1932

Abstract

Interleukin (IL)-11 is upregulated in a wide variety of fibro-inflammatory diseases such as systemic sclerosis, rheumatoid arthritis, pulmonary fibrosis, inflammatory bowel disease, kidney disease, drug-induced liver injury, and nonalcoholic steatohepatitis. IL-11 is a member of the IL-6 cytokine family and has several distinct properties that define its unique and nonredundant roles in disease. The IL-11 receptor is highly expressed on stromal, epithelial and polarized cells, where noncanonical IL-11 signaling drives the three pathologies common to all fibro-inflammatory diseases—myofibroblast activation, parenchymal cell dysfunction, and inflammation—while also inhibiting tissue regeneration. This cytokine has been little studied, and publications on IL-11 peaked in the early 1990s, when it was largely misunderstood. Here we describe recent advances in our understanding of IL-11 biology, outline how misconceptions as to its function came about, and highlight the large potential of therapies targeting IL-11 signaling for treating human disease.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-med-041818-011649
2020-01-27
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/med/71/1/annurev-med-041818-011649.html?itemId=/content/journals/10.1146/annurev-med-041818-011649&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Yang YC, Yin T. 1992. Interleukin-11 and its receptor. Biofactors 4:115–21
    [Google Scholar]
  2. 2. 
    Taga T, Kishimoto T. 1997. gp130 and the interleukin-6 family of cytokines. Annu. Rev. Immunol. 15:797–819
    [Google Scholar]
  3. 3. 
    Dagoneau N, Scheffer D, Huber C et al. 2004. Null leukemia inhibitory factor receptor (LIFR) mutations in Stüve-Wiedemann/Schwartz-Jampel type 2 syndrome. Am. J. Hum. Genet. 74:2298–305
    [Google Scholar]
  4. 4. 
    Komori T, Tanaka M, Senba E et al. 2013. Lack of oncostatin M receptor β leads to adipose tissue inflammation and insulin resistance by switching macrophage phenotype. J. Biol. Chem. 288:3021861–75
    [Google Scholar]
  5. 5. 
    Masu Y, Wolf E, Holtmann B et al. 1993. Disruption of the CNTF gene results in motor neuron degeneration. Nature 365:644127–32
    [Google Scholar]
  6. 6. 
    Takahashi R, Yokoji H, Misawa H et al. 1994. A null mutation in the human CNTF gene is not causally related to neurological diseases. Nat. Genet. 7:179
    [Google Scholar]
  7. 7. 
    Schafer S, Viswanathan S, Widjaja AA et al. 2017. IL-11 is a crucial determinant of cardiovascular fibrosis. Nature 552:7683110–15
    [Google Scholar]
  8. 8. 
    Kang S, Tanaka T, Narazaki M et al. 2019. Targeting interleukin-6 signaling in clinic. Immunity 50:41007–23
    [Google Scholar]
  9. 9. 
    Spencer S, Köstel Bal S, Egner W et al. 2019. Loss of the interleukin-6 receptor causes immunodeficiency, atopy, and abnormal inflammatory responses. J. Exp. Med. 216:91986–98
    [Google Scholar]
  10. 10. 
    Khanna D, Denton CP, Jahreis A et al. 2016. Safety and efficacy of subcutaneous tocilizumab in adults with systemic sclerosis (faSScinate): a phase 2, randomised, controlled trial. Lancet 387:100382630–40
    [Google Scholar]
  11. 11. 
    Widjaja AA, Singh BK, Adami E et al. 2019. Inhibiting interleukin 11 signaling reduces hepatocyte death and liver fibrosis, inflammation, and steatosis in mouse models of non-alcoholic steatohepatitis. Gastroenterology 157:3777–92
    [Google Scholar]
  12. 12. 
    Putoczki TL, Dobson RCJ, Griffin MDW 2014. The structure of human interleukin-11 reveals receptor-binding site features and structural differences from interleukin-6. Acta Crystallogr. D Biol. Crystallogr. 70:Pt. 92277–85
    [Google Scholar]
  13. 13. 
    Lokau J, Nitz R, Agthe M et al. 2016. Proteolytic cleavage governs interleukin-11 trans-signaling. Cell Rep 14:71761–73
    [Google Scholar]
  14. 14. 
