1932

Abstract

is an opportunistic pathogen that causes a variety of acute and chronic infections. Usually a commensal on the host body, is capable of transforming into a virulent pathogen upon sensing favorable changes in the host immune system or stress cues. infections are hard to eradicate, because this pathogen has developed strong resistance to most conventional antibiotics; in addition, in chronic infections it commonly forms a biofilm matrix, which provides bacterial cells a protected environment to withstand various stresses including antibiotics. Given its importance as a human pathogen and its notorious antimicrobial tolerance, has been the subject of intensive investigations internationally. Research progress over the last two decades has unveiled a range of chemical communication systems in this pathogen. These diversified chemical communication systems endow a superb ability and remarkable flexibility to coordinate and modulate accordingly the transcriptional expression of various sets of genes associated with virulence and other physiologic activities in response to environmental changes. A fair understanding of the chemical signaling mechanisms with which governs virulence gene expression may hold the key to developing alternative therapeutic interventions that control and prevent bacterial infections.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-micro-020518-120044
2019-09-08
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/73/1/annurev-micro-020518-120044.html?itemId=/content/journals/10.1146/annurev-micro-020518-120044&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Amari DT, Marques CNH, Davies DG 2013. The putative enoyl-coenzyme A hydratase DspI is required for production of the Pseudomonas aeruginosa biofilm dispersion autoinducer cis-2-decenoic acid. J. Bacteriol. 195204600–10
  2. 2. 
    Ballok AE, O'Toole GA. 2013. Pouring salt on a wound: Pseudomonas aeruginosa virulence factors alter Na+ and Cl flux in the lung. J. Bacteriol. 195184013–19
  3. 3. 
    Barbieri JT, Sun J. 2004. Pseudomonas aeruginosa ExoS and ExoT. Rev. Physiol. Biochem. Pharmacol. 15279–92
  4. 4. 
    Belin P, Moutiez M, Lautru S, Seguin J, Pernodet J-L, Gondry M 2012. The nonribosomal synthesis of diketopiperazines in tRNA-dependent cyclodipeptide synthase pathways. Nat. Prod. Rep. 299961–79
  5. 5. 
    Bomberger JM, MacEachran DP, Coutermarsh BA, Ye S, O'Toole GA, Stanton BA 2009. Long-distance delivery of bacterial virulence factors by Pseudomonas aeruginosa outer membrane vesicles. PLOS Pathog 54e1000382
  6. 6. 
    Boon C, Deng Y, Wang L-H, He Y, Xu J-L et al. 2008. A novel DSF-like signal from Burkholderia cenocepacia interferes with Candida albicans morphological transition. ISME J 2127–36Characterization of B. cenocepacia BDSF signal, a structural analog of DSF and its role in interspecies signaling and microbial pathogenesis.
  7. 7. 
    Bredenbruch F, Geffers R, Nimtz M, Buer J, Häussler S 2006. The Pseudomonas aeruginosa quinolone signal (PQS) has an iron‐chelating activity. Environ. Microbiol. 881318–29
  8. 8. 
    Bredenbruch F, Nimtz M, Wray V, Morr M, Müller R, Häussler S 2005. Biosynthetic pathway of Pseudomonas aeruginosa 4-hydroxy-2-alkylquinolines. J. Bacteriol. 187113630–35
  9. 9. 
    Bridge DR, Martin KH, Moore ER, Lee WM, Carroll JA et al. 2012. Examining the role of actin-plasma membrane association in Pseudomonas aeruginosa infection and type III secretion translocation in migratory T24 epithelial cells. Infect. Immun. 8093049–64
  10. 10. 
    Brint JM, Ohman DE. 1995. Synthesis of multiple exoproducts in Pseudomonas aeruginosa is under the control of RhlR-RhlI, another set of regulators in strain PAO1 with homology to the autoinducer-responsive LuxR-LuxI family. J. Bacteriol. 177247155–63
  11. 11. 
    Bzdrenga J, Daudé D, Rémy B, Jacquet P, Plener L et al. 2017. Biotechnological applications of quorum quenching enzymes. Chem. Biol. Interact. 267104–15
  12. 12. 
