1932

Abstract

The human gut microbiota is a complex community of prokaryotic and eukaryotic microbes and viral particles that is increasingly associated with many aspects of host physiology and health. However, the classical microbiology approach of axenic culture cannot provide a complete picture of the complex interactions between microbes and their hosts in vivo. As such, recently there has been much interest in the culture of gut microbial ecosystems in the laboratory as a strategy to better understand their compositions and functions. In this review, we discuss the model platforms and methods available in the contemporary microbiology laboratory to study human gut microbiomes, as well as current knowledge surrounding the isolation of human gut microbes for the potential construction of defined communities for use in model systems.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-micro-031021-084116
2021-10-08
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/75/1/annurev-micro-031021-084116.html?itemId=/content/journals/10.1146/annurev-micro-031021-084116&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Abu-Ali GS, Mehta RS, Lloyd-Price J, Mallick H, Branck T et al. 2018. Metatranscriptome of human faecal microbial communities in a cohort of adult men. Nat. Microbiol. 3:356–66
    [Google Scholar]
  2. 2. 
    Ahern PP, Maloy KJ. 2020. Understanding immune-microbiota interactions in the intestine. Immunology 159:4–14
    [Google Scholar]
  3. 3. 
    Ahmed NH. 2014. Cultivation of parasites. Trop. Parasitol. 4:80–89
    [Google Scholar]
  4. 4. 
    Aldridge BB, Rhee KY. 2014. Microbial metabolomics: innovation, application, insight. Curr. Opin. Microbiol. 19:90–96
    [Google Scholar]
  5. 5. 
    Almeida A, Mitchell AL, Boland M, Forster SC, Gloor GB et al. 2019. A new genomic blueprint of the human gut microbiota. Nature 568:499–504
    [Google Scholar]
  6. 6. 
    Angelakis E, Bachar D, Yasir M, Musso D, Djossou F et al. 2019. Treponema species enrich the gut microbiota of traditional rural populations but are absent from urban individuals. New Microbes New Infect 27:14–21
    [Google Scholar]
  7. 7. 
    Arias-Jayo N, Abecia L, Alonso-Sáez L, Ramirez-Garcia A, Rodriguez A, Pardo MA. 2018. High-fat diet consumption induces microbiota dysbiosis and intestinal inflammation in zebrafish. Microb. Ecol. 76:1089–101
    [Google Scholar]
  8. 8. 
    Auchtung JM, Robinson CD, Britton RA. 2015. Cultivation of stable, reproducible microbial communities from different fecal donors using minibioreactor arrays (MBRAs). Microbiome 3:42
    [Google Scholar]
  9. 9. 
    Barroso E, Cueva C, Peláez C, Martínez-Cuesta MC, Requena T 2015. The computer-controlled multicompartmental dynamic model of the gastrointestinal system SIMGI. The Impact of Food Bioactives on Health: In Vitro and Ex Vivo Models K Verhoeckx, P Cotter, I López-Expósito, C Kleiveland, T Lea et al.319–27 Cham, Switz: Springer
    [Google Scholar]
  10. 10. 
    Bartfeld S, Bayram T, van de Wetering M, Huch M, Begthel H et al. 2015. In vitro expansion of human gastric epithelial stem cells and their responses to bacterial infection. Gastroenterology 148:126–36.e6
    [Google Scholar]
  11. 11. 
    Batani G, Bayer K, Böge J, Hentschel U, Thomas T. 2019. Fluorescence in situ hybridization (FISH) and cell sorting of living bacteria. Sci. Rep. 9:18618
    [Google Scholar]
  12. 12. 
    Berry D, Loy A. 2018. Stable-isotope probing of human and animal microbiome function. Trends Microbiol 26:999–1007
    [Google Scholar]
  13. 13. 
    Bhatia SN, Ingber DE. 2014. Microfluidic organs-on-chips. Nat. Biotechnol. 32:760–72
    [Google Scholar]
  14. 14. 
    Bjerrum JT. 2015. Metabonomics: analytical techniques and associated chemometrics at a glance. Methods Mol. Biol. 1277:1–14
    [Google Scholar]
  15. 15. 
    Boling L, Cuevas DA, Grasis JA, Kang HS, Knowles B et al. 2020. Dietary prophage inducers and antimicrobials: toward landscaping the human gut microbiome. Gut Microbes 11:721–34
    [Google Scholar]
  16. 16. 
    Bradford YM, Toro S, Ramachandran S, Ruzicka L, Howe DG et al. 2017. Zebrafish models of human disease: gaining insight into human disease at ZFIN. ILAR J 58:4–16
    [Google Scholar]
  17. 17. 
    Brown E, Allen-Vercoe E. 2011. Analysis of the fungal, archaeal and bacteriophage diversity in the human distal gut. Stud. Undergrad. Res. Guelph 4:211
    [Google Scholar]
  18. 18. 