    Rose-John S. 2012. IL-6 trans-signaling via the soluble IL-6 receptor: importance for the pro-inflammatory activities of IL-6. Int. J. Biol. Sci. 8:91237–47
    [Google Scholar]
  15. 15. 
    Karczewski KJ, Francioli LC, Tiao G et al. 2019. Variation across 141,456 human exomes and genomes reveals the spectrum of loss-of-function intolerance across human protein-coding genes. bioRxiv 531210 https://doi.org/10.1101/531210
    [Crossref] [Google Scholar]
  16. 16. 
    Nieminen P, Morgan NV, Fenwick AL et al. 2011. Inactivation of IL11 signaling causes craniosynostosis, delayed tooth eruption, and supernumerary teeth. Am. J. Hum. Genet. 89:167–81
    [Google Scholar]
  17. 17. 
    Keupp K, Li Y, Vargel I et al. 2013. Mutations in the interleukin receptor IL11RA cause autosomal recessive Crouzon-like craniosynostosis. Mol. Genet. Genom. Med. 1:4223–37
    [Google Scholar]
  18. 18. 
    Miller KA, Twigg SRF, McGowan SJ et al. 2017. Diagnostic value of exome and whole genome sequencing in craniosynostosis. J. Med. Genet. 54:4260–68
    [Google Scholar]
  19. 19. 
    Papachristoforou R, Petrou PP, Sawyer H et al. 2014. A novel large deletion encompassing the whole of the galactose-1-phosphate uridyltransferase (GALT) gene and extending into the adjacent interleukin 11 receptor alpha (IL11RA) gene causes classic galactosemia associated with additional phenotypic abnormalities. JIMD Rep 12:91–98
    [Google Scholar]
  20. 20. 
    Brischoux-Boucher E, Trimouille A, Baujat G et al. 2018. IL11RA-related Crouzon-like autosomal recessive craniosynostosis in 10 new patients: resemblances and differences. Clin. Genet. 94:3–4373–80
    [Google Scholar]
  21. 21. 
    Nandurkar HH, Robb L, Tarlinton D et al. 1997. Adult mice with targeted mutation of the interleukin-11 receptor (IL11Ra) display normal hematopoiesis. Blood 90:62148–59
    [Google Scholar]
  22. 22. 
    Reardon W, Winter RM, Rutland P et al. 1994. Mutations in the fibroblast growth factor receptor 2 gene cause Crouzon syndrome. Nat. Genet. 8:198–103
    [Google Scholar]
  23. 23. 
    Meyers GA, Orlow SJ, Munro IR et al. 1995. Fibroblast growth factor receptor 3 (FGFR3) transmembrane mutation in Crouzon syndrome with acanthosis nigricans. Nat. Genet. 11:4462–64
    [Google Scholar]
  24. 24. 
    Wang T, Holland JW, Bols N et al. 2005. Cloning and expression of the first nonmammalian interleukin-11 gene in rainbow trout Oncorhynchus mykiss. . FEBS J 272:51136–47
    [Google Scholar]
  25. 25. 
    Wangkahart E, Secombes CJ, Wang T 2018. Studies on the use of flagellin as an immunostimulant and vaccine adjuvant in fish aquaculture. Front. Immunol. 9:3054
    [Google Scholar]
  26. 26. 
    Xu L, Podok P, Xie J et al. 2014. Comparative analysis of differential gene expression in kidney tissues of moribund and surviving crucian carp (Carassius auratus gibelio) in response to cyprinid herpesvirus 2 infection. Arch. Virol. 159:81961–74
    [Google Scholar]
  27. 27. 
    Paul SR, Bennett F, Calvetti JA et al. 1990. Molecular cloning of a cDNA encoding interleukin 11, a stromal cell-derived lymphopoietic and hematopoietic cytokine. PNAS 87:197512–16
    [Google Scholar]
  28. 28. 
    Kawashima I, Ohsumi J, Mita-Honjo K et al. 1991. Molecular cloning of cDNA encoding adipogenesis inhibitory factor and identity with interleukin-11. FEBS Lett 283:2199–202
    [Google Scholar]
  29. 29. 
    Isaacs C, Robert NJ, Bailey FA et al. 1997. Randomized placebo-controlled study of recombinant human interleukin-11 to prevent chemotherapy-induced thrombocytopenia in patients with breast cancer receiving dose-intensive cyclophosphamide and doxorubicin. J. Clin. Oncol. 15:113368–77
    [Google Scholar]
  30. 30. 