    Cai Z, Yuan Z-H, Zhang H, Pan Y, Wu Y et al. 2017. Fatty acid DSF binds and allosterically activates histidine kinase RpfC of phytopathogenic bacterium Xanthomonas campestris pv. campestris to regulate quorum-sensing and virulence. PLOS Pathog 134e1006304
  13. 13. 
    Cámara M, Williams P, Hardman A 2002. Controlling infection by tuning in and turning down the volume of bacterial small-talk. Lancet Infect. Dis. 211667–76
  14. 14. 
    Campbell J, Lin Q, Geske GD, Blackwell HE 2009. New and unexpected insights into the modulation of LuxR-type quorum sensing by cyclic dipeptides. ACS Chem. Biol. 4121051–59
  15. 15. 
    Cornforth DM, Foster KR. 2013. Competition sensing: the social side of bacterial stress responses. Nat. Rev. Microbiol. 114285
  16. 16. 
    Costerton JW, Stewart PS, Greenberg EP 1999. Bacterial biofilms: a common cause of persistent infections. Science 28454181318–22
  17. 17. 
    Cowell BA, Evans DJ, Fleiszig SMJ 2005. Actin cytoskeleton disruption by ExoY and its effects on Pseudomonas aeruginosa invasion. FEMS Microbiol. Lett. 250171–76
  18. 18. 
    Cuzick A, Stirling FR, Lindsay SL, Evans TJ 2006. The type III pseudomonal exotoxin U activates the c-Jun NH2-terminal kinase pathway and increases human epithelial interleukin-8 production. Infect. Immun. 7474104–13
  19. 19. 
    Dasgupta N, Ashare A, Hunninghake GW, Yahr TL 2006. Transcriptional induction of the Pseudomonas aeruginosa type III secretion system by low Ca2+ and host cell contact proceeds through two distinct signaling pathways. Infect. Immun 7463334–41P. aeruginosa utilizes a complex set of regulatory pathways for T3SS expression via ExsC in response to calcium and host factors.
  20. 20. 
    Dasgupta N, Lykken GL, Wolfgang MC, Yahr TL 2004. A novel anti-anti-activator mechanism regulates expression of the Pseudomonas aeruginosa type III secretion system. Mol. Microbiol. 531297–308
  21. 21. 
    Davies DG, Marques CNH. 2009. A fatty acid messenger is responsible for inducing dispersion in microbial biofilms. J. Bacteriol. 19151393–403
  22. 22. 
    de Bentzmann S, Polette M, Zahm J-M, Hinnrasky J, Kileztky C et al. 2000. Pseudomonas aeruginosa virulence factors delay airway epithelial wound repair by altering the actin cytoskeleton and inducing overactivation of epithelial matrix metalloproteinase-2. Lab. Investig. 802209–19
  23. 23. 
    de Kievit TR, Kakai Y, Register JK, Pesci EC, Iglewski BH 2002. Role of the Pseudomonas aeruginosa las and rhl quorum-sensing systems in rhlI regulation. FEMS Microbiol. Lett. 2121101–6
  24. 24. 
    Dekimpe V, Deziel E. 2009. Revisiting the quorum-sensing hierarchy in Pseudomonas aeruginosa: the transcriptional regulator RhlR regulates LasR-specific factors. Microbiology 1553712–23Host factors reorganize the hierarchical las-pqs-rhl-QS system from a las-dependent to a las-independent pathway.
  25. 25. 
    Deng Y, Wu J, Tao F, Zhang LH 2011. Listening to a new language: DSF-based quorum sensing in Gram-negative bacteria. Chem. Rev. 111160–73
  26. 26. 
    Déziel E, Lépine F, Milot S, He J, Mindrinos MN et al. 2004. Analysis of Pseudomonas aeruginosa 4-hydroxy-2-alkylquinolines (HAQs) reveals a role for 4-hydroxy-2-heptylquinoline in cell-to-cell communication. PNAS 10151339–44
  27. 27. 
    Diaz MH, Shaver CM, King JD, Musunuri S, Kazzaz JA, Hauser AR 2008. Pseudomonas aeruginosa induces localized immunosuppression during pneumonia. Infect. Immun. 76104414–21
  28. 28. 
