1932

Abstract

The genomes of bacteria contain fewer genes and substantially less noncoding DNA than those of eukaryotes, and as a result, they have much less raw material to invent new traits. Yet, bacteria are vastly more taxonomically diverse, numerically abundant, and globally successful in colonizing new habitats compared to eukaryotes. Although bacterial genomes are generally considered to be optimized for efficient growth and rapid adaptation, nonadaptive processes have played a major role in shaping the size, contents, and compact organization of bacterial genomes and have allowed the establishment of deleterious traits that serve as the raw materials for genetic innovation.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-micro-020518-115822
2020-09-08
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/74/1/annurev-micro-020518-115822.html?itemId=/content/journals/10.1146/annurev-micro-020518-115822&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Abbot P, Moran NA. 2002. Extremely low levels of genetic polymorphism in endosymbionts (Buchnera) of aphids (Pemphigus). Mol. Ecol. 11:2649–60
    [Google Scholar]
  2. 2. 
    Adler M, Anjum M, Berg OG, Andersson DI, Sandegren L 2014. High fitness costs and instability of gene duplications reduce rates of evolution of new genes by duplication-divergence mechanisms. Mol. Biol. Evol. 31:61526–35
    [Google Scholar]
  3. 3. 
    Albalat R, Cañestro C. 2016. Evolution by gene loss. Nat. Rev. Genet. 17:7379–91
    [Google Scholar]
  4. 4. 
    Aguilar-Rodríguez J, Sabater-Muñoz B, Montagud-Martínez R, Berlanga V, Alvarez-Ponce D et al. 2016. The molecular chaperone DnaK is a source of mutational robustness. Genome Biol. Evol. 8:92979–91
    [Google Scholar]
  5. 5. 
    Anderson RP, Roth JR. 1977. Tandem genetic duplications in phage and bacteria. Annu. Rev. Microbiol. 31:473–505
    [Google Scholar]
  6. 6. 
    Andreani NA, Hesse E, Vos M 2017. Prokaryote genome fluidity is dependent on effective population size. ISME J 11:71719–21
    [Google Scholar]
  7. 7. 
    Beadle BM, Shoichet BK. 2002. Structural bases of stability-function tradeoffs in enzymes. J. Mol. Biol. 321:285–96
    [Google Scholar]
  8. 8. 
    Bendall ML, Stevens SL, Chan L-K, Malfatti S, Schwientek P et al. 2016. Genome-wide selective sweeps and gene-specific sweeps in natural bacterial populations. ISME J 10:1589–601
    [Google Scholar]
  9. 9. 
    Bentkowski P, Van Oosterhout C, Mock T 2015. A model of genome size evolution for prokaryotes in stable and fluctuating environments. Genome Biol. Evol. 7:2344–51
    [Google Scholar]
  10. 10. 
    Bergthorsson U, Andersson DI, Roth JR 2007. Ohno's dilemma: evolution of new genes under continuous selection. PNAS 104:4317004–9
    [Google Scholar]
  11. 11. 
    Blount ZD, Borland CZ, Lenski RE 2008. Historical contingency and the evolution of a key innovation in an experimental population of Escherichia coli. PNAS 105:237899–906
    [Google Scholar]
  12. 12. 
    Bobay LM, Ochman H. 2018. Factors driving effective population size and pan-genome evolution in bacteria. BMC Evol. Biol. 18:1153
    [Google Scholar]
  13. 13. 
    Bobay LM, Traverse CC, Ochman H 2015. Impermanence of bacterial clones. PNAS 112:298893–900
    [Google Scholar]
  14. 14. 
    Bogumil D, Dagan T. 2012. Cumulative impact of chaperone-mediated folding on genome evolution. Biochemistry 51:509941–53
    [Google Scholar]
  15. 15. 
    Brockhurst MA, Harrison E, Hall JP, Richards T, McNally A, MacLean C 2019. The ecology and evolution of pangenomes. Curr. Biol. 29:20R1094–103
    [Google Scholar]
  16. 16. 