    Browne HP, Forster SC, Anonye BO, Kumar N, Neville BA et al. 2016. Culturing of ‘unculturable’ human microbiota reveals novel taxa and extensive sporulation. Nature 533:543–46
    [Google Scholar]
  19. 19. 
    Callahan BJ, McMurdie PJ, Holmes SP. 2017. Exact sequence variants should replace operational taxonomic units in marker-gene data analysis. ISME J 11:2639–43
    [Google Scholar]
  20. 20. 
    Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJ, Holmes SP. 2016. DADA2: high-resolution sample inference from Illumina amplicon data. Nat. Methods 13:581–83
    [Google Scholar]
  21. 21. 
    Campbell DE, Ly LK, Ridlon JM, Hsiao A, Whitaker RJ, Degnan PH. 2020. Infection with Bacteroides phage BV01 alters the host transcriptome and bile acid metabolism in a common human gut microbe. Cell Rep 32:108142
    [Google Scholar]
  22. 22. 
    Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD et al. 2010. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 7:335–36
    [Google Scholar]
  23. 23. 
    Chavatte N, Lambrecht E, Van Damme I, Sabbe K, Houf K. 2016. Free-living protozoa in the gastrointestinal tract and feces of pigs: exploration of an unknown world and towards a protocol for the recovery of free-living protozoa. Vet. Parasitol. 225:91–98
    [Google Scholar]
  24. 24. 
    Clokie MR, Millard AD, Letarov AV, Heaphy S. 2011. Phages in nature. Bacteriophage 1:31–45
    [Google Scholar]
  25. 25. 
    Co JY, Margalef-Català M, Li X, Mah AT, Kuo CJ et al. 2019. Controlling epithelial polarity: a human enteroid model for host-pathogen interactions. Cell Rep 26:2509–20.e4
    [Google Scholar]
  26. 26. 
    Cox CR, Gilmore MS. 2007. Native microbial colonization of Drosophila melanogaster and its use as a model of Enterococcus faecalis pathogenesis. Infect. Immun. 75:1565–76
    [Google Scholar]
  27. 27. 
    DeSantis TZ, Hugenholtz P, Larsen N, Rojas M, Brodie EL et al. 2006. Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl. Environ. Microbiol. 72:5069–72
    [Google Scholar]
  28. 28. 
    Dieterich DC, Lee JJ, Link AJ, Graumann J, Tirrell DA, Schuman EM. 2007. Labeling, detection and identification of newly synthesized proteomes with bioorthogonal non-canonical amino-acid tagging. Nat. Protoc. 2:532–40
    [Google Scholar]
  29. 29. 
    Dirksen P, Assié A, Zimmermann J, Zhang F, Tietje A-M et al. 2020. CeMbio—the Caenorhabditis elegans microbiome resource. Genes Genomes Genet 10:3025–39
    [Google Scholar]
  30. 30. 
    Dirksen P, Marsh SA, Braker I, Heitland N, Wagner S et al. 2016. The native microbiome of the nematode Caenorhabditis elegans: gateway to a new host-microbiome model. BMC Biol 14:38
    [Google Scholar]
  31. 31. 
    Douglas AE. 2018. The Drosophila model for microbiome research. Lab. Anim. 47:157–64
    [Google Scholar]
  32. 32. 
    Douglas AE. 2019. Simple animal models for microbiome research. Nat. Rev. Microbiol. 17:764–75
    [Google Scholar]
  33. 33. 
    Dridi B, Henry M, El Khéchine A, Raoult D, Drancourt M. 2009. High prevalence of Methanobrevibacter smithii and Methanosphaera stadtmanae detected in the human gut using an improved DNA detection protocol. PLOS ONE 4:e7063
    [Google Scholar]
  34. 34. 
    El Hage R, Hernandez-Sanabria E, Calatayud Arroyo M, Props R, Van de Wiele T 2019. Propionate-producing consortium restores antibiotic-induced dysbiosis in a dynamic in vitro model of the human intestinal microbial ecosystem. Front. Microbiol. 10:1206
    [Google Scholar]
  35. 35. 
    Fan R, Burghardt JP, Prell F, Zorn H, Czermak P. 2020. Production and purification of fructo-oligosaccharides using an enzyme membrane bioreactor and subsequent fermentation with probiotic Bacillus coagulans. Sep. Purif. Technol. 251:117291–300
    [Google Scholar]
  36. 36. 
    Feria-Gervasio D, Denis S, Alric M, Brugère JF. 2011. In vitro maintenance of a human proximal colon microbiota using the continuous fermentation system P-ECSIM. Appl. Microbiol. Biotechnol. 91:1425–33
    [Google Scholar]
  37. 37. 
    Feria-Gervasio D, Tottey W, Gaci N, Alric M, Cardot JM et al. 2014. Three-stage continuous culture system with a self-generated anaerobia to study the regionalized metabolism of the human gut microbiota. J. Microbiol. Methods 96:111–18
    [Google Scholar]
  38. 38. 