    Diggle SP, Cornelis P, Williams P, Cámara M 2006. 4-Quinolone signalling in Pseudomonas aeruginosa: old molecules, new perspectives. Int. J. Med. Microbiol. 296283–91
  29. 29. 
    Diggle SP, Griffin AS, Campbell GS, West SA 2007. Cooperation and conflict in quorum-sensing bacterial populations. Nature 4507168411–14The impact of evolutionary dynamics on QS-mediated community lifestyle in bacterial populations of genetically varying cells.
  30. 30. 
    Diggle SP, Winzer K, Chhabra SR, Worrall KE, Cámara M, Williams P 2003. The Pseudomonas aeruginosa quinolone signal molecule overcomes the cell density‐dependency of the quorum sensing hierarchy, regulates rhl‐dependent genes at the onset of stationary phase and can be produced in the absence of LasR. Mol. Microbiol. 50129–43
  31. 31. 
    Diggle SP, Winzer K, Lazdunski A, Williams P, Cámara M 2002. Advancing the quorum in Pseudomonas aeruginosa: MvaT and the regulation of N-acylhomoserine lactone production and virulence gene expression. J. Bacteriol. 184102576–86
  32. 32. 
    Dong Y-H, Wang L-H, Xu J-L, Zhang H-B, Zhang X-F, Zhang L-H 2001. Quenching quorum-sensing-dependent bacterial infection by an N-acyl homoserine lactonase. Nature 4116839813–17
  33. 33. 
    Dong Y-H, Wang L-H, Zhang L-H 2007. Quorum-quenching microbial infections: mechanisms and implications. Philos. Trans. R. Soc. B Biol. Sci. 36214831201–11
  34. 34. 
    Dong Y-H, Zhang L-H. 2005. Quorum sensing and quorum-quenching enzymes. J. Microbiol. 431101–9
  35. 35. 
    Drenkard E, Ausubel FM. 2002. Pseudomonas biofilm formation and antibiotic resistance are linked to phenotypic variation. Nature 4166882740
  36. 36. 
    El-Halfawy OM, Valvano MA. 2015. Antimicrobial heteroresistance: An emerging field in need of clarity. Clin. Microbiol. Rev. 281191–207
  37. 37. 
    Engel J, Balachandran P. 2009. Role of Pseudomonas aeruginosa type III effectors in disease. Curr. Opin. Microbiol. 1261–66
  38. 38. 
    Frimmersdorf E, Horatzek S, Pelnikevich A, Wiehlmann L, Schomburg D 2010. How Pseudomonas aeruginosa adapts to various environments: a metabolomic approach. Environ. Microbiol. 1261734–47
  39. 39. 
    Fuqua WC, Winans SC, Greenberg EP 1994. Quorum sensing in bacteria: the LuxR-LuxI family of cell density-responsive transcriptional regulators. J. Bacteriol. 1762269
  40. 40. 
    Gallagher LA, McKnight SL, Kuznetsova MS, Pesci EC, Manoil C 2002. Functions required for extracellular quinolone signaling by Pseudomonas aeruginosa. J. Bacteriol 184236472–80
  41. 41. 
    Gilbert KB, Kim TH, Gupta R, Greenberg EP, Schuster M 2009. Global position analysis of the Pseudomonas aeruginosa quorum‐sensing transcription factor LasR. Mol. Microbiol. 7361072–85
  42. 42. 
    Glessner A, Smith RS, Iglewski BH, Robinson JB 1999. Roles of Pseudomonas aeruginosa las and rhl quorum-sensing systems in control of twitching motility. J. Bacteriol. 18151623–29
  43. 43. 
    Gondry M, Jacques IB, Thai R, Babin M, Canu N et al. 2018. A comprehensive overview of the cyclodipeptide synthase family enriched with the characterization of 32 new enzymes. Front. Microbiol. 946
  44. 44. 
    González O, Ortíz-Castro R, Díaz-Pérez C, Díaz-Pérez AL, Magaña-Dueñas V et al. 2017. Non-ribosomal peptide synthases from Pseudomonas aeruginosa play a role in cyclodipeptide biosynthesis, quorum-sensing regulation, and root development in a plant host. Microb. Ecol. 733616–29
  45. 45. 