    Catrein I, Herrmann R. 2011. The proteome of Mycoplasmapneumoniae, a supposedly “simple” cell. Proteomics 11:3614–32
    [Google Scholar]
  17. 17. 
    Choudoir MJ, Doroghazi JR, Buckley DH 2016. Latitude delineates patterns of biogeography in terrestrial Streptomyces: biogeography of Streptomyces. Environ. Microbiol 18:4931–45
    [Google Scholar]
  18. 18. 
    Choudoir MJ, Panke-Buisse K, Andam CP, Buckley DH 2017. Genome surfing as driver of microbial genomic diversity. Trends Microbiol 25:8624–36
    [Google Scholar]
  19. 19. 
    Chu HY, Sprouffske K, Wagner A 2017. The role of recombination in evolutionary adaptation of Escherichia coli to a novel nutrient. J. Evol. Biol. 30:91692–711
    [Google Scholar]
  20. 20. 
    Cobo-Simón M, Tamames J. 2017. Relating genomic characteristics to environmental preferences and ubiquity in different microbial taxa. BMC Genom 18:499
    [Google Scholar]
  21. 21. 
    Cohan FM. 2001. Bacterial species and speciation. Syst. Biol. 50:513–24
    [Google Scholar]
  22. 22. 
    Coleman ML, Sullivan MB, Martiny AC, Steglich C, Barry K et al. 2006. Genomic islands and the ecology and evolution of Prochlorococcus. Science 311:1768–70
    [Google Scholar]
  23. 23. 
    Copley SD. 2017. Shining a light on enzyme promiscuity. Curr. Op. Struct. Biol. 47:167–75
    [Google Scholar]
  24. 24. 
    Corel E, Meheust R, Watson AK, McInerney JO, Lopez P, Bapteste E 2017. Bipartite network analysis of gene sharings in the microbial world. Mol. Biol. Evol. 35:4899–913
    [Google Scholar]
  25. 25. 
    Croucher NJ, Mostowy R, Wymant C, Turner P, Bentley SD, Fraser C 2016. Horizontal DNA transfer mechanisms of bacteria as weapons of intragenomic conflict. PLOS Biol 14:31002394
    [Google Scholar]
  26. 26. 
    D'Ari R, Casadesus J. 1998. Underground metabolism. BioEssays 20:181–86
    [Google Scholar]
  27. 27. 
    Daubin V, Ochman H. 2004. Start-up entities in the origin of new genes. Curr. Op. Genet. Dev. 14:6616–19
    [Google Scholar]
  28. 28. 
    Delaye L, DeLuna A, Lazcano A, Becerra A 2008. The origin of a novel gene through overprinting in Escherichia coli. BMCEvol. Biol 8:31
    [Google Scholar]
  29. 29. 
    Dufresne A, Salanoubat M, Partensky F, Artiguenave F, Axmann IM et al. 2003. Genome sequence of the cyanobacterium Prochlorococcusmarinus SS120, a nearly minimal oxyphototrophic genome. PNAS 100:1710020–25
    [Google Scholar]
  30. 30. 
    Fan Y, Wu J, Ung MH, De Lay N, Cheng C, Ling J 2015. Protein mistranslation protects bacteria against oxidative stress. Nucl. Acids Res. 43:31740–48
    [Google Scholar]
  31. 31. 
    Feiner R, Argov T, Rabinovich L, Sigal N, Borovok I, Herskovits AA 2015. A new perspective on lysogeny: prophages as active regulatory switches of bacteria. Nat. Rev. Microbiol. 13:10641–50
    [Google Scholar]
  32. 32. 
    Fellner L, Simon S, Scherling C, Witting M, Schober S et al. 2015. Evidence for the recent origin of a bacterial protein-coding overlapping orphan gene by evolutionary overprinting. BMC Evol. Biol. 15:283
    [Google Scholar]
  33. 33. 