    Teramura M, Kobayashi S, Hoshino S et al. 1992. Interleukin-11 enhances human megakaryocytopoiesis in vitro. Blood 79:2327–31
    [Google Scholar]
  31. 31. 
    Orazi A, Cooper RJ, Tong J et al. 1996. Effects of recombinant human interleukin-11 (Neumega rhIL-11 growth factor) on megakaryocytopoiesis in human bone marrow. Exp. Hematol. 24:111289–97
    [Google Scholar]
  32. 32. 
    Nishina T, Komazawa-Sakon S, Yanaka S et al. 2012. Interleukin-11 links oxidative stress and compensatory proliferation. Sci. Signal. 5:207ra5
    [Google Scholar]
  33. 33. 
    Zhu M, Lu B, Cao Q et al. 2015. IL-11 attenuates liver ischemia/reperfusion injury (IRI) through STAT3 signaling pathway in mice. PLOS ONE 10:5e0126296
    [Google Scholar]
  34. 34. 
    Masubuchi Y, Bourdi M, Reilly TP et al. 2003. Role of interleukin-6 in hepatic heat shock protein expression and protection against acetaminophen-induced liver disease. Biochem. Biophys. Res. Commun. 304:1207–12
    [Google Scholar]
  35. 35. 
    Widjaja AA, Dong J, Adami E et al. 2019. Redefining interleukin 11 as a regeneration-limiting hepatotoxin. bioRxiv830018 https://doi.org/10.1101/830018
    [Crossref] [Google Scholar]
  36. 36. 
    Bozza M, Bliss JL, Maylor R et al. 1999. Interleukin-11 reduces T-cell-dependent experimental liver injury in mice. Hepatology 30:61441–47
    [Google Scholar]
  37. 37. 
    Trepicchio WL, Bozza M, Bouchard P et al. 2001. Protective effect of rhIL-11 in a murine model of acetaminophen-induced hepatotoxicity. Toxicol. Pathol. 29:2242–49
    [Google Scholar]
  38. 38. 
    Maeshima K, Takahashi T, Nakahira K et al. 2004. A protective role of interleukin 11 on hepatic injury in acute endotoxemia. Shock 21:2134–38
    [Google Scholar]
  39. 39. 
    Yu J, Feng Z, Tan L et al. 2016. Interleukin-11 protects mouse liver from warm ischemia/reperfusion (WI/Rp) injury. Clin. Res. Hepatol. Gastroenterol. 40:5562–70
    [Google Scholar]
  40. 40. 
    Lawitz EJ, Hepburn MJ, Casey TJ 2004. A pilot study of interleukin-11 in subjects with chronic hepatitis C and advanced liver disease nonresponsive to antiviral therapy. Am. J. Gastroenterol. 99:122359–64
    [Google Scholar]
  41. 41. 
    Ng B, Dong J, D'Agostino G et al. 2019. IL-11 is a therapeutic target in idiopathic pulmonary fibrosis Sci. . Transl. Med 11:511eaaw1237
    [Google Scholar]
  42. 42. 
    Tsuchida T, Friedman SL. 2017. Mechanisms of hepatic stellate cell activation. Nat. Rev. Gastroenterol. Hepatol. 14:7397–411
    [Google Scholar]
  43. 43. 
    Kammoun HL, Allen TL, Henstridge DC et al. 2017. Over-expressing the soluble gp130-Fc does not ameliorate methionine and choline deficient diet-induced non alcoholic steatohepatitis in mice. PLOS ONE 12:6e0179099
    [Google Scholar]
  44. 44. 
    Kimura R, Maeda M, Arita A et al. 2007. Identification of cardiac myocytes as the target of interleukin 11, a cardioprotective cytokine. Cytokine 38:2107–15
    [Google Scholar]
  45. 45. 
    Obana M, Miyamoto K, Murasawa S et al. 2012. Therapeutic administration of IL-11 exhibits the postconditioning effects against ischemia-reperfusion injury via STAT3 in the heart. Am. J. Physiol. Heart Circ. Physiol. 303:5H569–77
    [Google Scholar]
  46. 46. 
    Obana M, Maeda M, Takeda K et al. 2010. Therapeutic activation of signal transducer and activator of transcription 3 by interleukin-11 ameliorates cardiac fibrosis after myocardial infarction. Circulation 121:5684–91
    [Google Scholar]
  47. 47. 