    Gooderham WJ, Hancock REW. 2009. Regulation of virulence and antibiotic resistance by two-component regulatory systems in Pseudomonas aeruginosa. FEMS Microbiol. Rev 332279–94
  46. 46. 
    Goodman AL, Kulasekara B, Rietsch A, Boyd D, Smith RS, Lory S 2004. A signaling network reciprocally regulates genes associated with acute infection and chronic persistence in Pseudomonas aeruginosa. Dev. Cell 75745–54
  47. 47. 
    Goytia M, Shafer WM. 2010. Polyamines can increase resistance of Neisseria gonorrhoeae to mediators of the innate human host defense. Infect. Immun. 7873187–95
  48. 48. 
    Grandclément C, Tannière M, Moréra S, Dessaux Y, Faure D 2016. Quorum quenching: role in nature and applied developments. FEMS Microbiol. Rev. 40186–116
  49. 49. 
    Hawver LA, Jung SA, Ng W-L 2016. Specificity and complexity in bacterial quorum-sensing systems. FEMS Microbiol. Rev. 405738–52
  50. 50. 
    He Y, Xu M, Lin K, Ng YA, Wen C et al. 2006. Genome scale analysis of diffusible signal factor regulon in Xanthomonas campestris pv. campestris: identification of novel cell-cell communication‐dependent genes and functions. Mol. Microbiol. 592610–22
  51. 51. 
    He Y-W, Wu J, Cha J-S, Zhang L-H 2010. Rice bacterial blight pathogen Xanthomonas oryzae pv. oryzae produces multiple DSF-family signals in regulation of virulence factor production. BMC Microbiol 10187
  52. 52. 
    He Y-W, Zhang L-H. 2008. Quorum sensing and virulence regulation in Xanthomonas campestris. FEMS Microbiol. Rev 325842–57
  53. 53. 
    Hernández-Padilla L, Vázquez-Rivera D, Sánchez-Briones LA, Díaz-Pérez AL, Moreno-Rodríguez J et al. 2017. The antiproliferative effect of cyclodipeptides from Pseudomonas aeruginosa PAO1 on HeLa cells involves inhibition of phosphorylation of Akt and S6k kinases. Molecules 221024
  54. 54. 
    Hogardt M, Roeder M, Schreff AM, Eberl L, Heesemann J 2004. Expression of Pseudomonas aeruginosa exoS is controlled by quorum sensing and RpoS. Microbiology 150843–51
  55. 55. 
    Holden MTG, Ram Chhabra S, De Nys R, Stead P, Bainton NJ et al. 1999. Quorum‐sensing cross talk: isolation and chemical characterization of cyclic dipeptides from Pseudomonas aeruginosa and other gram‐negative bacteria. Mol. Microbiol. 3361254–66
  56. 56. 
    Igarashi K, Kashiwagi K. 2000. Polyamines: mysterious modulators of cellular functions. Biochem. Biophys. Res. Commun. 2713559–64
  57. 57. 
    Igarashi K, Kashiwagi K. 2010. Modulation of cellular functions by polyamines. Int. J. Biochem. Cell Biol. 42139–51
  58. 58. 
    Iyer R, Williams C, Miller C 2003. Arginine-agmatine antiporter in extreme acid resistance in Escherichia coli. J. Bacteriol 185226556–61
  59. 59. 
    Jensen V, Löns D, Zaoui C, Bredenbruch F, Meissner A et al. 2006. RhlR expression in Pseudomonas aeruginosa is modulated by the Pseudomonas quinolone signal via PhoB-dependent and-independent pathways. J. Bacteriol. 188248601–6
  60. 60. 
    Jimenez PN, Koch G, Thompson JA, Xavier KB, Cool RH, Quax WJ 2012. The multiple signaling systems regulating virulence in Pseudomonas aeruginosa. Microbiol. Mol. Biol. Rev 76146–65
  61. 61. 