    Felsenstein J. 1974. The evolutionary advantage of recombination. Genetics 78:2737–56
    [Google Scholar]
  34. 34. 
    Francino MP. 2005. An adaptive radiation model for the origin of new gene functions. Nat. Genet. 37:6573–77
    [Google Scholar]
  35. 35. 
    Fredericq P. 1958. Colicins and colicinogenic factors. Symp. Soc. Exp. Biol. 12:104–22
    [Google Scholar]
  36. 36. 
    García-Aljaro C, Ballesté E, Muniesa M 2017. Beyond the canonical strategies of horizontal gene transfer in prokaryotes. Curr. Op. Microbiol. 38:95–105
    [Google Scholar]
  37. 37. 
    Ghalayini M, Launay A, Bridier-Nahmias A, Clermont O, Denamur E et al. 2018. Evolution of a dominant natural isolate of Escherichia coli in the human gut over the course of a year suggests a neutral evolution with reduced effective population size. Appl. Environ. Microbiol. 84:6e02377–17
    [Google Scholar]
  38. 38. 
    Giovannoni SJ, Thrash JC, Temperton B 2014. Implications of streamlining theory for microbial ecology. ISME J 8:1553–65
    [Google Scholar]
  39. 39. 
    Giovannoni SJ, Tripp HJ, Givan S, Podar M, Vergin KL et al. 2005. Genome streamlining in a cosmopolitan oceanic bacterium. Science 309:1242–45
    [Google Scholar]
  40. 40. 
    González-Torres P, Rodríguez-Mateos F, Antón J, Gabaldón T 2019. Impact of homologous recombination on the evolution of prokaryotic core genomes. mBio 10:1e02494–18
    [Google Scholar]
  41. 41. 
    Goodall EC, Robinson A, Johnston IG, Jabbari S, Turner KA et al. 2018. The essential genome of Escherichia coli K-12. mBio 9:1e02096–17
    [Google Scholar]
  42. 42. 
    Greenblum S, Carr R, Borenstein E 2015. Extensive strain-level copy-number variation across human gut microbiome species. Cell 160:4583–94
    [Google Scholar]
  43. 43. 
    Han K, Li Z, Peng R, Zhu L, Zhou T et al. 2013. Extraordinary expansion of a Sorangiumcellulosum genome from an alkaline milieu. Sci. Rep. 3:2101
    [Google Scholar]
  44. 44. 
    Hanage WP. 2016. Not so simple after all: bacteria, their population genetics, and recombination. Cold Spring Harb. Persp. Biol. 8:7a018069
    [Google Scholar]
  45. 45. 
    Hao W, Golding GB. 2006. The fate of laterally transferred genes: life in the fast lane to adaptation or death. Genome Res 16:5636–43
    [Google Scholar]
  46. 46. 
    Harms MJ, Thornton JW. 2013. Evolutionary biochemistry: revealing the historical and physical causes of protein properties. Nat. Rev. Genet. 14:8559–71
    [Google Scholar]
  47. 47. 
    Hehemann JH, Arevalo P, Datta MS, Yu X, Corzett CH et al. 2016. Adaptive radiation by waves of gene transfer leads to fine-scale resource partitioning in marine microbes. Nat. Commun. 7:12860
    [Google Scholar]
  48. 48. 
    Hershberg R, Petrov DA. 2010. Evidence that mutation is universally biased towards AT in bacteria. PLOS Genet 6:e1001115
    [Google Scholar]
  49. 49. 
    Hill WG, Robertson A 1966. The effect of linkage on limits to artificial selection. Genet. Res. 8:3269–94
    [Google Scholar]
  50. 50. 
    Huang H, Pandya C, Liu C, Al-Obaidi NF, Wang M et al. 2015. Panoramic view of a superfamily of phosphatases through substrate profiling. PNAS 112:16E1974–83
    [Google Scholar]
  51. 51. 