    Finlay BB, Falkow S. 1990. Salmonella interactions with polarized human intestinal Caco-2 epithelial cells. J. Infect. Dis. 162:1096–106
    [Google Scholar]
  39. 39. 
    Flores EM, Nguyen AT, Odem MA, Eisenhoffer GT, Krachler AM. 2020. The zebrafish as a model for gastrointestinal tract-microbe interactions. Cell. Microbiol. 22:e13152
    [Google Scholar]
  40. 40. 
    García C, Tebbji F, Daigneault M, Liu N-N, Köhler JR et al. 2017. The human gut microbial metabolome modulates fungal growth via the TOR signaling pathway. mSphere 2:e00555-17
    [Google Scholar]
  41. 41. 
    Gil de la Fuente A, Armitage EG, Otero A, Barbas C, Godzien J. 2017. Differentiating signals to make biological sense—a guide through databases for MS-based non-targeted metabolomics. Electrophoresis 38:2242–56
    [Google Scholar]
  42. 42. 
    Giuliani C, Marzorati M, Innocenti M, Vilchez-Vargas R, Vital M et al. 2016. Dietary supplement based on stilbenes: a focus on gut microbial metabolism by the in vitro simulator M-SHIME®. Food Funct 7:4564–75
    [Google Scholar]
  43. 43. 
    Greenhalgh K, Ramiro-Garcia J, Heinken A, Ullmann P, Bintener T et al. 2019. Integrated in vitro and in silico modeling delineates the molecular effects of a synbiotic regimen on colorectal-cancer-derived cells. Cell Rep 27:1621–32.e9
    [Google Scholar]
  44. 44. 
    Gregory AC, Zablocki O, Zayed AA, Howell A, Bolduc B, Sullivan MB. 2020. The Gut Virome Database reveals age-dependent patterns of virome diversity in the human gut. Cell Host Microbe 28:5724–40.e8
    [Google Scholar]
  45. 45. 
    Gruninger RJ, Nguyen TTM, Reid ID, Yanke JL, Wang P et al. 2018. Application of transcriptomics to compare the carbohydrate active enzymes that are expressed by diverse genera of anaerobic fungi to degrade plant cell wall carbohydrates. Front. Microbiol. 9:1581
    [Google Scholar]
  46. 46. 
    Haitjema CH, Solomon KV, Henske JK, Theodorou MK, O'Malley MA. 2014. Anaerobic gut fungi: advances in isolation, culture, and cellulolytic enzyme discovery for biofuel production. Biotechnol. Bioeng. 111:1471–82
    [Google Scholar]
  47. 47. 
    Hallen-Adams HE, Suhr MJ. 2017. Fungi in the healthy human gastrointestinal tract. Virulence 8:352–58
    [Google Scholar]
  48. 48. 
    Hamad I, Ranque S, Azhar EI, Yasir M, Jiman-Fatani AA et al. 2017. Culturomics and amplicon-based metagenomic approaches for the study of fungal population in human gut microbiota. Sci. Rep. 7:16788
    [Google Scholar]
  49. 49. 
    Harris TW, Chen N, Cunningham F, Tello-Ruiz M, Antoshechkin I et al. 2004. WormBase: a multi-species resource for nematode biology and genomics. Nucleic Acids Res 32:D411–17
    [Google Scholar]
  50. 50. 
    Harrison D. 1957. A technique for obtaining clone cultures of soil amœbæ in sterile liquid medium. Nature 180:1301
    [Google Scholar]
  51. 51. 
    Hatzenpichler R, Scheller S, Tavormina PL, Babin BM, DA Tirrell, Orphan VJ. 2014. In situ visualization of newly synthesized proteins in environmental microbes using amino acid tagging and click chemistry. Environ. Microbiol. 16:2568–90
    [Google Scholar]
  52. 52. 
    Hoffmann C, Dollive S, Grunberg S, Chen J, Li H et al. 2013. Archaea and fungi of the human gut microbiome: correlations with diet and bacterial residents. PLOS ONE 8:e66019
    [Google Scholar]
  53. 53. 
    Howe DG, Bradford YM, Conlin T, Eagle AE, Fashena D et al. 2013. ZFIN, the Zebrafish Model Organism Database: increased support for mutants and transgenics. Nucleic Acids Res 41:D854–60
    [Google Scholar]
  54. 54. 
    Hoyles L, McCartney AL, Neve H, Gibson GR, Sanderson JD et al. 2014. Characterization of virus-like particles associated with the human faecal and caecal microbiota. Res. Microbiol. 165:803–12
    [Google Scholar]
  55. 55. 
    Hugenholtz F, de Vos WM. 2018. Mouse models for human intestinal microbiota research: a critical evaluation. Cell. Mol. Life Sci. 75:149–60
    [Google Scholar]
  56. 56. 
    Huh D, Matthews BD, Mammoto A, Montoya-Zavala M, Hsin HY, Ingber DE. 2010. Reconstituting organ-level lung functions on a chip. Science 328:1662–68
    [Google Scholar]
  57. 57. 