    Journet L, Hughes KT, Cornelis GR 2005. Type III secretion: a secretory pathway serving both motility and virulence. Mol. Membr. Biol. 221–241–50
  62. 62. 
    Korgaonkar A, Trivedi U, Rumbaugh KP, Whiteley M 2013. Community surveillance enhances Pseudomonas aeruginosa virulence during polymicrobial infection. PNAS 11031059–64P. aeruginosa senses cellular factors from other bacteria to stimulate the production of multiple virulence factors.
  63. 63. 
    Kwon DH, Lu C-D. 2006. Polyamines induce resistance to cationic peptide, aminoglycoside, and quinolone antibiotics in Pseudomonas aeruginosa PAO1. Antimicrob. Agents Chemother. 5051615–22
  64. 64. 
    Kwon DH, Lu CD. 2006. Polyamines increase antibiotic susceptibility in bacteria. Antimicrob. Agents Chemother. 5051623–27
  65. 65. 
    Langan KM, Kotsimbos T, Peleg AY 2015. Managing Pseudomonas aeruginosa respiratory infections in cystic fibrosis. Curr. Opin. Infect. Dis. 286547–56
  66. 66. 
    Laskowski MA, Osborn E, Kazmierczak BI 2004. A novel sensor kinase-response regulator hybrid regulates type III secretion and is required for virulence in Pseudomonas aeruginosa. Mol. Microbiol 5441090–103
  67. 67. 
    Latifi A, Winson MK, Foglino M, Bycroft BW, Stewart GSAB et al. 1995. Multiple homologues of LuxR and LuxI control expression of virulence determinants and secondary metabolites through quorum sensing in Pseudomonas aeruginosa PAO1. Mol. Microbiol. 172333–43
  68. 68. 
    Lee J, Wu J, Deng Y, Wang J, Wang C et al. 2013. A cell-cell communication signal integrates quorum sensing and stress response. Nat. Chem. Biol. 95339–43
  69. 69. 
    Lee J, Zhang L. 2015. The hierarchy quorum sensing network in Pseudomonas aeruginosa. Protein Cell 6126–41The versatility of the P. aeruginosa QS circuit in responding to environmental and host stress factors to enhance virulence.
  70. 70. 
    Liu L, Li T, Cheng XJ, Peng CT, Li CC et al. 2018. Structural and functional studies on Pseudomonas aeruginosa DspI: Implications for its role in DSF biosynthesis. Sci. Rep. 813928
  71. 71. 
    Lund-Palau H, Turnbull AR, Bush A, Bardin E, Cameron L et al. 2016. Pseudomonas aeruginosa infection in cystic fibrosis: pathophysiological mechanisms and therapeutic approaches. Expert Rev. Respir. Med. 106685–97
  72. 72. 
    Manago A, Becker KA, Carpinteiro A, Wilker B, Soddemann M et al. 2015. Pseudomonas aeruginosa pyocyanin induces neutrophil death via mitochondrial reactive oxygen species and mitochondrial acid sphingomyelinase. Antioxid. Redox Signal. 22131097–110
  73. 73. 
    Martin LW, Robson CL, Watts AM, Gray AR, Wainwright CE et al. 2018. Expression of Pseudomonas aeruginosa antibiotic resistance genes varies greatly during infections in cystic fibrosis patients. Antimicrob. Agents Chemother. 6211e01789–18
  74. 74. 
    Mashburn LM, Whiteley M. 2005. Membrane vesicles traffic signals and facilitate group activities in a prokaryote. Nature 4377057422–25
  75. 75. 
    McCaw ML, Lykken GL, Singh PK, Yahr TL 2002. ExsD is a negative regulator of the Pseudomonas aeruginosa type III secretion regulon. Mol. Microbiol. 4641123–33
  76. 76. 
    Michael AJ. 2016. Biosynthesis of polyamines and polyamine-containing molecules. Biochem. J. 473152315–29
  77. 77. 
    Mishra A, Choi J, Choi S-J, Baek K-H 2017. Cyclodipeptides: an overview of their biosynthesis and biological activity. Molecules 2210):1796
  78. 78. 