    Hultqvist JJ, Warsi O, Söderholm A, Knopp M, Eckhard U et al. 2018. A bacteriophage enzyme induces bacterial metabolic perturbation that confers a novel promiscuous function. Nat. Ecol. Evol. 2:81321–30
    [Google Scholar]
  52. 52. 
    Iwasa YF, Michor F, Nowak MA 2004. Stochastic tunnels in evolutionary dynamics. Genetics 166:1571–79
    [Google Scholar]
  53. 53. 
    Jacob F, Wollman EL. 1961. Sexuality and the Genetics of Bacteria New York: Academic
  54. 54. 
    Javid B, Sorrentino F, Toosky M, Zheng W, Pinkham JT et al. 2014. Mycobacterial mistranslation is necessary and sufficient for rifampicin phenotypic resistance. PNAS 111:31132–37
    [Google Scholar]
  55. 55. 
    Kadibalban AS, Bogumil D, Landan G, Dagan T 2016. DnaK-dependent accelerated evolutionary rate in prokaryotes. Genome Biol. Evol. 8:1590–99
    [Google Scholar]
  56. 56. 
    Kashtan N, Roggensack SE, Rodrigue S, Thompson JW, Biller SJ et al. 2014. Single-cell genomics reveals hundreds of coexisting subpopulations in wild Prochlorococcus. Science 344:6182416–20
    [Google Scholar]
  57. 57. 
    Keese PK, Gibbs A. 1992. Origins of genes: “big bang” or continuous creation?. PNAS 89:9489–93
    [Google Scholar]
  58. 58. 
    Kelkar YD, Ochman H. 2013. Genome reduction promotes increase in protein functional complexity in bacteria. Genetics 193:303–7
    [Google Scholar]
  59. 59. 
    Khanal A, Yu McLoughlin S, Kershner JP, Copley SD 2014. Differential effects of a mutation on the normal and promiscuous activities of orthologs: implications for natural and directed evolution. Mol. Biol. Evol. 32:1100–8
    [Google Scholar]
  60. 60. 
    Kimura M. 1968. Evolutionary rate at the molecular level. Nature 217:5129624–26
    [Google Scholar]
  61. 61. 
    Kuo CH, Moran NA, Ochman H 2009. The consequences of genetic drift for bacterial genome complexity. Genome Res 19:81450–54
    [Google Scholar]
  62. 62. 
    Kuo CH, Ochman H. 2009. Deletional bias across the three domains of life. Genome Biol. Evol. 1:145–52
    [Google Scholar]
  63. 63. 
    Kuo CH, Ochman H. 2010. The extinction dynamics of bacterial pseudogenes. PLOS Genet 6:8e1001050
    [Google Scholar]
  64. 64. 
    Kupczok A, Neve H, Huang KD, Hoeppner MP, Heller KJ et al. 2018. Rates of mutation and recombination in Siphoviridae phage genome evolution over three decades. Mol. Biol. Evol. 35:51147–59
    [Google Scholar]
  65. 65. 
    Lambert JD, Moran NA. 1998. Deleterious mutations destabilize ribosomal RNA in endosymbiotic bacteria. PNAS 95:4458–62
    [Google Scholar]
  66. 66. 
    Land M, Hauser L, Jun SR, Nookaew I, Leuze MR et al. 2015. Insights from 20 years of bacterial genome sequencing. Funct. Integr. Genom. 152:141–61
    [Google Scholar]
  67. 67. 
    Lane N, Martin W. 2010. The energetics of genome complexity. Nature 467:929–34
    [Google Scholar]
  68. 68. 
    Leiman PG, Basler M, Ramagopal UA, Bonanno JB, Sauder JM et al. 2009. Type VI secretion apparatus and phage tail-associated protein complexes share a common evolutionary origin. PNAS 106:114154–59
    [Google Scholar]
  69. 69. 
    Lerat E, Daubin V, Ochman H, Moran NA 2005. Evolutionary origins of genomic repertoires in bacteria. PLOS Biol 3:5e130
    [Google Scholar]
  70. 70. 
