1932

Abstract

Response regulators function as the output components of two-component systems, which couple the sensing of environmental stimuli to adaptive responses. Response regulators typically contain conserved receiver (REC) domains that function as phosphorylation-regulated switches to control the activities of effector domains that elicit output responses. This modular design is extremely versatile, enabling different regulatory strategies tuned to the needs of individual signaling systems. This review summarizes structural features that underlie response regulator function. An abundance of atomic resolution structures and complementary biochemical data have defined the mechanisms for response regulator enzymatic activities, revealed trends in regulatory strategies utilized by response regulators of different subfamilies, and provided insights into interactions of response regulators with their cognate histidine kinases. Among the hundreds of thousands of response regulators identified, variations abound. This article provides a framework for understanding structural features that enable function of canonical response regulators and a basis for distinguishing noncanonical configurations.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-micro-020518-115931
2019-09-08
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/73/1/annurev-micro-020518-115931.html?itemId=/content/journals/10.1146/annurev-micro-020518-115931&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Alexander RP, Lowenthal AC, Harshey RM, Ottemann KM 2010. CheV: CheW-like coupling proteins at the core of the chemotaxis signaling network. Trends Microbiol 18:494–503
    [Google Scholar]
  2. 2. 
    Alvarez AF, Barba-Ostria C, Silva-Jimenez H, Georgellis D 2016. Organization and mode of action of two component system signaling circuits from the various kingdoms of life. Environ. Microbiol. 18:3210–26
    [Google Scholar]
  3. 3. 
    Amin M, Kothamachu VB, Feliu E, Scharf BE, Porter SL, Soyer OS 2014. Phosphate sink containing two-component signaling systems as tunable threshold devices. PLOS Comput. Biol. 10:e1003890
    [Google Scholar]
  4. 4. 
    Amin R, Franz-Wachtel M, Tiffert Y, Heberer M, Meky M et al. 2016. Post-translational serine/threonine phosphorylation and lysine acetylation: a novel regulatory aspect of the global nitrogen response regulator GlnR in S. coelicolor M145. Front. Mol. Biosci. 3:38
    [Google Scholar]
  5. 5. 
    Amor BR, Schaub MT, Yaliraki SN, Barahona M 2016. Prediction of allosteric sites and mediating interactions through bond-to-bond propensities. Nat. Commun. 7:12477
    [Google Scholar]
  6. 6. 
    Bachhawat P, Swapna GV, Montelione GT, Stock AM 2005. Mechanism of activation for transcription factor PhoB suggested by different modes of dimerization in the inactive and active states. Structure 13:1353–63
    [Google Scholar]
  7. 7. 
    Baikalov I, Schröder I, Kaczor-Grzeskowiak M, Grzeskowiak K, Gunsalus RP, Dickerson RE 1996. Structure of the Escherichia coli response regulator NarL. Biochemistry 35:11053–61
    [Google Scholar]
  8. 8. 
    Barbieri CM, Mack TR, Robinson VL, Miller MT, Stock AM 2010. Regulation of response regulator autophosphorylation through interdomain contacts. J. Biol. Chem. 285:32325–35
    [Google Scholar]
  9. 9. 
    Barbieri CM, Wu T, Stock AM 2013. Comprehensive analysis of OmpR phosphorylation, dimerization, and DNA binding supports a canonical model for activation. J. Mol. Biol. 425:1612–26
    [Google Scholar]
  10. 10. 
    Batchelor JD, Doucleff M, Lee CJ, Matsubara K, De Carlo S et al. 2008. Structure and regulatory mechanism of Aquifex aeolicus NtrC4: variability and evolution in bacterial transcriptional regulation. J. Mol. Biol. 384:1058–75
    [Google Scholar]
  11. 11. 
    Battesti A, Majdalani N, Gottesman S 2011. The RpoS-mediated general stress response in Escherichia coli. Annu. Rev. Microbiol 65:189–213
    [Google Scholar]
  12. 12. 
    Bhate MP, Molnar KS, Goulian M, DeGrado WF 2015. Signal transduction in histidine kinases: insights from new structures. Structure 23:981–94
    [Google Scholar]
  13. 13. 