    Ochsner UA, Reiser J. 1995. Autoinducer-mediated regulation of rhamnolipid biosurfactant synthesis in Pseudomonas aeruginosa. PNAS 92146424–28
  79. 79. 
    Olejnickova K, Hola V, Ruzicka F 2014. Catheter-related infections caused by Pseudomonas aeruginosa: virulence factors involved and their relationships. Pathog. Dis. 72287–94
  80. 80. 
    Pearson JP, Feldman M, Iglewski BH, Prince A 2000. Pseudomonas aeruginosa cell-to-cell signaling is required for virulence in a model of acute pulmonary infection. Infect. Immun. 6874331–34
  81. 81. 
    Pesci EC, Milbank JBJ, Pearson JP, McKnight S, Kende AS et al. 1999. Quinolone signaling in the cell-to-cell communication system of Pseudomonas aeruginosa. PNAS 962011229–34
  82. 82. 
    Pesci EC, Pearson JP, Seed PC, Iglewski BH 1997. Regulation of las and rhl quorum sensing in Pseudomonas aeruginosa. J. Bacteriol 179103127–32
  83. 83. 
    Rahmani-Badi A, Sepehr S, Fallahi H, Heidari-Keshel S 2015. Dissection of the cis-2-decenoic acid signaling network in Pseudomonas aeruginosa using microarray technique. Front. Microbiol. 6383
  84. 84. 
    Rojas Murcia N, Lee X, Waridel P, Maspoli A, Imker HJ et al. 2015. The Pseudomonas aeruginosa antimetabolite l-2-amino-4-methoxy-trans-3-butenoic acid (AMB) is made from glutamate and two alanine residues via a thiotemplate-linked tripeptide precursor. Front. Microbiol. 6170
  85. 85. 
    Romling U, Galperin MY, Gomelsky M 2013. Cyclic di-GMP: the first 25 years of a universal bacterial second messenger. Microbiol. Mol. Biol. Rev. 7711–52
  86. 86. 
    Ryan RP, Fouhy Y, Garcia BF, Watt SA, Niehaus K et al. 2008. Interspecies signalling via the Stenotrophomonas maltophilia diffusible signal factor influences biofilm formation and polymyxin tolerance in Pseudomonas aeruginosa. Mol. Microbiol 68175–86
  87. 87. 
    Ryan RP, Fouhy Y, Lucey JF, Crossman LC, Spiro S et al. 2006. Cell-cell signaling in Xanthomonas campestris involves an HD-GYP domain protein that functions in cyclic di-GMP turnover. PNAS 103176712–17
  88. 88. 
    Ryan RP, McCarthy Y, Watt SA, Niehaus K, Dow JM 2009. Intraspecies signaling involving the diffusible signal factor BDSF (cis-2-dodecenoic acid) influences virulence in Burkholderia cenocepacia. J. Bacteriol 191155013–19
  89. 89. 
    Saliba AM, Nascimento DO, Silva MCA, Assis MC, Gayer CRM et al. 2005. Eicosanoid-mediated proinflammatory activity of Pseudomonas aeruginosa ExoU. Cell. Microbiol. 7121811–22
  90. 90. 
    Schuster M, Greenberg EP. 2006. A network of networks: quorum-sensing gene regulation in Pseudomonas aeruginosa. Int. J. Med. Microbiol 296273–81
  91. 91. 
    Shen D-K, Filopon D, Chaker H, Boullanger S, Derouazi M et al. 2008. High-cell-density regulation of the Pseudomonas aeruginosa type III secretion system: implications for tryptophan catabolites. Microbiology 15482195–208
  92. 92. 
    Sitkiewicz I, Stockbauer KE, Musser JM 2007. Secreted bacterial phospholipase A2 enzymes: better living through phospholipolysis. Trends Microbiol 15263–69
  93. 93. 
    Sousa AM, Pereira MO. 2014. Pseudomonas aeruginosa diversification during infection development in cystic fibrosis lungs—a review. Pathogens 33680–703
  94. 94. 
    Stacy A, McNally L, Darch SE, Brown SP, Whiteley M 2016. The biogeography of polymicrobial infection. Nat. Rev. Microbiol. 14293Spatial variations in the microbial environment influence bacterial virulence and survival during infection.