    Tamura Y, Kohno H, Mohri T et al. 2018. The cardioprotective effect of interleukin-11 against ischemia-reperfusion injury in a heart donor model. Ann. Cardiothorac. Surg. 7:199–105
    [Google Scholar]
  48. 48. 
    Stangou M, Bhangal G, Lai P-C et al. 2011. Effect of IL-11 on glomerular expression of TGF-beta and extracellular matrix in nephrotoxic nephritis in Wistar Kyoto rats. J. Nephrol. 24:1106–11
    [Google Scholar]
  49. 49. 
    Lee HT, Park SW, Kim M et al. 2012. Interleukin-11 protects against renal ischemia and reperfusion injury. Am. J. Physiol. Renal Physiol. 303:8F1216–24
    [Google Scholar]
  50. 50. 
    Ye J, Wang Z, Ye D et al. 2019. Increased interleukin-11 levels are correlated with cardiac events in patients with chronic heart failure. Mediators Inflamm 2019:1575410
    [Google Scholar]
  51. 51. 
    Liu N-W, Huang X, Liu S et al. 2019. Elevated BNP caused by recombinant human interleukin-11 treatment in patients with chemotherapy-induced thrombocytopenia. Support. Care Cancer 27:114293–98
    [Google Scholar]
  52. 52. 
    Lindahl GE, Stock CJ, Shi-Wen X et al. 2013. Microarray profiling reveals suppressed interferon stimulated gene program in fibroblasts from scleroderma-associated interstitial lung disease. Respir. Res. 14:80
    [Google Scholar]
  53. 53. 
    Minshall E, Chakir J, Laviolette M et al. 2000. IL-11 expression is increased in severe asthma: association with epithelial cells and eosinophils. J. Allergy Clin. Immunol. 105:2 Pt. 1232–38
    [Google Scholar]
  54. 54. 
    Strikoudis A, Cieślak A, Loffredo L et al. 2019. Modeling of fibrotic lung disease using 3D organoids derived from human pluripotent stem cells. Cell Rep 27:123709–23.e5
    [Google Scholar]
  55. 55. 
    Waxman AB, Einarsson O, Seres T et al. 1999. Targeted lung expression of interleukin-11 enhances murine tolerance of 100% oxygen and diminishes hyperoxia-induced DNA fragmentation. Chest 116:1 Suppl.8S–9S
    [Google Scholar]
  56. 56. 
    Tang W, Geba GP, Zheng T et al. 1996. Targeted expression of IL-11 in the murine airway causes lymphocytic inflammation, bronchial remodeling, and airways obstruction. J. Clin. Investig. 98:122845–53
    [Google Scholar]
  57. 57. 
    Sheridan BC, Dinarello CA, Meldrum DR et al. 1999. Interleukin-11 attenuates pulmonary inflammation and vasomotor dysfunction in endotoxin-induced lung injury. Am. J. Physiol. 277:5L861–67
    [Google Scholar]
  58. 58. 
    Chen Q, Rabach L, Noble P et al. 2005. IL-11 receptor alpha in the pathogenesis of IL-13-induced inflammation and remodeling. J. Immunol. 174:42305–13
    [Google Scholar]
  59. 59. 
    Elias JA, Zheng T, Einarsson O et al. 1994. Epithelial interleukin-11. Regulation by cytokines, respiratory syncytial virus, and retinoic acid. J. Biol. Chem. 269:3522261–68
    [Google Scholar]
  60. 60. 
    Wang J, Zhu Z, Nolfo R et al. 1999. Dexamethasone regulation of lung epithelial cell and fibroblast interleukin-11 production. Am. J. Physiol. 276:1L175–85
    [Google Scholar]
  61. 61. 
    Ng B, Dong J, Viswanathan S et al. 2019. Fibroblast-specific IL11 signaling is required for lung fibrosis and inflammation. bioRxiv 801852. https://doi.org/10.1101/801852
    [Crossref] [Google Scholar]
  62. 62. 
    Toda M, Leung DYM, Molet S et al. 2003. Polarized in vivo expression of IL-11 and IL-17 between acute and chronic skin lesions. J. Allergy Clin. Immunol. 111:4875–81
    [Google Scholar]
  63. 63. 