    Libby E, Hebert-Dufresne L, Hosseini SR, Wagner A 2019. Syntrophy emerges spontaneously in complex metabolic systems. PLOS Comp. Biol. 15:7e1007169
    [Google Scholar]
  71. 71. 
    Lind PA, Tobin C, Berg OG, Kurland CG, Andersson DI 2010. Compensatory gene amplification restores fitness after inter-species gene replacements. Mol. Microbiol. 75:51078–89
    [Google Scholar]
  72. 72. 
    Lynch M. 2006. Streamlining and simplification of microbial genome architecture. Annu. Rev. Microbiol. 60:327–49
    [Google Scholar]
  73. 73. 
    Lynch M, Conery JS. 2003. The origins of genome complexity. Science 302:56491401–4
    [Google Scholar]
  74. 74. 
    Martin DP, Murrell B, Golden M, Khoosal A, Muhire B 2015. RDP4: Detection and analysis of recombination patterns in virus genomes. Virus Evol 1:1vev003
    [Google Scholar]
  75. 75. 
    Mas A, Jamshidi S, Lagadeuc Y, Eveillard D, Vandenkoornhuyse P 2016. Beyond the black queen hypothesis. ISME J 10:92085–91
    [Google Scholar]
  76. 76. 
    McCutcheon JP, Moran NA. 2010. Functional convergence in reduced genomes of bacterial symbionts spanning 200 Myr of evolution. Genome Biol. Evol. 2:708–18
    [Google Scholar]
  77. 77. 
    McCutcheon JP, Moran NA. 2012. Extreme genome reduction in symbiotic bacteria. Nat. Rev. Microbiol. 10:13–26
    [Google Scholar]
  78. 78. 
    Minot S, Bryson A, Chehoud C, Wu GD, Lewis JD, Bushman FD 2013. Rapid evolution of the human gut virome. PNAS 110:3012450–55
    [Google Scholar]
  79. 79. 
    Mira A, Ochman H, Moran NA 2001. Deletional bias and the evolution of bacterial genomes. Trends Genet 17:10589–96
    [Google Scholar]
  80. 80. 
    Moran NA. 1996. Accelerated evolution and Muller's rachet in endosymbiotic bacteria. PNAS 93:2873–78
    [Google Scholar]
  81. 81. 
    Moran NA, Bennett GM. 2014. The tiniest tiny genomes. Annu. Rev. Microbiol. 68:195–215
    [Google Scholar]
  82. 82. 
    Morris JJ, Lenski RE, Zinser ER 2012. The Black Queen Hypothesis: evolution of dependencies through adaptive gene loss. mBio 32:e00036–12
    [Google Scholar]
  83. 83. 
    Muller HJ 1964. The relation of recombination to mutational advance. Mut. Res. Fundam. Mol. Mech. Mutagen. 1:12–9
    [Google Scholar]
  84. 84. 
    Naito M, Pawlowska TE. 2016. Defying Muller's Ratchet: ancient heritable endobacteria escape extinction through retention of recombination and genome plasticity. mBio 7:3e02057–15
    [Google Scholar]
  85. 85. 
    Näsvall J, Sun L, Roth JR, Andersson DI 2012. Real-time evolution of new genes by innovation amplification and divergence. Science 338:6105384–87
    [Google Scholar]
  86. 86. 
    Neme R, Tautz D. 2016. Fast turnover of genome transcription across evolutionary time exposes entire non-coding DNA to de novo gene emergence. eLife 5:e09977
    [Google Scholar]
  87. 87. 
    Neuenschwander SM, Ghai R, Pernthaler J, Salcher MM 2018. Microdiversification in genome-streamlined ubiquitous freshwater Actinobacteria. ISME J 12:185–98
    [Google Scholar]
  88. 88. 