  95. 95. 
    Stewart PS. 2002. Mechanisms of antibiotic resistance in bacterial biofilms. Int. J. Med. Microbiol. 2922107–13
  96. 96. 
    Stintzi A, Evans K, Meyer J, Poole K 1998. Quorum-sensing and siderophore biosynthesis in Pseudomonas aeruginosa: lasRllasI mutants exhibit reduced pyoverdine biosynthesis. FEMS Microbiol. Lett. 1662341–45
  97. 97. 
    Ström K, Sjögren J, Broberg A, Schnürer J 2002. Lactobacillus plantarum MiLAB 393 produces the antifungal cyclic dipeptides cyclo(l-Phe-l-Pro) and cyclo(l-Phe-trans-4-OH-l-Pro) and 3-phenyllactic acid. Appl. Environ. Microbiol. 6894322–27
  98. 98. 
    Tao F, He Y-W, Wu D-H, Swarup S, Zhang L-H 2010. The cyclic nucleotide monophosphate domain of Xanthomonas campestris global regulator Clp defines a new class of cyclic di-GMP effectors. J. Bacteriol. 19241020–29
  99. 99. 
    Toyofuku M, Nakajima-Kambe T, Uchiyama H, Nomura N 2010. The effect of a cell-to-cell communication molecule, Pseudomonas quinolone signal (PQS), produced by P. aeruginosa on other bacterial species. Microbes Environ 2511–7
  100. 100. 
    Turner KH, Everett J, Trivedi U, Rumbaugh KP, Whiteley M 2014. Requirements for Pseudomonas aeruginosa acute burn and chronic surgical wound infection. PLOS Genet 107e1004518
  101. 101. 
    Twomey KB, O'Connell OJ, McCarthy Y, Dow JM, O'Toole GA et al. 2012. Bacterial cis-2-unsaturated fatty acids found in the cystic fibrosis airway modulate virulence and persistence of Pseudomonas aeruginosa. ISME J 65939–50
  102. 102. 
    Vázquez-Rivera D, González O, Guzmán-Rodríguez J, Díaz-Pérez AL, Ochoa-Zarzosa A et al. 2015. Cytotoxicity of cyclodipeptides from Pseudomonas aeruginosa PAO1 leads to apoptosis in human cancer cell lines. Biomed. Res. Int. 2015197608
  103. 103. 
    Ventre I, Goodman AL, Vallet-Gely I, Vasseur P, Soscia C et al. 2006. Multiple sensors control reciprocal expression of Pseudomonas aeruginosa regulatory RNA and virulence genes. PNAS 1031171–76
  104. 104. 
    Venturi V. 2006. Regulation of quorum sensing in Pseudomonas. FEMS Microbiol. Rev 302274–91
  105. 105. 
    Vílchez R, Lemme A, Ballhausen B, Thiel V, Schulz S et al. 2010. Streptococcus mutans inhibits Candida albicans hyphal formation by the fatty acid signaling molecule trans‐2‐decenoic acid (SDSF). ChemBioChem 11111552–62
  106. 106. 
    Wade DS, Calfee MW, Rocha ER, Ling EA, Engstrom E et al. 2005. Regulation of Pseudomonas quinolone signal synthesis in Pseudomonas aeruginosa. J. Bacteriol 187134372–80
  107. 107. 
    Wang C, Liu X, Wang J, Zhou J, Cui Z, Zhang LH 2016. Design and characterization of a polyamine derivative inhibiting the expression of type III secretion system in Pseudomonas aeruginosa. Sci. Rep 630949Demonstrates a rational design of polyamine derivative for dampening T3SS-mediated virulence by blocking spermidine transporters.
  108. 108. 
    Wang J, Dong Y, Zhou T, Liu X, Deng Y et al. 2013. Pseudomonas aeruginosa cytotoxicity is attenuated at high cell density and associated with the accumulation of phenylacetic acid. PLOS ONE 83e60187The bacterial metabolite PAA inhibits T3SS expression and mediates acute-chronic infection switch in P. aeruginosa.
  109. 109. 