    Trepicchio WL, Ozawa M, Walters IB et al. 1999. Interleukin-11 therapy selectively downregulates type I cytokine proinflammatory pathways in psoriasis lesions. J. Clin. Investig. 104:111527–37
    [Google Scholar]
  64. 64. 
    Roberti ML, Ricottini L, Capponi A et al. 2014. Immunomodulating treatment with low dose interleukin-4, interleukin-10 and interleukin-11 in psoriasis vulgaris. J. Biol. Regul. Homeost. Agents 28:1133–39
    [Google Scholar]
  65. 65. 
    Denton CP, Ong VH, Xu S et al. 2018. Therapeutic interleukin-6 blockade reverses transforming growth factor-beta pathway activation in dermal fibroblasts: insights from the faSScinate clinical trial in systemic sclerosis. Ann. Rheum. Dis. 77:91362–71
    [Google Scholar]
  66. 66. 
    Lafyatis R. 2014. Transforming growth factor β—at the centre of systemic sclerosis. Nat. Rev. Rheumatol. 10:12706–19
    [Google Scholar]
  67. 67. 
    Nishimura SL. 2009. Integrin-mediated transforming growth factor-β activation, a potential therapeutic target in fibrogenic disorders. Am. J. Pathol. 175:41362–70
    [Google Scholar]
  68. 68. 
    Shin JY, Beckett JD, Bagirzadeh R et al. 2019. Epigenetic activation and memory at a TGFB2 enhancer in systemic sclerosis. Sci. Transl. Med. 11:497eaaw0790
    [Google Scholar]
  69. 69. 
    Walmsley M, Butler DM, Marinova-Mutafchieva L et al. 1998. An anti-inflammatory role for interleukin-11 in established murine collagen-induced arthritis. Immunology 95:131–37
    [Google Scholar]
  70. 70. 
    Anguita J, Barthold SW, Samanta S et al. 1999. Selective anti-inflammatory action of interleukin-11 in murine Lyme disease: arthritis decreases while carditis persists. J. Infect. Dis. 179:3734–37
    [Google Scholar]
  71. 71. 
    Hill GR, Cooke KR, Teshima T et al. 1998. Interleukin-11 promotes T cell polarization and prevents acute graft-versus-host disease after allogeneic bone marrow transplantation. J. Clin. Investig. 102:1115–23
    [Google Scholar]
  72. 72. 
    Sonis S, Muska A, O'Brien J et al. 1995. Alteration in the frequency, severity and duration of chemotherapy-induced mucositis in hamsters by interleukin-11. Eur. J. Cancer B Oral. Oncol. 31B:4261–66
    [Google Scholar]
  73. 73. 
    Sonis ST, Van Vugt AG, McDonald J et al. 1997. Mitigating effects of interleukin 11 on consecutive courses of 5-fluorouracil-induced ulcerative mucositis in hamsters. Cytokine 9:8605–12
    [Google Scholar]
  74. 74. 
    Qiu BS, Pfeiffer CJ, Keith JC Jr 1996. Protection by recombinant human interleukin-11 against experimental TNB-induced colitis in rats. Dig. Dis. Sci. 41:81625–30
    [Google Scholar]
  75. 75. 
    Gibson DL, Montero M, Ropeleski MJ et al. 2010. Interleukin-11 reduces TLR4-induced colitis in TLR2-deficient mice and restores intestinal STAT3 signaling. Gastroenterology 139:41277–88
    [Google Scholar]
  76. 76. 
    Moreland L, Gugliotti R, King K et al. 2001. Results of a phase-I/II randomized, masked, placebo-controlled trial of recombinant human interleukin-11 (rhIL-11) in the treatment of subjects with active rheumatoid arthritis. Arthritis Res 3:4247–52
    [Google Scholar]
  77. 77. 
    Herrlinger KR, Witthoeft T, Raedler A et al. 2006. Randomized, double blind controlled trial of subcutaneous recombinant human interleukin-11 versus prednisolone in active Crohn's disease. Am. J. Gastroenterol. 101:4793–97
    [Google Scholar]
  78. 78. 
    Sands BE, Winston BD, Salzberg B et al. 2002. Randomized, controlled trial of recombinant human interleukin-11 in patients with active Crohn's disease. Aliment. Pharmacol. Ther. 16:3399–406
    [Google Scholar]
  79. 79. 