    Nilsson AI, Koskiniemi S, Eriksson S, Kugelberg E, Hinton JC, Andersson DI 2005. Bacterial genome size reduction by experimental evolution. PNAS 102:3412112–16
    [Google Scholar]
  89. 89. 
    Notebaart RA, Szappanos B, Kintses B, Pál F, Györkei Á et al. 2014. Network-level architecture and the evolutionary potential of underground metabolism. PNAS 111:3211762–67
    [Google Scholar]
  90. 90. 
    Novichkov PS, Wolf YI, Dubchak I, Koonin EV 2009. Trends in prokaryotic evolution revealed by comparison of closely related bacterial and archaeal genomes. J. Bact. 191:165–73
    [Google Scholar]
  91. 91. 
    Ohno S. 1970. Evolution by Gene Duplication New York: Springer-Verlag
  92. 92. 
    Ohno S. 1984. Birth of a unique enzyme from an alternative reading frame of the preexisted internally repetitious coding sequence. PNAS 81:82421–25
    [Google Scholar]
  93. 93. 
    Oliveira PH, Touchon M, Cury J, Rocha EP 2017. The chromosomal organization of horizontal gene transfer in bacteria. Nat. Commun. 8:1841
    [Google Scholar]
  94. 94. 
    Osawa S, Jukes TH, Watanabe K, Muto A 1992. Recent evidence for evolution of the genetic code. Microbiol. Rev. 56:229–64
    [Google Scholar]
  95. 95. 
    Pang TY, Lercher MJ. 2019. Each of 3,323 metabolic innovations in the evolution of E. coli arose through the horizontal transfer of a single DNA segment. PNAS 116:1187–92
    [Google Scholar]
  96. 96. 
    Pontrelli S, Fricke RC, Teoh ST, Laviña WA, Putri SP, Fitz-Gibbon S et al. 2018. Metabolic repair through emergence of new pathways in Escherichia coli. Nat. Chem. Biol 14:111005–9
    [Google Scholar]
  97. 97. 
    Porse A, Schou TS, Munck C, Ellabaan MMH, Sommer MOA 2018. Biochemical mechanisms determine the functional compatibility of heterologous genes. Nat. Commun. 9:522
    [Google Scholar]
  98. 98. 
    Posada D, Crandall KA. 2001. Evaluation of methods for detecting recombination from DNA sequences: computer simulations. PNAS 98:2413757–62
    [Google Scholar]
  99. 99. 
    Price MN, Arkin AP. 2015. Weakly deleterious mutations and low rates of recombination limit the impact of natural selection on bacterial genomes. mBio 6:6e01302–15
    [Google Scholar]
  100. 100. 
    Price MN, Deutschbauer AM, Skerker JM, Wetmore KM, Ruths T et al. 2013. Indirect and suboptimal control of gene expression is widespread in bacteria. Mol. Syst. Biol. 9:660
    [Google Scholar]
  101. 101. 
    Procópio REL, da Silva I, Martins MK, de Azevedo JL, de Araújo JM 2012. Antibiotics produced by Streptomyces. Braz. J. Infect. Dis 16:5466–71
    [Google Scholar]
  102. 102. 
    Raghavan R, Kacharia FR, Millar JA, Sislak CD, Ochman H 2015. Genome rearrangements can make and break small RNA genes. Genome Biol. Evol. 72:557–66
    [Google Scholar]
  103. 103. 
    Robert L, Ollion J, Robert J, Song X, Matic I, Elez M 2018. Mutation dynamics and fitness effects followed in single cells. Science 359:63811283–86
    [Google Scholar]
  104. 104. 
    Rocha EP. 2018. Neutral theory microbial practice: challenges in bacterial population genetics. Mol. Biol. Evol. 35:61338–47
    [Google Scholar]
  105. 105. 
    Rocha EP, Cornet E, Michel B 2005. Comparative and evolutionary analysis of the bacterial homologous recombination systems. PLOS Genet 12:e15
    [Google Scholar]
  106. 106. 