    Birck C, Chen Y, Hulett FM, Samama JP 2003. The crystal structure of the phosphorylation domain in PhoP reveals a functional tandem association mediated by an asymmetric interface. J. Bacteriol. 185:254–61
    [Google Scholar]
  14. 14. 
    Birck C, Mourey L, Gouet P, Fabry B, Schumacher J et al. 1999. Conformational changes induced by phosphorylation of the FixJ receiver domain. Structure 7:1505–15
    [Google Scholar]
  15. 15. 
    Blanco AG, Sola M, Gomis-Ruth FX, Coll M 2002. Tandem DNA recognition by PhoB, a two-component signal transduction transcriptional activator. Structure 10:701–13
    [Google Scholar]
  16. 16. 
    Boudes M, Sanchez D, Graille M, van Tilbeurgh H, Durand D, Quevillon-Cheruel S 2014. Structural insights into the dimerization of the response regulator ComE from Streptococcus pneumoniae. Nucleic Acids Res 42:5302–13
    [Google Scholar]
  17. 17. 
    Bourret RB. 2010. Receiver domain structure and function in response regulator proteins. Curr. Opin. Microbiol. 13:142–49
    [Google Scholar]
  18. 18. 
    Burley SK, Berman HM, Kleywegt GJ, Markley JL, Nakamura H, Velankar S 2017. Protein Data Bank (PDB): the single global macromolecular structure archive. Methods Mol. Biol 1607:627–41
    [Google Scholar]
  19. 19. 
    Capra EJ, Perchuk BS, Skerker JM, Laub MT 2012. Adaptive mutations that prevent crosstalk enable the expansion of paralogous signaling protein families. Cell 150:222–32
    [Google Scholar]
  20. 20. 
    Casino P, Miguel-Romero L, Huesa J, Garcia P, Garcia-Del Portillo F, Marina A 2018. Conformational dynamism for DNA interaction in the Salmonella RcsB response regulator. Nucleic Acids Res 46:456–72
    [Google Scholar]
  21. 21. 
    Casino P, Rubio V, Marina A 2009. Structural insight into partner specificity and phosphoryl transfer in two-component signal transduction. Cell 139:325–36
    [Google Scholar]
  22. 22. 
    Castano-Cerezo S, Bernal V, Post H, Fuhrer T, Cappadona S et al. 2014. Protein acetylation affects acetate metabolism, motility and acid stress response in Escherichia coli. Mol. Syst. Biol 10:762
    [Google Scholar]
  23. 23. 
    Chakraborty S, Winardhi RS, Morgan LK, Yan J, Kenney LJ 2017. Non-canonical activation of OmpR drives acid and osmotic stress responses in single bacterial cells. Nat. Commun. 8:1587
    [Google Scholar]
  24. 24. 
    Childers WS, Xu Q, Mann TH, Mathews II, Blair JA et al. 2014. Cell fate regulation governed by a repurposed bacterial histidine kinase. PLOS Biol 12:e1001979
    [Google Scholar]
  25. 25. 
    Cho HS, Lee SY, Yan D, Pan X, Parkinson JS et al. 2000. NMR structure of activated CheY. J. Mol. Biol. 297:543–51
    [Google Scholar]
  26. 26. 
    Choudhury HG, Beis K. 2013. The dimeric form of the unphosphorylated response regulator BaeR. Protein Sci 22:1287–93
    [Google Scholar]
  27. 27. 
    Correa F, Gardner KH. 2016. Basis of mutual domain inhibition in a bacterial response regulator. Cell Chem. Biol. 23:945–54
    [Google Scholar]
  28. 28. 
    Creager-Allen RL, Silversmith RE, Bourret RB 2013. A link between dimerization and autophosphorylation of the response regulator PhoB. J. Biol. Chem. 288:21755–69
    [Google Scholar]
  29. 29. 
    Davlieva M, Tovar-Yanez A, DeBruler K, Leonard PG, Zianni MR et al. 2016. An adaptive mutation in Enterococcus faecium LiaR associated with antimicrobial peptide resistance mimics phosphorylation and stabilizes LiaR in an activated state. J. Mol. Biol. 428:4503–19
    [Google Scholar]
  30. 30. 
    de Been M, Tempelaars MH, van Schaik W, Moezelaar R, Siezen RJ, Abee T 2010. A novel hybrid kinase is essential for regulating the σB-mediated stress response of Bacillus cereus. Environ. Microbiol 12:730–45
    [Google Scholar]
  31. 31. 