    Hermann JA, Hall MA, Maini RN et al. 1998. Important immunoregulatory role of interleukin-11 in the inflammatory process in rheumatoid arthritis. Arthritis Rheum 41:81388–97
    [Google Scholar]
  80. 80. 
    Wong PKK, Campbell IK, Robb L et al. 2005. Endogenous IL-11 is pro-inflammatory in acute methylated bovine serum albumin/interleukin-1-induced (mBSA/IL-1) arthritis. Cytokine 29:272–76
    [Google Scholar]
  81. 81. 
    Elshabrawy HA, Volin MV, Essani AB et al. 2018. IL-11 facilitates a novel connection between RA joint fibroblasts and endothelial cells. Angiogenesis 21:2215–28
    [Google Scholar]
  82. 82. 
    Kuo D, Ding J, Cohn IS et al. 2019. HBEGF+ macrophages in rheumatoid arthritis induce fibroblast invasiveness. Sci. Transl. Med. 11:491eaau8587
    [Google Scholar]
  83. 83. 
    Arijs I, Li K, Toedter G et al. 2009. Mucosal gene signatures to predict response to infliximab in patients with ulcerative colitis. Gut 58:121612–19
    [Google Scholar]
  84. 84. 
    Smillie CS, Biton M, Ordovas-Montanes J et al. 2019. Intra- and inter-cellular rewiring of the human colon during ulcerative colitis. Cell 178:3714–30.e22
    [Google Scholar]
  85. 85. 
    Arijs I, Quintens R, Van Lommel L et al. 2010. Predictive value of epithelial gene expression profiles for response to infliximab in Crohn's disease. Inflamm. Bowel Dis. 16:122090–98
    [Google Scholar]
  86. 86. 
    Lim WW, Ng B, Widjaja A et al. 2019. Interleukin 11 expression causes murine inflammatory bowel disease. bioRxiv 756098. https://doi.org/10.1101/756098
    [Crossref] [Google Scholar]
  87. 87. 
    Putoczki TL, Ernst M. 2015. IL-11 signaling as a therapeutic target for cancer. Immunotherapy 7:4441–53
    [Google Scholar]
  88. 88. 
    Marusyk A, Tabassum DP, Altrock PM et al. 2014. Non-cell-autonomous driving of tumour growth supports sub-clonal heterogeneity. Nature 514:752054–58
    [Google Scholar]
  89. 89. 
    Janiszewska M, Tabassum DP, Castaño Z et al. 2019. Subclonal cooperation drives metastasis by modulating local and systemic immune microenvironments. Nat. Cell Biol. 21:7879–88
    [Google Scholar]
  90. 90. 
    Tao L, Huang G, Wang R et al. 2016. Cancer-associated fibroblasts treated with cisplatin facilitates chemoresistance of lung adenocarcinoma through IL-11/IL-11R/STAT3 signaling pathway. Sci. Rep. 6:38408
    [Google Scholar]
  91. 91. 
    Rapoza ML, Fu D, Sendak RA 2006. Development of an in vitro potency assay for therapeutic TGFbeta antagonists: the A549 cell bioassay. J. Immunol. Methods 316:1–218–26
    [Google Scholar]
  92. 92. 
    Ollila S, Domènech-Moreno E, Laajanen K et al. 2017. Stromal Lkb1 deficiency leads to gastrointestinal tumorigenesis involving the IL-11-JAK/STAT3 pathway. J. Clin. Investig. 128:1402–14
    [Google Scholar]
  93. 93. 
    Moreland L, Gugliotti R, King K et al. 2001. Results of a phase-I/II randomized, masked, placebo-controlled trial of recombinant human interleukin-11 (rhIL-11) in the treatment of subjects with active rheumatoid arthritis. Arthritis Res 3:4247–52
    [Google Scholar]
  94. 94. 
    Grant Rowe R, Lin Y, Shimizu-Hirota R et al. 2011. Hepatocyte-derived Snail1 propagates liver fibrosis progression. Mol. Cell. Biol. 31:122392–403
    [Google Scholar]
  95. 95. 
    Grande MT, Sánchez-Laorden B, López-Blau C et al. 2015. Snail1-induced partial epithelial-to-mesenchymal transition drives renal fibrosis in mice and can be targeted to reverse established disease. Nat. Med. 21:9989–97
    [Google Scholar]
/content/journals/10.1146/annurev-med-041818-011649
Loading
/content/journals/10.1146/annurev-med-041818-011649
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error