    Hultman J, Waldrop MP, Mackelprang R, David MM, McFarland J et al. 2015. Multi-omics of permafrost, active layer and thermokarst bog soil microbiomes. Nature 521:208–12
    [Google Scholar]
  58. 58. 
    Irazoqui JE, Troemel ER, Feinbaum RL, Luhachack LG, Cezairliyan BO, Ausubel FM. 2010. Distinct pathogenesis and host responses during infection of C. elegans by P. aeruginosa and S. aureus. PLOS Pathog 6:e1000982
    [Google Scholar]
  59. 59. 
    Jalili-Firoozinezhad S, Gazzaniga FS, Calamari EL, Camacho DM, Fadel CW et al. 2019. A complex human gut microbiome cultured in an anaerobic intestine-on-a-chip. Nat. Biomed. Eng. 3:520–31
    [Google Scholar]
  60. 60. 
    Kanehisa M, Goto S. 2000. KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res 28:27–30
    [Google Scholar]
  61. 61. 
    Karu N, Deng L, Slae M, Guo AC, Sajed T et al. 2018. A review on human fecal metabolomics: Methods, applications and the human fecal metabolome database. Anal. Chim. Acta 1030:1–24
    [Google Scholar]
  62. 62. 
    Khelaifia S, Caputo A, Andrieu C, Cadoret F, Armstrong N et al. 2018. Genome sequence and description of Haloferax massiliense sp. nov., a new halophilic archaeon isolated from the human gut. Extremophiles 22:485–98
    [Google Scholar]
  63. 63. 
    Khelaifia S, Caputo A, Djossou F, Raoult D. 2017. Draft genome sequence of a human-associated isolate of Haloferax alexandrinus strain Arc-hr, an extremely halophilic archaea. New Microbes New Infect 15:44–45
    [Google Scholar]
  64. 64. 
    Khelaifia S, Lagier JC, Nkamga VD, Guilhot E, Drancourt M, Raoult D. 2016. Aerobic culture of methanogenic archaea without an external source of hydrogen. Eur. J. Clin. Microbiol. Infect. Dis. 35:985–91
    [Google Scholar]
  65. 65. 
    Kim HJ, Lee J, Choi JH, Bahinski A, Ingber DE. 2016. Co-culture of living microbiome with microengineered human intestinal villi in a gut-on-a-chip microfluidic device. J. Vis. Exp. 2016:11454344
    [Google Scholar]
  66. 66. 
    Kim JY, Whon TW, Lim MY, Kim YB, Kim N et al. 2020. The human gut archaeome: identification of diverse haloarchaea in Korean subjects. Microbiome 8:114
    [Google Scholar]
  67. 67. 
    Knowles B, Silveira CB, Bailey BA, Barott K, Cantu VA et al. 2016. Lytic to temperate switching of viral communities. Nature 531:466–70
    [Google Scholar]
  68. 68. 
    Koyle ML, Veloz M, Judd AM, Wong AC, Newell PD et al. 2016. Rearing the fruit fly Drosophila melanogaster under axenic and gnotobiotic conditions. J. Vis. Exp. 2016:11354219
    [Google Scholar]
  69. 69. 
    Krause JL, Schaepe SS, Fritz-Wallace K, Engelmann B, Rolle-Kampczyk U et al. 2020. Following the community development of SIHUMIx—a new intestinal in vitro model for bioreactor use. Gut Microbes 11:1116–29
    [Google Scholar]
  70. 70. 
    Kumar A, Baruah A, Tomioka M, Iino Y, Kalita MC, Khan M. 2020. Caenorhabditis elegans: a model to understand host-microbe interactions. Cell Mol. Life Sci. 77:1229–49
    [Google Scholar]
  71. 71. 
    Lagier JC, Khelaifia S, Alou MT, Ndongo S, Dione N et al. 2016. Culture of previously uncultured members of the human gut microbiota by culturomics. Nat. Microbiol. 1:16203
    [Google Scholar]
  72. 72. 
    Langille MG, Zaneveld J, Caporaso JG, McDonald D, Knights D et al. 2013. Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nat. Biotechnol. 31:814–21
    [Google Scholar]
  73. 73. 
    Larsen N, de Souza CB, Krych L, Kot W, Leser TD et al. 2019. Effect of potato fiber on survival of Lactobacillus species at simulated gastric conditions and composition of the gut microbiota in vitro. Food Res. Int. 125:108644
    [Google Scholar]
  74. 74. 
    Lau JT, Whelan FJ, Herath I, Lee CH, Collins SM et al. 2016. Capturing the diversity of the human gut microbiota through culture-enriched molecular profiling. Genome Med 8:72
    [Google Scholar]
  75. 75. 
    Lee SM, Donaldson GP, Mikulski Z, Boyajian S, Ley K, Mazmanian SK. 2013. Bacterial colonization factors control specificity and stability of the gut microbiota. Nature 501:426–29
    [Google Scholar]
  76. 76. 