    Djordjevic S, Goudreau PN, Xu Q, Stock AM, West AH 1998. Structural basis for methylesterase CheB regulation by a phosphorylation-activated domain. PNAS 95:1381–86
    [Google Scholar]
  32. 32. 
    Doucleff M, Chen B, Maris AE, Wemmer DE, Kondrashkina E, Nixon BT 2005. Negative regulation of AAA+ ATPase assembly by two component receiver domains: a transcription activation mechanism that is conserved in mesophilic and extremely hyperthermophilic bacteria. J. Mol. Biol. 353:242–55
    [Google Scholar]
  33. 33. 
    Dubey BN, Lori C, Ozaki S, Fucile G, Plaza-Menacho I et al. 2016. Cyclic di-GMP mediates a histidine kinase/phosphatase switch by noncovalent domain cross-linking. Sci. Adv. 2:e1600823
    [Google Scholar]
  34. 34. 
    Dutta R, Inouye M. 1996. Reverse phosphotransfer from OmpR to EnvZ in a kinase/phosphatase+ mutant of EnvZ (EnvZ.N347D), a bifunctional signal transducer of Escherichia coli. J. Biol. Chem 271:1424–29
    [Google Scholar]
  35. 35. 
    El-Gebali S, Mistry J, Bateman A, Eddy SR, Luciani A et al. 2018. The Pfam protein families database in 2019. Nucleic Acids Res 47:D427–32
    [Google Scholar]
  36. 36. 
    Fernandez I, Cornaciu I, Carrica MD, Uchikawa E, Hoffmann G et al. 2017. Three-dimensional structure of full-length NtrX, an unusual member of the NtrC family of response regulators. J. Mol. Biol. 429:1192–212
    [Google Scholar]
  37. 37. 
    Fernandez I, Otero LH, Klinke S, Carrica MDC, Goldbaum FA 2015. Snapshots of conformational changes shed light into the NtrX receiver domain signal transduction mechanism. J. Mol. Biol. 427:3258–72
    [Google Scholar]
  38. 38. 
    Filippova EV, Zemaitaitis B, Aung T, Wolfe AJ, Anderson WF 2018. Structural basis for DNA recognition by the two-component response regulator RcsB. mBio 9:01993–17
    [Google Scholar]
  39. 39. 
    Fraiberg M, Afanzar O, Cassidy CK, Gabashvili A, Schulten K et al. 2015. CheY's acetylation sites responsible for generating clockwise flagellar rotation in Escherichia coli. Mol. Microbiol 95:231–44
    [Google Scholar]
  40. 40. 
    Friedland N, Mack TR, Yu M, Hung L-W, Terwilliger TC et al. 2007. Domain orientation in the inactive response regulator Mycobacterium tuberculosis MtrA provides a barrier to activation. Biochemistry 46:6733–43
    [Google Scholar]
  41. 41. 
    Galperin MY, Makarova KS, Wolf YI, Koonin EV 2018. Phyletic distribution and lineage-specific domain architectures of archaeal two-component signal transduction systems. J. Bacteriol. 200:e00681–17
    [Google Scholar]
  42. 42. 
    Gao R, Stock AM. 2010. Molecular strategies for phosphorylation-mediated regulation of response regulator activity. Curr. Opin. Microbiol. 13:160–67
    [Google Scholar]
  43. 43. 
    Gao R, Stock AM. 2017. Quantitative kinetic analyses of shutting off a two-component system. mBio 8:e00412–17
    [Google Scholar]
  44. 44. 
    Gardino AK, Villali J, Kivenson A, Lei M, Liu CF et al. 2009. Transient non-native hydrogen bonds promote activation of a signaling protein. Cell 139:1109–18
    [Google Scholar]
  45. 45. 
    Gottschlich L, Bortfeld-Miller M, Gabelein C, Dintner S, Vorholt JA 2018. Phosphorelay through the bifunctional phosphotransferase PhyT controls the general stress response in an alphaproteobacterium. PLOS Genet 14:e1007294
    [Google Scholar]
  46. 46. 
