1115/DETC2016-59404
    [Crossref]
  50. 50. 
    Chowdhury A, Kautz E, Yener B, Lewis D 2016. Image driven machine learning methods for microstructure recognition. Comput. Mater. Sci. 123:176–87
    [Google Scholar]
  51. 51. 
    Krizhevsky A, Sutskever I, Hinton GE 2012. Imagenet classification with deep convolutional neural networks. Advances in Neural Information Processing Systems 25 ed. F Pereira, CJC Burges, L Bottou, KQ Weinberger 1097–105 Redhook, NY: Curran Associates
    [Google Scholar]
  52. 52. 
    Lubbers N, Lookman T, Barros K 2017. Inferring low-dimensional microstructure representations using convolutional neural networks. Phys. Rev. E 96:052111
    [Google Scholar]
  53. 53. 
    Simonyan K, Zisserman A 2014. Very deep convolutional networks for large-scale image recognition. arXiv:1409.1556 [cs.CV]
    [Google Scholar]
  54. 54. 
    Kitahara AR, Holm EA 2018. Microstructure cluster analysis with transfer learning and unsupervised learning. Integrating Mater. Manuf. Innov. 7:148–56
    [Google Scholar]
  55. 55. 
    Cecen A, Dai H, Yabansu YC, Kalidindi SR, Song L 2018. Material structure-property linkages using three-dimensional convolutional neural networks. Acta Mater. 146:76–84
    [Google Scholar]
  56. 56. 
    Cantor B, Chang I, Knight P, Vincent A 2004. Microstructural development in equiatomic multicomponent alloys. Mater. Sci. Eng. A 375-377:213–18
    [Google Scholar]
  57. 57. 
    Yeh J, Chen S, Lin S, Gan J, Chin T et al. 2004. Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes. Adv. Eng. Mater. 6:299–303
    [Google Scholar]
  58. 58. 
    Miracle D, Senkov O 2017. A critical review of high entropy alloys and related concepts. Acta Mater. 122:448–511
    [Google Scholar]
  59. 59. 
    Davis JR ed 1998. Metals Handbook: Desk Edition Boca Raton, FL: CRC Press. 2nd ed.
  60. 60. 
    Gorsse S, Couzini JP, Miracle DB 2018. From high-entropy alloys to complex concentrated alloys. C. R. Phys. 19:721–36
    [Google Scholar]
  61. 61. 
    Gludovatz B, Hohenwarter A, Thurston KVS, Bei H, Wu Z et al. 2016. Exceptional damage-tolerance of a medium-entropy alloy CrCoNi at cryogenic temperatures. Nat. Commun.7
    [Google Scholar]
  62. 62. 
    Xia SQ, Wang Z, Yang TF, Zhang Y 2015. Irradiation behavior in high entropy alloys. J. Iron Steel Res. Int. 22:879–84
    [Google Scholar]
  63. 63. 
    Yeh JW 2013. Alloy design strategies and future trends in high-entropy alloys. JOM 65:1759–71
    [Google Scholar]
  64. 64. 
    Tsai MH, Yeh JW 2014. High-entropy alloys: a critical review. Mater. Res. Lett. 2:107–23
    [Google Scholar]
  65. 65. 
    Miracle D, Miller J, Senkov O, Woodward C, Uchic M, Tiley J 2014. Exploration and development of high entropy alloys for structural applications. Entropy 16:494–525
    [Google Scholar]
  66. 66. 
    Senkov ON, Miller JD, Miracle DB, Woodward C 2015. Accelerated exploration of multi-principal element alloys with solid solution phases. Nat. Commun. 6:6529
    [Google Scholar]
  67. 67. 
    Senkov O, Miller J, Miracle D, Woodward C 2015. Accelerated exploration of multi-principal element alloys for structural applications. Calphad 50:32–48
    [Google Scholar]
  68. 68. 
    Troparevsky M, Morris J, Kent P, Lupini A, Stocks G 2015. Criteria for predicting the formation of single-phase high-entropy alloys. Phys. Rev. X 5:011041
    [Google Scholar]
  69. 69. 