    Leitão-Gonçalves R, Carvalho-Santos Z, Francisco AP, Fioreze GT, Anjos M et al. 2017. Commensal bacteria and essential amino acids control food choice behavior and reproduction. PLOS Biol 15:e2000862
    [Google Scholar]
  77. 77. 
    Leslie JL, Huang S, Opp JS, Nagy MS, Kobayashi M et al. 2015. Persistence and toxin production by Clostridium difficile within human intestinal organoids result in disruption of epithelial paracellular barrier function. Infect. Immun. 83:138–45
    [Google Scholar]
  78. 78. 
    Loch G, Zinke I, Mori T, Carrera P, Schroer J et al. 2017. Antimicrobial peptides extend lifespan in Drosophila. PLOS ONE 12:e0176689
    [Google Scholar]
  79. 79. 
    Lokmer A, Cian A, Froment A, Gantois N, Viscogliosi E et al. 2019. Use of shotgun metagenomics for the identification of protozoa in the gut microbiota of healthy individuals from worldwide populations with various industrialization levels. PLOS ONE 14:e0211139
    [Google Scholar]
  80. 80. 
    Lu W, Rettenmeier E, Paszek M, Yueh MF, Tukey RH et al. 2017. Crypt organoid culture as an in vitro model in drug metabolism and cytotoxicity studies. Drug Metab. Dispos. 45:748–54
    [Google Scholar]
  81. 81. 
    Lurie-Weinberger MN, Gophna U 2015. Archaea in and on the human body: health implications and future directions. PLOS Pathog 11:e1004833
    [Google Scholar]
  82. 82. 
    Macfarlane GT, Macfarlane S, Gibson GR. 1998. Validation of a three-stage compound continuous culture system for investigating the effect of retention time on the ecology and metabolism of bacteria in the human colon. Microb. Ecol. 35:180–87
    [Google Scholar]
  83. 83. 
    Macfarlane GT, Macfarlane S, Gibson GR. 1988. Use of a three-stage continuous culture system to study the effect of mucin on dissimilatory sulfate reduction and methanogenesis by mixed populations of human gut bacteria. Appl. Environ. Microbiol. 54:2750–55
    [Google Scholar]
  84. 84. 
    Maier E, Anderson RC, Roy NC. 2017. Live Faecalibacterium prausnitzii does not enhance epithelial barrier integrity in an apical anaerobic co-culture model of the large intestine. Nutrients 9:1349
    [Google Scholar]
  85. 85. 
    Mailhe M, Ricaboni D, Vitton V, Gonzalez JM, Bachar D et al. 2018. Repertoire of the gut microbiota from stomach to colon using culturomics and next-generation sequencing. BMC Microbiol 18:157
    [Google Scholar]
  86. 86. 
    Martínez ME, Ranilla MJ, Tejido ML, Saro C, Carro MD. 2010. Comparison of fermentation of diets of variable composition and microbial populations in the rumen of sheep and Rusitec fermenters. II. Protozoa population and diversity of bacterial communities. J. Dairy Sci. 93:3699–712
    [Google Scholar]
  87. 87. 
    Martz SL, Guzman-Rodriguez M, He SM, Noordhof C, Hurlbut DJ et al. 2017. A human gut ecosystem protects against C. difficile disease by targeting TcdA. J. Gastroenterol. 52:452–65
    [Google Scholar]
  88. 88. 
    Martz SL, McDonald JA, Sun J, Zhang YG, Gloor GB et al. 2015. Administration of defined microbiota is protective in a murine Salmonella infection model. Sci. Rep. 5:16094
    [Google Scholar]
  89. 89. 
    Marzorati M, Vanhoecke B, De Ryck T, Sadaghian Sadabad M, Pinheiro I et al. 2014. The HMI™ module: a new tool to study the Host-Microbiota Interaction in the human gastrointestinal tract in vitro. BMC Microbiol 14:133
    [Google Scholar]
  90. 90. 
    McDonald JA, Schroeter K, Fuentes S, Heikamp-Dejong I, Khursigara CM et al. 2013. Evaluation of microbial community reproducibility, stability and composition in a human distal gut chemostat model. J. Microbiol. Methods 95:167–74
    [Google Scholar]
  91. 91. 
    Mesuere B, Debyser G, Aerts M, Devreese B, Vandamme P, Dawyndt P. 2015. The Unipept metaproteomics analysis pipeline. Proteomics 15:1437–42
    [Google Scholar]
  92. 92. 
    Minekus M, Smeets-Peeters M, Bernalier A, Marol-Bonnin S, Havenaar R et al. 1999. A computer-controlled system to simulate conditions of the large intestine with peristaltic mixing, water absorption and absorption of fermentation products. Appl. Microbiol. Biotechnol. 53:108–14
    [Google Scholar]
  93. 93. 