    Rocha EP, Feil EJ. 2010. Mutational patterns cannot explain genome composition: Are there any neutral sites in the genomes of bacteria. PLOS Genet 6:9e1001104
    [Google Scholar]
  107. 107. 
    Rozen DE, Habets MG, Handel A, de Visser JAG 2008. Heterogeneous adaptive trajectories of small populations on complex fitness landscapes. PLOS ONE 3:3e1715
    [Google Scholar]
  108. 108. 
    Sabath N, Wagner A, Karlin D 2012. Evolution of viral proteins originated de novo by overprinting. Mol. Biol. Evol. 29:123767–80
    [Google Scholar]
  109. 109. 
    Salverda ML, Koomen J, Koopmanschap B, Zwart MP, de Visser JAG 2017. Adaptive benefits from small mutation supplies in an antibiotic resistance enzyme. PNAS 114:4812773–78
    [Google Scholar]
  110. 110. 
    San Millan A, Escudero JA, Gifford DR, Mazel D, MacLean RC 2016. Multicopy plasmids potentiate the evolution of antibiotic resistance in bacteria. Nat. Ecol. Evol. 1:10
    [Google Scholar]
  111. 111. 
    Sanjuan R, Nebot MR, Chirico N, Mansky LM, Belshaw R 2010. Viral mutation rates. J. Virol. 84:199733–48
    [Google Scholar]
  112. 112. 
    Schneiker S, Perlova O, Kaiser O, Gerth K, Alici A et al. 2007. Complete genome sequence of the myxobacterium Sorangiumcellulosum. Nat. Biotechnol 25:1281–89
    [Google Scholar]
  113. 113. 
    Serres MH, Kerr AR, McCormack TJ, Riley M 2009. Evolution by leaps: gene duplication in bacteria. Biol. Direct. 4:46
    [Google Scholar]
  114. 114. 
    Shigenobu S, Watanabe H, Hattori M, Sakaki Y, Ishikawa H 2000. Genome sequence of the endocellular bacterial symbiont of aphids Buchnera sp. APS. Nature 407:81–86
    [Google Scholar]
  115. 115. 
    Smith JM. 1970. Natural selection and the concept of a protein space. Nature 225:5232563–64
    [Google Scholar]
  116. 116. 
    Sung W, Ackerman MS, Miller SF, Doak TG, Lynch M 2012. Drift-barrier hypothesis and mutation-rate evolution. PNAS 109:4518488–92
    [Google Scholar]
  117. 117. 
    Suttle CA. 2005. Viruses in the sea. Nature 437:7057356–61
    [Google Scholar]
  118. 118. 
    Swan BK, Tupper B, Sczyrba A, Lauro FM, Martinez-Garcia M et al. 2013. Prevalent genome streamlining and latitudinal divergence of planktonic bacteria in the surface ocean. PNAS 110:11463–68
    [Google Scholar]
  119. 119. 
    Szappanos B, Fritzemeier J, Csörgő B, Lázár V, Lu X et al. 2016. Adaptive evolution of complex innovations through stepwise metabolic niche expansion. Nat. Commun. 7:11607
    [Google Scholar]
  120. 120. 
    Toll-Riera M, San Millan A, Wagner A, MacLean CR 2015. The genomic basis of evolutionary innovation in Pseudomonasaeruginosa. PLOS Genet 12:5e1006005
    [Google Scholar]
  121. 121. 
    Touchon M, Bobay LM, Rocha EPC 2014. The chromosomal accommodation and domestication of mobile genetic elements. Curr. Opin. Microbiol. 22:22–29
    [Google Scholar]
  122. 122. 
    Traverse CC, Ochman H. 2016. Conserved rates and patterns of transcription errors across bacterial growth states and lifestyles. PNAS 113:123311–16
    [Google Scholar]
  123. 123. 