    Gao MC, Zhang B, Yang S, Guo SM 2016. Senary refractory high-entropy alloy HfNbTaTiVZr. Metall. Mater. Trans. A 47:3333–45
    [Google Scholar]
  70. 70. 
    Toda-Caraballo I, Wrbel J, Nguyen-Manh D, Prez P, Rivera-Daz-del Castillo P 2017. Simulation and modeling in high entropy alloys. JOM 69:2137–49
    [Google Scholar]
  71. 71. 
    Islam N, Huang W, Zhuang HL 2018. Machine learning for phase selection in multi-principal element alloys. Comput. Mater. Sci. 150:230–35
    [Google Scholar]
  72. 72. 
    Guo S, Ng C, Lu J, Liu CT 2011. Effect of valence electron concentration on stability of fcc or bcc phase in high entropy alloys. J. Appl. Phys. 109:103505
    [Google Scholar]
  73. 73. 
    Huang W, Martin P, Zhuang HL 2019. Machine-learning phase prediction of high-entropy alloys. Acta Mater. 169:225–36
    [Google Scholar]
  74. 74. 
    Chang YJ, Jui CY, Lee WJ, Yeh AC 2019. Prediction of the composition and hardness of high-entropy alloys by machine learning. JOM 71:3433–42
    [Google Scholar]
  75. 75. 
    He J, Liu W, Wang H, Wu Y, Liu X et al. 2014. Effects of Al addition on structural evolution and tensile properties of the FeCoNiCrMn high-entropy alloy system. Acta Mater. 62:105–13
    [Google Scholar]
  76. 76. 
    Wen C, Zhang Y, Wang C, Xue D, Bai Y et al. 2019. Machine learning assisted design of high entropy alloys with desired property. Acta Mater. 170:109–17
    [Google Scholar]
  77. 77. 
    Rickman J, Chan H, Harmer M, Smeltzer J, Marvel C et al. 2019. Materials informatics for the screening of multi-principal elements and high-entropy alloys. Nat. Commun. 10:1–10
    [Google Scholar]
  78. 78. 
    Chen R, Qin G, Zheng H, Wang L, Su Y et al. 2018. Composition design of high entropy alloys using the valence electron concentration to balance strength and ductility. Acta Mater. 144:129–37
    [Google Scholar]
  79. 79. 
    Menou E, Toda-Caraballo I, Rivera-Díaz-del-Castillo PEJ, Pineau C, Bertrand E et al. 2018. Evolutionary design of strong and stable high entropy alloys using multi-objective optimisation based on physical models, statistics and thermodynamics. Mater. Des. 143:185–95
    [Google Scholar]
  80. 80. 
    Menou E, Tancret F, Toda-Caraballo I, Ramstein G, Castany P et al. 2018. Computational design of light and strong high entropy alloys (HEA): obtainment of an extremely high specific solid solution hardening. Scr. Mater. 156:120–23
    [Google Scholar]
  81. 81. 
    Löffler JF 2003. Bulk metallic glasses. Intermetallics 11:529–40
    [Google Scholar]
  82. 82. 
    Trexler MM, Thadhani NN 2010. Mechanical properties of bulk metallic glasses. Progress Mater. Sci. 55:759–839
    [Google Scholar]
  83. 83. 
    Ashby M, Greer A 2006. Metallic glasses as structural materials. Scr. Mater. 54:321–26
    [Google Scholar]
  84. 84. 
    Si JJ, Wang T, Wu YD, Cai YH, Chen XH et al. 2015. Cr-based bulk metallic glasses with ultrahigh hardness. Appl. Phys. Lett. 106:251905
    [Google Scholar]
  85. 85. 
    Pan D, Inoue A, Sakurai T, Chen MW 2008. Experimental characterization of shear transformation zones for plastic flow of bulk metallic glasses. PNAS105:14769–72
    [Google Scholar]
  86. 86. 
    Chen XQ, Niu H, Li D, Li Y 2011. Modeling hardness of polycrystalline materials and bulk metallic glasses. Intermetallics 19:1275–81
    [Google Scholar]
  87. 87. 