    Molly K, Woestyne MV, Smet ID, Verstraete W. 1994. Validation of the Simulator of the Human Intestinal Microbial Ecosystem (SHIME) reactor using microorganism-associated activities. Microb. Ecol. Health Dis. 7:191–200
    [Google Scholar]
  94. 94. 
    Moore JE, Purcaro MJ, Pratt HE, Epstein CB, Shoresh N et al. 2020. Expanded encyclopaedias of DNA elements in the human and mouse genomes. Nature 583:699–710
    [Google Scholar]
  95. 95. 
    Nayfach S, Shi ZJ, Seshadri R, Pollard KS, Kyrpides NC. 2019. New insights from uncultivated genomes of the global human gut microbiome. Nature 568:505–10
    [Google Scholar]
  96. 96. 
    Obregon-Tito AJ, Tito RY, Metcalf J, Sankaranarayanan K, Clemente JC et al. 2015. Subsistence strategies in traditional societies distinguish gut microbiomes. Nat. Commun. 6:6505
    [Google Scholar]
  97. 97. 
    Odelson DA, Breznak JA. 1985. Cellulase and other polymer-hydrolyzing activities of Trichomitopsis termopsidis, a symbiotic protozoan from termites. Appl. Environ. Microbiol. 49:622–26
    [Google Scholar]
  98. 98. 
    Oliphant K, Parreira VR, Cochrane K, Allen-Vercoe E. 2019. Drivers of human gut microbial community assembly: coadaptation, determinism and stochasticity. ISME J 13:3080–92
    [Google Scholar]
  99. 99. 
    Overbeek R, Begley T, Butler RM, Choudhuri JV, Chuang HY et al. 2005. The subsystems approach to genome annotation and its use in the project to annotate 1000 genomes. Nucleic Acids Res 33:5691–702
    [Google Scholar]
  100. 100. 
    Oxley AP, Lanfranconi MP, Würdemann D, Ott S, Schreiber S et al. 2010. Halophilic archaea in the human intestinal mucosa. Environ. Microbiol. 12:2398–410
    [Google Scholar]
  101. 101. 
    Page FC. 1988. A New Key to Freshwater and Soil Gymnamoebae: With Instructions for Culture Ambleside, UK: Freshw. Biol. Assoc.
  102. 102. 
    Pagnier I, Reteno DG, Saadi H, Boughalmi M, Gaia M et al. 2013. A decade of improvements in Mimiviridae and Marseilleviridae isolation from amoeba. Intervirology 56:354–63
    [Google Scholar]
  103. 103. 
    Pruesse E, Quast C, Knittel K, Fuchs BM, Ludwig W et al. 2007. SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Nucleic Acids Res 35:7188–96
    [Google Scholar]
  104. 104. 
    Rahdar M, Niyyati M, Salehi M, Feghhi M, Makvandi M et al. 2012. Isolation and genotyping of Acanthamoeba strains from environmental sources in Ahvaz City, Khuzestan Province, southern Iran. Iran. J. Parasitol. 7:22–26
    [Google Scholar]
  105. 105. 
    Rajilić-Stojanović M, Maathuis A, Heilig H, Venema K, de Vos WM, Smidt H. 2010. Evaluating the microbial diversity of an in vitro model of the human large intestine by phylogenetic microarray analysis. Microbiology 156:3270–81
    [Google Scholar]
  106. 106. 
    Rawls JF, Samuel BS, Gordon JI 2004. Gnotobiotic zebrafish reveal evolutionarily conserved responses to the gut microbiota. PNAS 101:4596–601
    [Google Scholar]
  107. 107. 
    Renesto P, Crapoulet N, Ogata H, La Scola B, Vestris G et al. 2003. Genome-based design of a cell-free culture medium for Tropheryma whipplei. Lancet 362:447–49
    [Google Scholar]
  108. 108. 
    Santoriello C, Zon LI. 2012. Hooked! Modeling human disease in zebrafish. J. Clin. Investig. 122:2337–43
    [Google Scholar]
  109. 109. 
    Sato T, Clevers H. 2015. SnapShot: growing organoids from stem cells. Cell 161:1700–700.e1
    [Google Scholar]
  110. 110. 
    Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M et al. 2009. Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl. Environ. Microbiol. 75:7537–41
    [Google Scholar]
  111. 111. 
    Selak M, Rivière A, Moens F, Van den Abbeele P, Geirnaert A et al. 2016. Inulin-type fructan fermentation by bifidobacteria depends on the strain rather than the species and region in the human intestine. Appl. Microbiol. Biotechnol. 100:4097–107
    [Google Scholar]
  112. 112. 
    Shah P, Fritz JV, Glaab E, Desai MS, Greenhalgh K et al. 2016. A microfluidics-based in vitro model of the gastrointestinal human-microbe interface. Nat. Commun. 7:11535
    [Google Scholar]
  113. 113. 
    Shakya M, Lo CC, Chain PSG. 2019. Advances and challenges in metatranscriptomic analysis. Front. Genet. 10:904
    [Google Scholar]
  114. 114. 