    Wang J, Wang J, Zhang L 2018. Immunological blocking of spermidine‐mediated host-pathogen communication provides effective control against Pseudomonas aeruginosa infection. Microb. Biotechnol. In press
  110. 110. 
    Wang LH, He YW, Gao YF, Wu JE, Dong YH et al. 2004. A bacterial cell-cell communication signal with cross-kingdom structural analogs. Mol. Microbiol. 51903–12
  111. 111. 
    Whiteley M, Diggle SP, Greenberg EP 2017. Progress in and promise of bacterial quorum sensing research. Nature 5517680313–20
  112. 112. 
    Williams P, Cámara M. 2009. Quorum sensing and environmental adaptation in Pseudomonas aeruginosa: a tale of regulatory networks and multifunctional signal molecules. Curr. Opin. Microbiol. 122182–91
  113. 113. 
    Winson MK, Camara M, Latifi A, Foglino M, Chhabra SR et al. 1995. Multiple N-acyl-l-homoserine lactone signal molecules regulate production of virulence determinants and secondary metabolites in Pseudomonas aeruginosa. PNAS 92209427–31
  114. 114. 
    Winstanley C, O'Brien S, Brockhurst MA 2016. Pseudomonas aeruginosa evolutionary adaptation and diversification in cystic fibrosis chronic lung infections. Trends Microbiol 245327–37
  115. 115. 
    Winzer K, Williams P. 2001. Quorum sensing and the regulation of virulence gene expression in pathogenic bacteria. Int. J. Med. Microbiol. 2912131–43
  116. 116. 
    Wolfgang MC, Lee VT, Gilmore ME, Lory S 2003. Coordinate regulation of bacterial virulence genes by a novel adenylate cyclase-dependent signaling pathway. Dev. Cell. 42253–63
  117. 117. 
    Wu D, Lim SC, Dong Y, Wu J, Tao F et al. 2012. Structural basis of substrate binding specificity revealed by the crystal structures of polyamine receptors SpuD and SpuE from Pseudomonas aeruginosa. J. Mol. Biol 4165697–712
  118. 118. 
    Xiao G, He J, Rahme LG 2006. Mutation analysis of the Pseudomonas aeruginosa mvfR and pqsABCDE gene promoters demonstrates complex quorum-sensing circuitry. Microbiology 15261679–86
  119. 119. 
    Yahr TL, Wolfgang MC. 2006. Transcriptional regulation of the Pseudomonas aeruginosa type III secretion system. Mol. Microbiol. 623631–40
  120. 120. 
    Youard ZA, Wenner N, Reimmann C 2011. Iron acquisition with the natural siderophore enantiomers pyochelin and enantio-pyochelin in Pseudomonas species. Biometals 243513–22
  121. 121. 
    Zaborin A, Romanowski K, Gerdes S, Holbrook C, Lepine F et al. 2009. Red death in Caenorhabditis elegans caused by Pseudomonas aeruginosa PAO1. PNAS 106156327–32Phosphate stress exacerbates bacterial virulence by integrating QS with stress response mediated by phoB-pqs-pyoverdine pathway.
  122. 122. 
    Zhang LH. 2003. Quorum quenching and proactive host defense. Trends Plant Sci 8238–44
  123. 123. 
    Zhou L, Wang J, Zhang L-H 2007. Modulation of bacterial Type III secretion system by a spermidine transporter dependent signaling pathway. PLOS ONE 212e1291
  124. 124. 
    Zhou L, Zhang L-H, Cámara M, He Y-W 2017. The DSF family of quorum sensing signals: diversity, biosynthesis, and turnover. Trends Microbiol 254293–303The advancements in the field of DSF-based QS signaling and its impact on bacterial lifestyle.
  125. 125. 
    Zolfaghar I, Angus AA, Kang PJ, To A, Evans DJ, Fleiszig SMJ 2005. Mutation of retS, encoding a putative hybrid two-component regulatory protein in Pseudomonas aeruginosa, attenuates multiple virulence mechanisms. Microbes Infect 7131305–16
/content/journals/10.1146/annurev-micro-020518-120044
Loading
/content/journals/10.1146/annurev-micro-020518-120044
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error