    Treangen TJ, Rocha EPC. 2011. Horizontal transfer, not duplication, drives the expansion of protein families in prokaryotes. PLOS Genet 7:1e1001284
    [Google Scholar]
  124. 124. 
    van Ham RCHJ, Kamerbeek J, Palacios C, Rausell C, Abascal F et al. 2003. Reductive genome evolution in Buchneraaphidicola. PNAS 100:581–86
    [Google Scholar]
  125. 125. 
    Van Leuven JT, Mao M, Xing DD, Bennett GM, McCutcheon JP 2019. Cicada endosymbionts have tRNAs that are correctly processed despite having genomes that do not encode all of the tRNA processing machinery. mBio 10:e01950–18
    [Google Scholar]
  126. 126. 
    Van Oss SB, Carvunis AR 2019. De novo gene birth. PLOS Genet 15:5e1008160
    [Google Scholar]
  127. 127. 
    Vos M. 2009. Why do bacteria engage in homologous recombination. Trends Microbiol 17:6226–32
    [Google Scholar]
  128. 128. 
    Vos M, Didelot X. 2009. A comparison of homologous recombination rates in bacteria and archaea. ISME J 3:199–208
    [Google Scholar]
  129. 129. 
    Weissman DB, Desai MM, Fisher DS, Feldman MW 2009. The rate at which asexual populations cross fitness valleys. Theor. Pop. Biol. 75:4286–300
    [Google Scholar]
  130. 130. 
    Wernegreen JJ, Moran NA. 1999. Evidence for genetic drift in endosymbionts (Buchnera): analyses of protein-coding genes. Mol. Biol. Evol. 16:83–97
    [Google Scholar]
  131. 131. 
    Wielgoss S, Barrick JE, Tenaillon O, Wiser MJ, Dittmar WJ et al. 2013. Mutation rate dynamics in a bacterial population reflect tension between adaptation and genetic load. PNAS 110:1222–27
    [Google Scholar]
  132. 132. 
    Yanagida H, Gispan A, Kadiouri N, Rozen S, Sharon M et al. 2015. The evolutionary potential of phenotypic mutations. PLOS Genet 11:e1005445
    [Google Scholar]
  133. 133. 
    Yen HC, Hu NT, Marrs BL 1979. Characterization of the gene transfer agent made by an overproducer mutant of Rhodopseudomonascapsulata. J. Mol. Biol 1312:157–68
    [Google Scholar]
  134. 134. 
    Yona AH, Alm EJ, Gore J 2018. Random sequences rapidly evolve into de-novo promoters. Nat. Comm. 9:11530
    [Google Scholar]
  135. 135. 
    Yoosef S, Nealson KH, Rusch DB, McCrow JP, Dupont CL et al. 2010. Genomic and functional adaptation in surface ocean planktonic prokaryotes. Nature 468:60–67
    [Google Scholar]
  136. 136. 
    Young JPW. 2016. Bacteria are smartphones and mobile genes are apps. Trends Microbiol 24:931–32
    [Google Scholar]
  137. 137. 
    Yus E, Maier T, Michalodimitrakis K, van Noort V, Yamada T et al. 2009. Impact of genome reduction on bacterial metabolism and its regulation. Science 326:1263–68
    [Google Scholar]
  138. 138. 
    Zhao S, Lieberman TD, Poyet M, Kauffman KM, Gibbons SM et al. 2019. Adaptive evolution within gut microbiomes of healthy people. Cell Host Microbe 25:5656–67
    [Google Scholar]
  139. 139. 
    Zheng J, Payne JL, Wagner A 2019. Cryptic genetic variation accelerates evolution by opening access to diverse adaptive peaks. Science 365:6451347–53
    [Google Scholar]
  140. 140. 
    Zientz E, Dandekar T, Gross R 2004. Metabolic interdependence of obligate intracellular bacteria and their insect hosts. Microbiol. Mol. Biol. Rev. 68:745–70
    [Google Scholar]
/content/journals/10.1146/annurev-micro-020518-115822
Loading
/content/journals/10.1146/annurev-micro-020518-115822
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error