    Shin W, Wu A, Massidda MW, Foster C, Thomas N et al. 2019. A robust longitudinal co-culture of obligate anaerobic gut microbiome with human intestinal epithelium in an anoxic-oxic interface-on-a-chip. Front. Bioeng. Biotechnol. 7:13
    [Google Scholar]
  115. 115. 
    Shkoporov AN, Ryan FJ, Draper LA, Forde A, Stockdale SR et al. 2018. Reproducible protocols for metagenomic analysis of human faecal phageomes. Microbiome 6:68
    [Google Scholar]
  116. 116. 
    Slatko BE, Gardner AF, Ausubel FM. 2018. Overview of next-generation sequencing technologies. Curr. Protoc. Mol. Biol. 122:e59
    [Google Scholar]
  117. 117. 
    Song S, Guo Y, Kim JS, Wang X, Wood TK 2019. Phages mediate bacterial self-recognition. Cell Rep 27:737–49.e4
    [Google Scholar]
  118. 118. 
    Stedman KM, Porter K, Dyall-Smith ML 2010. The isolation of viruses infecting Archaea. Manual of Aquatic Viral Ecology S Wilhelm, M Weinbauer, C Suttle 57–64 Waco, TX: Am. Soc. Limnol. Oceanogr.
    [Google Scholar]
  119. 119. 
    Sugi T. 2016. Genome editing in C. elegans and other nematode species. Int. J. Mol. Sci. 17:295
    [Google Scholar]
  120. 120. 
    Toh MC, Goodyear M, Daigneault M, Allen-Vercoe E, Van Raay TJ. 2013. Colonizing the embryonic zebrafish gut with anaerobic bacteria derived from the human gastrointestinal tract. Zebrafish 10:194–98
    [Google Scholar]
  121. 121. 
    Trošt K, Ahonen L, Suvitaival T, Christiansen N, Nielsen T et al. 2020. Describing the fecal metabolome in cryogenically collected samples from healthy participants. Sci. Rep. 10:885
    [Google Scholar]
  122. 122. 
    Truong DT, Franzosa EA, Tickle TL, Scholz M, Weingart G et al. 2015. MetaPhlAn2 for enhanced metagenomic taxonomic profiling. Nat. Methods 12:902–3
    [Google Scholar]
  123. 123. 
    Turnbaugh PJ, Ridaura VK, Faith JJ, Rey FE, Knight R, Gordon JI. 2009. The effect of diet on the human gut microbiome: a metagenomic analysis in humanized gnotobiotic mice. Sci. Transl. Med. 1:6ra14
    [Google Scholar]
  124. 124. 
    Ugur B, Chen K, Bellen HJ 2016. Drosophila tools and assays for the study of human diseases. Dis. Model. Mech. 9:235–44
    [Google Scholar]
  125. 125. 
    UniProt Consort 2019. UniProt: a worldwide hub of protein knowledge. Nucleic Acids Res 47:D506–15
    [Google Scholar]
  126. 126. 
    Valenzuela M-J, Caruffo M, Herrera Y, Medina DA, Coronado M et al. 2018. Evaluating the capacity of human gut microorganisms to colonize the zebrafish larvae (Danio rerio). Front. Microbiol. 9:1032
    [Google Scholar]
  127. 127. 
    Van den Abbeele P, Belzer C, Goossens M, Kleerebezem M, De Vos WM et al. 2013. Butyrate-producing Clostridium cluster XIVa species specifically colonize mucins in an in vitro gut model. ISME J 7:949–61
    [Google Scholar]
  128. 128. 
    Van den Abbeele P, Grootaert C, Marzorati M, Possemiers S, Verstraete W et al. 2010. Microbial community development in a dynamic gut model is reproducible, colon region specific, and selective for Bacteroidetes and Clostridium cluster IX. Appl. Environ. Microbiol. 76:5237–46
    [Google Scholar]
  129. 129. 
    Van Meulebroek L, De Paepe E, Vercruysse V, Pomian B, Bos S et al. 2017. Holistic lipidomics of the human gut phenotype using validated ultra-high-performance liquid chromatography coupled to hybrid orbitrap mass spectrometry. Anal. Chem. 89:12502–10
    [Google Scholar]
  130. 130. 
    van Nuenen MH, de Ligt RA, Doornbos RP, van der Woude JC, Kuipers EJ, Venema K. 2005. The influence of microbial metabolites on human intestinal epithelial cells and macrophages in vitro. FEMS Immunol. Med. Microbiol. 45:183–89
    [Google Scholar]
  131. 131. 
    Vodicka P, Smetana K Jr., Dvoránková B, Emerick T, Xu YZ et al. 2005. The miniature pig as an animal model in biomedical research. Ann. N. Y. Acad. Sci. 1049:161–71
    [Google Scholar]
  132. 132. 
    Wang M, Donovan SM. 2015. Human microbiota-associated swine: current progress and future opportunities. ILAR J 56:63–73
    [Google Scholar]
  133. 133. 