    Grimshaw CE, Huang S, Hanstein CG, Strauch MA, Burbulys D et al. 1998. Synergistic kinetic interactions between components of the phosphorelay controlling sporulation in Bacillus subtilis. Biochemistry 37:1365–75
    [Google Scholar]
  47. 47. 
    Hastings CA, Lee SY, Cho HS, Yan D, Kustu S, Wemmer DE 2003. High-resolution solution structure of the beryllofluoride-activated NtrC receiver domain. Biochemistry 42:9081–90
    [Google Scholar]
  48. 48. 
    He X, Wang L, Wang S 2016. Structural basis of DNA sequence recognition by the response regulator PhoP in Mycobacterium tuberculosis. Sci. Rep 6:24442
    [Google Scholar]
  49. 49. 
    Hentchel KL, Escalante-Semerena JC. 2015. Acylation of biomolecules in prokaryotes: a widespread strategy for the control of biological function and metabolic stress. Microbiol. Mol. Biol. Rev. 79:321–46
    [Google Scholar]
  50. 50. 
    Hong E, Lee HM, Ko H, Kim DU, Jeon BY et al. 2007. Structure of an atypical orphan response regulator protein supports a new phosphorylation-independent regulatory mechanism. J. Biol. Chem. 282:20667–75
    [Google Scholar]
  51. 51. 
    Hu LI, Chi BK, Kuhn ML, Filippova EV, Walker-Peddakotla AJ et al. 2013. Acetylation of the response regulator RcsB controls transcription from a small RNA promoter. J. Bacteriol. 195:4174–86
    [Google Scholar]
  52. 52. 
    Huynh TN, Stewart V. 2011. Negative control in two-component signal transduction by transmitter phosphatase activity. Mol. Microbiol. 82:275–86
    [Google Scholar]
  53. 53. 
    Immormino RM, Silversmith RE, Bourret RB 2016. A variable active site residue influences the kinetics of response regulator phosphorylation and dephosphorylation. Biochemistry 55:5595–609
    [Google Scholar]
  54. 54. 
    Inclan YF, Laurent S, Zusman DR 2008. The receiver domain of FrzE, a CheA-CheY fusion protein, regulates the CheA histidine kinase activity and downstream signalling to the A- and S-motility systems of Myxococcus xanthus. . Mol. Microbiol 68:1328–39
    [Google Scholar]
  55. 55. 
    King-Scott J, Nowak E, Mylonas E, Panjikar S, Roessle M et al. 2007. The structure of a full-length response regulator from Mycobacterium tuberculosis in a stabilized three-dimensional domain-swapped, activated state. J. Biol. Chem. 282:37717–29
    [Google Scholar]
  56. 56. 
    Lau J, Hernandez-Alicea L, Vass RH, Chien P 2015. A phosphosignaling adaptor primes the AAA+ protease ClpXP to drive cell cycle-regulated proteolysis. Mol. Cell 59:104–16
    [Google Scholar]
  57. 57. 
    Laub MT, Goulian M. 2007. Specificity in two-component signal transduction pathways. Annu. Rev. Genet. 41:121–45
    [Google Scholar]
  58. 58. 
    Lee SY, De La Torre A, Yan D, Kustu S, Nixon BT, Wemmer DE 2003. Regulation of the transcriptional activator NtrC1: structural studies of the regulatory and AAA+ ATPase domains. Genes Dev 17:2552–63
    [Google Scholar]
  59. 59. 
    Lehman MK, Bose JL, Sharma-Kuinkel BK, Moormeier DE, Endres JL et al. 2015. Identification of the amino acids essential for LytSR-mediated signal transduction in Staphylococcus aureus and their roles in biofilm-specific gene expression. Mol. Microbiol. 95:723–37
    [Google Scholar]
  60. 60. 
    Leonard PG, Golemi-Kotra D, Stock AM 2013. Phosphorylation-dependent conformational changes and domain rearrangements in Staphylococcus aureus VraR activation. PNAS 110:8525–30
    [Google Scholar]
  61. 61. 