    Perim E, Lee D, Liu Y, Toher C, Gong P et al. 2016. Spectral descriptors for bulk metallic glasses based on the thermodynamics of competing crystalline phases. Nat. Commun. 7:12315
    [Google Scholar]
  88. 88. 
    Tripathi MK, Ganguly S, Dey P, Chattopadhyay PP 2016. Evolution of glass forming ability indicator by genetic programming. Comput. Mater. Sci. 118:56–65
    [Google Scholar]
  89. 89. 
    Tsai P, Flores KM 2016. High-throughput discovery and characterization of multicomponent bulk metallic glass alloys. Acta Mater. 120:426–34
    [Google Scholar]
  90. 90. 
    Chen M, Inoue A, Zhang W, Sakurai T 2006. Extraordinary plasticity of ductile bulk metallic glasses. Phys. Rev. Lett. 96:245502
    [Google Scholar]
  91. 91. 
    Hofmann DC, Suh JY, Wiest A, Lind ML, Demetriou MD, Johnson WL 2008. Development of tough, low-density titanium-based bulk metallic glass matrix composites with tensile ductility. PNAS 105:20136–40
    [Google Scholar]
  92. 92. 
    Wang LM, Tian Y, Liu R, Wang W 2012. A “universal” criterion for metallic glass formation. Appl. Phys. Lett. 100:261913
    [Google Scholar]
  93. 93. 
    Tripathi MK, Chattopadhyay PP, Ganguly S 2017. A predictable glass forming ability expression by statistical learning and evolutionary intelligence. Intermetallics 90:9–15
    [Google Scholar]
  94. 94. 
    Tripathi MK, Chattopadhyay PP, Ganguly S 2015. Multivariate analysis and classification of bulk metallic glasses using principal component analysis. Comput. Mater. Sci. 107:79–87
    [Google Scholar]
  95. 95. 
    Ward L, Agrawal A, Choudhary A, Wolverton C 2016. A general-purpose machine learning framework for predicting properties of inorganic materials. NPJ Comput. Mater. 2:16028
    [Google Scholar]
  96. 96. 
    Sun YT, Bai HY, Li MZ, Wang WH 2017. Machine learning approach for prediction and understanding of glass-forming ability. J. Phys. Chem. Lett. 8:3434–39
    [Google Scholar]
  97. 97. 
    Ren F, Ward L, Williams T, Laws KJ, Wolverton C et al. 2018. Accelerated discovery of metallic glasses through iteration of machine learning and high-throughput experiments. Sci. Adv. 4:eaaq1566
    [Google Scholar]
  98. 98. 
    Dasgupta A, Broderick SR, Mack C, Kota BU, Subramanian R et al. 2019. Probabilistic assessment of glass forming ability rules for metallic glasses aided by automated analysis of phase diagrams. Sci. Rep. 9:357
    [Google Scholar]
  99. 99. 
    Ward L, O'Keeffe SC, Stevick J, Jelbert GR, Aykol M, Wolverton C 2018. A machine learning approach for engineering bulk metallic glass alloys. Acta Mater. 159:102–11
    [Google Scholar]
  100. 100. 
    Wang Q, Jain A 2019. A transferable machine-learning framework linking interstice distribution and plastic heterogeneity in metallic glasses. arXiv:1904.03780 [cond-mat.mtrl-sci]
    [Google Scholar]
  101. 101. 
    Mueller T, Kusne AG, Ramprasad R 2016. Machine learning in materials science: recent progress and emerging applications. Rev. Comput. Chem. 29:186–273
    [Google Scholar]
  102. 102. 
    Ramprasad R, Batra R, Pilania G, Mannodi-Kanakkithodi A, Kim C 2017. Machine learning in materials informatics: recent applications and prospects. NPJ Comput. Mater. 3:1–13
    [Google Scholar]
/content/journals/10.1146/annurev-matsci-110519-094700
Loading
/content/journals/10.1146/annurev-matsci-110519-094700
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error