    Wang Q, Wang K, Wu W, Giannoulatou E, Ho JWK, Li L. 2019. Host and microbiome multi-omics integration: applications and methodologies. Biophys. Rev. 11:55–65
    [Google Scholar]
  134. 134. 
    Weber F, Mylnikov AP, Jürgens K, Wylezich C. 2017. Culturing heterotrophic protists from the Baltic Sea: mostly the “usual suspects” but a few novelties as well. J. Eukaryot. Microbiol. 64:153–63
    [Google Scholar]
  135. 135. 
    Wen K, Li G, Bui T, Liu F, Li Y et al. 2012. High dose and low dose Lactobacillus acidophilus exerted differential immune modulating effects on T cell immune responses induced by an oral human rotavirus vaccine in gnotobiotic pigs. Vaccine 30:1198–207
    [Google Scholar]
  136. 136. 
    Wenk MR. 2010. Lipidomics: new tools and applications. Cell 143:888–95
    [Google Scholar]
  137. 137. 
    Westfall S, Lomis N, Prakash S. 2019. A novel synbiotic delays Alzheimer's disease onset via combinatorial gut-brain-axis signaling in Drosophila melanogaster. PLOS ONE 14:e0214985
    [Google Scholar]
  138. 138. 
    Wetzels SU, Eger M, Burmester M, Kreienbrock L, Abdulmawjood A et al. 2018. The application of rumen simulation technique (RUSITEC) for studying dynamics of the bacterial community and metabolome in rumen fluid and the effects of a challenge with Clostridium perfringens. PLOS ONE 13:e0192256
    [Google Scholar]
  139. 139. 
    Williamson IA, Arnold JW, Samsa LA, Gaynor L, DiSalvo M et al. 2018. A high-throughput organoid microinjection platform to study gastrointestinal microbiota and luminal physiology. Cell Mol. Gastroenterol. Hepatol. 6:301–19
    [Google Scholar]
  140. 140. 
    Wissenbach DK, Oliphant K, Rolle-Kampczyk U, Yen S, Höke H et al. 2016. Optimization of metabolomics of defined in vitro gut microbial ecosystems. Int. J. Med. Microbiol. 306:280–89
    [Google Scholar]
  141. 141. 
    Wong ACN, Dobson AJ, Douglas AE. 2014. Gut microbiota dictates the metabolic response of Drosophila to diet. J. Exp. Biol. 217:1894–901
    [Google Scholar]
  142. 142. 
    Wu SY, Wang LD, Xu GM, Yang SD, Deng QF et al. 2017. spv locus aggravates Salmonella infection of zebrafish adult by inducing Th1/Th2 shift to Th2 polarization. Fish Shellfish Immunol 67:684–91
    [Google Scholar]
  143. 143. 
    Yamin MA. 1981. Cellulose metabolism by the flagellate Trichonympha from a termite is independent of endosymbiotic bacteria. Science 211:58–59
    [Google Scholar]
  144. 144. 
    Yatsunenko T, Rey FE, Manary MJ, Trehan I, Dominguez-Bello MG et al. 2012. Human gut microbiome viewed across age and geography. Nature 486:222–27
    [Google Scholar]
  145. 145. 
    Zhang Q, Widmer G, Tzipori S. 2013. A pig model of the human gastrointestinal tract. Gut Microbes 4:193–200
    [Google Scholar]
  146. 146. 
    Zhang W, Azevedo MSP, Gonzalez AM, Saif LJ, Van Nguyen T et al. 2008. Influence of probiotic lactobacilli colonization on neonatal B cell responses in a gnotobiotic pig model of human rotavirus infection and disease. Vet. Immunol. Immunopathol. 122:175–81
    [Google Scholar]
  147. 147. 
    Zhang X, Chen W, Ning Z, Mayne J, Mack D et al. 2017. Deep metaproteomics approach for the study of human microbiomes. Anal. Chem. 89:9407–15
    [Google Scholar]
  148. 148. 
    Zimmermann J, Hübschmann T, Schattenberg F, Schumann J, Durek P et al. 2016. High-resolution microbiota flow cytometry reveals dynamic colitis-associated changes in fecal bacterial composition. Eur. J. Immunol. 46:1300–3
    [Google Scholar]
  149. 149. 
    Zimmermann J, Obeng N, Yang W, Pees B, Petersen C et al. 2020. The functional repertoire contained within the native microbiota of the model nematode Caenorhabditis elegans. ISME J 14:26–38
    [Google Scholar]
  150. 150. 
    Zou Y, Xue W, Luo G, Deng Z, Qin P et al. 2019. 1,520 reference genomes from cultivated human gut bacteria enable functional microbiome analyses. Nat. Biotechnol. 37:179–85
    [Google Scholar]
/content/journals/10.1146/annurev-micro-031021-084116
Loading
/content/journals/10.1146/annurev-micro-031021-084116
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error