    Lin W, Wang Y, Han X, Zhang Z, Wang C et al. 2014. Atypical OmpR/PhoB subfamily response regulator GlnR of actinomycetes functions as a homodimer, stabilized by the unphosphorylated conserved Asp-focused charge interactions. J. Biol. Chem. 289:15413–25
    [Google Scholar]
  62. 62. 
    Liu Y, Rose J, Huang S, Hu Y, Wu Q et al. 2017. A pH-gated conformational switch regulates the phosphatase activity of bifunctional HisKA-family histidine kinases. Nat. Commun. 8:2104
    [Google Scholar]
  63. 63. 
    Lori C, Kaczmarczyk A, de Jong I, Jenal U 2018. A single-domain response regulator functions as an integrating hub to coordinate general stress response and development in alphaproteobacteria. mBio 9:e00809–18
    [Google Scholar]
  64. 64. 
    Lou YC, Wang I, Rajasekaran M, Kao YF, Ho MR et al. 2014. Solution structure and tandem DNA recognition of the C-terminal effector domain of PmrA from Klebsiella pneumoniae. Nucleic Acids Res 42:4080–93
    [Google Scholar]
  65. 65. 
    Lou YC, Weng TH, Li YC, Kao YF, Lin WF et al. 2015. Structure and dynamics of polymyxin-resistance-associated response regulator PmrA in complex with promoter DNA. Nat. Commun. 6:8838
    [Google Scholar]
  66. 66. 
    Luebke JL, Eaton DS, Sachleben JR, Crosson S 2018. Allosteric control of a bacterial stress response system by an anti-sigma factor. Mol. Microbiol. 107:164–79
    [Google Scholar]
  67. 67. 
    Lukat GS, McCleary WR, Stock AM, Stock JB 1992. Phosphorylation of bacterial response regulator proteins by low molecular weight phospho-donors. PNAS 89:718–22
    [Google Scholar]
  68. 68. 
    Martinez-Hackert E, Stock AM. 1997. Structural relationships in the OmpR family of winged-helix transcription factors. J. Mol. Biol. 269:301–12
    [Google Scholar]
  69. 69. 
    Mascher T, Helmann JD, Unden G 2006. Stimulus perception in bacterial signal-transducing histidine kinases. Microbiol. Mol. Biol. Rev. 70:910–38
    [Google Scholar]
  70. 70. 
    McDonald LR, Boyer JA, Lee AL 2012. Segmental motions, not a two-state concerted switch, underlie allostery in CheY. Structure 20:1363–73
    [Google Scholar]
  71. 71. 
    Mechaly AE, Haouz A, Sassoon N, Buschiazzo A, Betton JM, Alzari PM 2018. Conformational plasticity of the response regulator CpxR, a key player in Gammaproteobacteria virulence and drug-resistance. J. Struct. Biol. 204:165–71
    [Google Scholar]
  72. 72. 
    Mechaly AE, Soto Diaz S, Sassoon N, Buschiazzo A, Betton JM, Alzari PM 2017. Structural coupling between autokinase and phosphotransferase reactions in a bacterial histidine kinase. Structure 25:939–44.e3
    [Google Scholar]
  73. 73. 
    Milani M, Leoni L, Rampioni G, Zennaro E, Ascenzi P, Bolognesi M 2005. An active-like structure in the unphosphorylated StyR response regulator suggests a phosphorylation-dependent allosteric activation mechanism. Structure 13:1289–97
    [Google Scholar]
  74. 74. 
    Mo G, Zhou H, Kawamura T, Dahlquist FW 2012. Solution structure of a complex of the histidine autokinase CheA with its substrate CheY. Biochemistry 51:3786–98
    [Google Scholar]
  75. 75. 
    Müller S, Pflock M, Schär J, Kennard S, Beier D 2007. Regulation of expression of atypical orphan response regulators of Helicobacter pylori. Microbiol. Res 162:1–14
    [Google Scholar]
  76. 76. 
    Narayanan A, Paul LN, Tomar S, Patil DN, Kumar P, Yernool DA 2012. Structure-function studies of DNA binding domain of response regulator KdpE reveals equal affinity interactions at DNA half-sites. PLOS ONE 7:e30102
    [Google Scholar]
  77. 77. 
    Nesper J, Hug I, Kato S, Hee CS, Habazettl JM et al. 2017. Cyclic di-GMP differentially tunes a bacterial flagellar motor through a novel class of CheY-like regulators. eLife 6:e28842
    [Google Scholar]
  78. 78. 
    Nowak E, Panjikar S, Konarev P, Svergun DI, Tucker PA 2006. The structural basis of signal transduction for the response regulator PrrA from Mycobacterium tuberculosis. J. Biol. Chem 281:9659–66
    [Google Scholar]
  79. 79. 
    O'Hara BP, Norman RA, Wan PT, Roe SM, Barrett TE et al. 1999. Crystal structure and induction mechanism of AmiC-AmiR: a ligand-regulated transcription antitermination complex. EMBO J 18:5175–86
    [Google Scholar]
  80. 80. 
    Page SC, Immormino RM, Miller TH, Bourret RB 2016. Experimental analysis of functional variation within protein families: receiver domain autodephosphorylation kinetics. J. Bacteriol. 198:2483–93
    [Google Scholar]
  81. 81. 
    Parashar V, Mirouze N, Dubnau DA, Neiditch MB 2011. Structural basis of response regulator dephosphorylation by Rap phosphatases. PLOS Biol 9:e1000589
    [Google Scholar]
  82. 82. 
    Park AK, Lee JH, Chi YM, Park H 2016. Structural characterization of the full-length response regulator spr1814 in complex with a phosphate analogue reveals a novel conformational plasticity of the linker region. Biochem. Biophys. Res. Commun. 473:625–29
    [Google Scholar]
  83. 83. 
    Park AK, Moon JH, Lee KS, Chi YM 2012. Crystal structure of receiver domain of putative NarL family response regulator spr1814 from Streptococcus pneumoniae in the absence and presence of the phosphoryl analog beryllofluoride. Biochem. Biophys. Res. Commun. 421:403–7
    [Google Scholar]
  84. 84. 
    Park S, Meyer M, Jones AD, Yennawar HP, Yennawar NH, Nixon BT 2002. Two-component signaling in the AAA+ ATPase DctD: binding Mg2+ and BeF3 selects between alternate dimeric states of the receiver domain. FASEB J 16:1964–66
    [Google Scholar]
  85. 85. 
    Patel K, Golemi-Kotra D. 2015. Signaling mechanism by the Staphylococcus aureus two-component system LytSR: role of acetyl phosphate in bypassing the cell membrane electrical potential sensor LytS. F1000Res 4:79
    [Google Scholar]
  86. 86. 
    Pazy Y, Motaleb MA, Guarnieri MT, Charon NW, Zhao R, Silversmith RE 2010. Identical phosphatase mechanisms achieved through distinct modes of binding phosphoprotein substrate. PNAS 107:1924–29
    [Google Scholar]
  87. 87. 
    Pazy Y, Wollish AC, Thomas SA, Miller PJ, Collins EJ et al. 2009. Matching biochemical reaction kinetics to the timescales of life: structural determinants that influence the autodephosphorylation rate of response regulator proteins. J. Mol. Biol. 392:1205–20
    [Google Scholar]
  88. 88. 
    Podgornaia AI, Laub MT. 2013. Determinants of specificity in two-component signal transduction. Curr. Opin. Microbiol. 16:156–62
    [Google Scholar]
  89. 89. 
    Pontiggia F, Pachov DV, Clarkson MW, Villali J, Hagan MF et al. 2015. Free energy landscape of activation in a signalling protein at atomic resolution. Nat. Commun. 6:7284
    [Google Scholar]
  90. 90. 
    Ramakrishnan R, Schuster M, Bourret RB 1998. Acetylation at Lys-92 enhances signaling by the chemotaxis response regulator protein CheY. PNAS 95:4918–23
    [Google Scholar]
  91. 91. 
    Robinson VL, Wu T, Stock AM 2003. Structural analysis of the domain interface in DrrB, a response regulator of the OmpR/PhoB subfamily. J. Bacteriol. 185:4186–94
    [Google Scholar]
  92. 92. 
    Romling U, Gomelsky M, Galperin MY 2005. c-di-GMP: the dawning of a novel bacterial signalling system. Mol. Microbiol. 57:629–39
    [Google Scholar]
  93. 93. 
    Ruiz D, Salinas P, Lopez-Redondo ML, Cayuela ML, Marina A, Contreras A 2008. Phosphorylation-independent activation of the atypical response regulator NblR. Microbiology 154:3002–15
    [Google Scholar]
  94. 94. 
    Sidote DJ, Barbieri CM, Wu T, Stock AM 2008. Structure of the Staphylococcus aureus AgrA LytTR domain bound to DNA reveals a beta fold with an unusual mode of binding. Structure 16:727–35
    [Google Scholar]
  95. 95. 
    Simonovic M, Volz K. 2001. A distinct meta-active conformation in the 1.1-Å resolution structure of wild-type apoCheY. J. Biol. Chem. 276:28637–40
    [Google Scholar]
  96. 96. 
    Skerker JM, Perchuk BS, Siryaporn A, Lubin EA, Ashenberg O et al. 2008. Rewiring the specificity of two-component signal transduction systems. Cell 133:1043–54
    [Google Scholar]
  97. 97. 
    Sourjik V, Schmitt R. 1996. Different roles of CheY1 and CheY2 in the chemotaxis of Rhizobium meliloti. Mol. Microbiol 22:427–36
    [Google Scholar]
  98. 98. 
    Sourjik V, Schmitt R. 1998. Phosphotransfer between CheA, CheY1, and CheY2 in the chemotaxis signal transduction chain of Rhizobium meliloti. Biochemistry 37:2327–35
    [Google Scholar]
  99. 99. 
    Stock AM, Robinson VL, Goudreau PN 2000. Two-component signal transduction. Annu. Rev. Biochem. 69:183–215
    [Google Scholar]
  100. 100. 
    Surette MG, Levit M, Liu Y, Lukat G, Ninfa EG et al. 1996. Dimerization is required for the activity of the protein histidine kinase CheA that mediates signal transduction in bacterial chemotaxis. J. Biol. Chem. 271:939–45
    [Google Scholar]
  101. 101. 
    Thomas SA, Brewster JA, Bourret RB 2008. Two variable active site residues modulate response regulator phosphoryl group stability. Mol. Microbiol. 69:453–65
    [Google Scholar]
  102. 102. 
    Thomas SA, Immormino RM, Bourret RB, Silversmith RE 2013. Nonconserved active site residues modulate CheY autophosphorylation kinetics and phosphodonor preference. Biochemistry 52:2262–73
    [Google Scholar]
  103. 103. 
    Tindall MJ, Porter SL, Maini PK, Armitage JP 2010. Modeling chemotaxis reveals the role of reversed phosphotransfer and a bi-functional kinase-phosphatase. PLOS Comput. Biol. 6:e1000896
    [Google Scholar]
  104. 104. 
    Toro-Roman A, Mack TR, Stock AM 2005. Structural analysis and solution studies of the activated regulatory domain of the response regulator ArcA: a symmetric dimer mediated by the α4-β5-α5 face. J. Mol. Biol. 349:11–26
    [Google Scholar]
  105. 105. 
    Toro-Roman A, Wu T, Stock AM 2005. A common dimerization interface in bacterial response regulators KdpE and TorR. Protein Sci 14:3077–88
    [Google Scholar]
  106. 106. 
    Trajtenberg F, Albanesi D, Ruetalo N, Botti H, Mechaly AE et al. 2014. Allosteric activation of bacterial response regulators: the role of the cognate histidine kinase beyond phosphorylation. mBio 5:e02105
    [Google Scholar]
  107. 107. 
    Trajtenberg F, Imelio JA, Machado MR, Larrieux N, Marti MA et al. 2016. Regulation of signaling directionality revealed by 3D snapshots of a kinase:regulator complex in action. eLife 5:e21422
    [Google Scholar]
  108. 108. 
    Varughese KI. 2005. Conformational changes of Spo0F along the phosphotransfer pathway. J. Bacteriol. 187:8221–27
    [Google Scholar]
  109. 109. 
    Vidangos N, Maris AE, Young A, Hong E, Pelton JG et al. 2013. Structure, function, and tethering of DNA-binding domains in σ54 transcriptional activators. Biopolymers 99:1082–96
    [Google Scholar]
  110. 110. 
    Villali J, Pontiggia F, Clarkson MW, Hagan MF, Kern D 2014. Evidence against the “Y-T coupling” mechanism of activation in the response regulator NtrC. J. Mol. Biol. 426:1554–67
    [Google Scholar]
  111. 111. 
    Volkman BF, Lipson D, Wemmer DE, Kern D 2001. Two-state allosteric behavior in a single domain signaling protein. Science 291:2429–33
    [Google Scholar]
  112. 112. 
    Volz K. 1993. Structural conservation in the CheY superfamily. Biochemistry 32:11741–53
    [Google Scholar]
  113. 113. 
    Wang L, Tian X, Wang J, Yang H, Fan K et al. 2009. Autoregulation of antibiotic biosynthesis by binding of the end product to an atypical response regulator. PNAS 106:8617–22
    [Google Scholar]
  114. 114. 
    Wheeler TJ, Clements J, Finn RD 2014. Skylign: a tool for creating informative, interactive logos representing sequence alignments and profile hidden Markov models. BMC Bioinform 15:7
    [Google Scholar]
  115. 115. 
    Willett JW, Herrou J, Briegel A, Rotskoff G, Crosson S 2015. Structural asymmetry in a conserved signaling system that regulates division, replication, and virulence of an intracellular pathogen. PNAS 112:E3709–18
    [Google Scholar]
  116. 116. 
    Wolfe AJ. 2010. Physiologically relevant small phosphodonors link metabolism to signal transduction. Curr. Opin. Microbiol. 13:204–9
    [Google Scholar]
  117. 117. 
    Wright GSA, Saeki A, Hikima T, Nishizono Y, Hisano T et al. 2018. Architecture of the complete oxygen-sensing FixL-FixJ two-component signal transduction system. Sci. Signal. 11:eaaq0825
    [Google Scholar]
  118. 118. 
    Wu J, Ohta N, Newton A 1998. An essential, multicomponent signal transduction pathway required for cell cycle regulation in Caulobacter. PNAS 95:1443–48
    [Google Scholar]
  119. 119. 
    Yamada S, Sugimoto H, Kobayashi M, Ohno A, Nakamura H, Shiro Y 2009. Structure of PAS-linked histidine kinase and the response regulator complex. Structure 17:1333–44
    [Google Scholar]
  120. 120. 
    Yan D, Cho HS, Hastings CA, Igo MM, Lee SY et al. 1999. Beryllofluoride mimics phosphorylation of NtrC and other bacterial response regulators. PNAS 96:14789–94
    [Google Scholar]
  121. 121. 
    Yan J, Barak R, Liarzi O, Shainskaya A, Eisenbach M 2008. In vivo acetylation of CheY, a response regulator in chemotaxis of Escherichia coli. J. Mol. Biol 376:1260–71
    [Google Scholar]
  122. 122. 
    Zapf J, Madhusudan M, Grimshaw CE, Hoch JA, Varughese KI, Whiteley JM 1998. A source of response regulator autophosphatase activity: the critical role of a residue adjacent to the Spo0F autophosphorylation active site. Biochemistry 37:7725–32
    [Google Scholar]
  123. 123. 
    Zapf J, Sen U, Madhusudan, Hoch JA, Varughese KI 2000. A transient interaction between two phosphorelay proteins trapped in a crystal lattice reveals the mechanism of molecular recognition and phosphotransfer in signal transduction. Structure 8:851–62
    [Google Scholar]
  124. 124. 
    Zhao R, Collins EJ, Bourret RB, Silversmith RE 2002. Structure and catalytic mechanism of the E. coli chemotaxis phosphatase CheZ. Nat. Struct. Biol. 9:570–75
    [Google Scholar]
  125. 125. 
    Zhu X, Rebello J, Matsumura P, Volz K 1997. Crystal structures of CheY mutants Y106W and T87I/Y106W: CheY activation correlates with movement of residue 106. J. Biol. Chem. 272:5000–6
    [Google Scholar]
  126. 126. 
    Zhu Y, Qin L, Yoshida T, Inouye M 2000. Phosphatase activity of histidine kinase EnvZ without kinase catalytic domain. PNAS 97:7808–13
    [Google Scholar]
/content/journals/10.1146/annurev-micro-020518-115931
Loading
/content/journals/10.1146/annurev-micro-020518-115931
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error