1932

Abstract

Microbial rhodopsins are diverse photoreceptive proteins containing a retinal chromophore and are found in all domains of cellular life and are even encoded in genomes of viruses. These rhodopsins make up two families: type 1 rhodopsins and the recently discovered heliorhodopsins. These families have seven transmembrane helices with similar structures but opposing membrane orientation. Microbial rhodopsins participate in a portfolio of light-driven energy and sensory transduction processes. In this review we present data collected over the last two decades about these rhodopsins and describe their diversity, functions, and biological and ecological roles.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-micro-031721-020452
2021-10-08
2024-03-19
Loading full text...

Full text loading...

/deliver/fulltext/micro/75/1/annurev-micro-031721-020452.html?itemId=/content/journals/10.1146/annurev-micro-031721-020452&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Anashkin VA, Bertsova YV, Mamedov AM, Mamedov MD, Arutyunyan AM et al. 2018. Engineering a carotenoid-binding site in Dokdonia sp. PRO95 Na+-translocating rhodopsin by a single amino acid substitution. Photosynth. Res. 136:2161–69
    [Google Scholar]
  2. 2. 
    Antón J, Oren A, Benlloch S, Rodríguez-Valera F, Amann R, Rosselló-Mora R. 2002. Salinibacter ruber gen. nov., sp. nov., a novel, extremely halophilic member of the Bacteria from saltern crystallizer ponds. Int. J. Syst. Evol. Microbiol. 52:2485–91
    [Google Scholar]
  3. 3. 
    Avelar GM, Schumacher RI, Zaini PA, Leonard G, Richards TA, Gomes SL. 2014. A rhodopsin-guanylyl cyclase gene fusion functions in visual perception in a fungus. Curr. Biol. 24:111234–40
    [Google Scholar]
  4. 4. 
    Awasthi M, Ranjan P, Sharma K, Veetil SK, Kateriya S. 2016. The trafficking of bacterial type rhodopsins into the Chlamydomonas eyespot and flagella is IFT mediated. Sci. Rep. 6:34646
    [Google Scholar]
  5. 5. 
    Balashov SP, Imasheva ES, Boichenko VA, Antón J, Wang JM, Lanyi JK. 2005. Xanthorhodopsin: a proton pump with a light-harvesting carotenoid antenna. Science 309:57432061–64
    [Google Scholar]
  6. 6. 
    Balashov SP, Imasheva ES, Choi AR, Jung K-H, Liaaen-Jensen S, Lanyi JK. 2010. Reconstitution of Gloeobacter rhodopsin with echinenone: role of the 4-keto group. Biochemistry 49:459792–99
    [Google Scholar]
  7. 7. 
    Becker EA, Yao AI, Seitzer PM, Kind T, Wang T et al. 2016. A large and phylogenetically diverse class of type 1 opsins lacking a canonical retinal binding site. PLOS ONE 11:6e0156543
    [Google Scholar]
  8. 8. 
    Béjà O, Aravind L, Koonin EV, Suzuki MT, Hadd A et al. 2000. Bacterial rhodopsin: evidence for a new type of phototrophy in the sea. Science 289:54861902–6
    [Google Scholar]
  9. 9. 
    Béjà O, Spudich EN, Spudich JL, Leclerc M, DeLong EF. 2001. Proteorhodopsin phototrophy in the ocean. Nature 411:6839786–89
    [Google Scholar]
  10. 10. 
    Benton R, Sachse S, Michnick SW, Vosshall LB. 2006. Atypical membrane topology and heteromeric function of Drosophila odorant receptors in vivo. PLOS Biol 4:2e20
    [Google Scholar]
  11. 11. 
    Berndt A, Lee SY, Ramakrishnan C, Deisseroth K. 2014. Structure-guided transformation of channelrhodopsin into a light-activated chloride channel. Science 344:6182420–24
    [Google Scholar]
  12. 12. 
    Bertsova YV, Arutyunyan AM, Bogachev AV. 2016. Na+-translocating rhodopsin from Dokdonia sp. PRO95 does not contain carotenoid antenna. Biochem. Mosc. 81:4414–19
    [Google Scholar]
  13. 13. 
    Bieszke JA, Braun EL, Bean LE, Kang S, Natvig DO, Borkovich KA 1999. The nop-1 gene of Neurospora crassa encodes a seven transmembrane helix retinal-binding protein homologous to archaeal rhodopsins. PNAS 96:148034–39
    [Google Scholar]
  14. 14. 
    Bieszke JA, Li L, Borkovich KA. 2007. The fungal opsin gene nop-1 is negatively-regulated by a component of the blue light sensing pathway and influences conidiation-specific gene expression in Neurospora crassa. Curr. Genet. 52:3–4149–57
    [Google Scholar]
  15. 15. 
    Bieszke JA, Spudich EN, Scott KL, Borkovich KA, Spudich JL. 1999. A eukaryotic protein, NOP-1, binds retinal to form an archaeal rhodopsin-like photochemically reactive pigment. Biochemistry 38:4314138–45
    [Google Scholar]
  16. 16. 
    Bratanov D, Kovalev K, Machtens J-P, Astashkin R, Chizhov I et al. 2019. Unique structure and function of viral rhodopsins. Nat. Commun. 10:14939
    [Google Scholar]
  17. 17. 
    Braun F-J, Hegemann P. 1999. Two light-activated conductances in the eye of the green alga Volvox carteri. Biophys. J. 76:31668–78
    [Google Scholar]
  18. 18. 
    Broser M, Spreen A, Konold PE, Peter E, Adam S et al. 2020. NeoR, a near-infrared absorbing rhodopsin. Nat. Commun. 11:15682
    [Google Scholar]
  19. 19. 
    Brown LS. 2004. Fungal rhodopsins and opsin-related proteins: eukaryotic homologues of bacteriorhodopsin with unknown functions. Photochem. Photobiol. Sci. 3:655565
    [Google Scholar]
  20. 20. 
    Brunet T, Larson BT, Linden TA, Vermeij MJA, McDonald K, King N. 2019. Light-regulated collective contractility in a multicellular choanoflagellate. Science 366:6463326–34
    [Google Scholar]
  21. 21. 
    Bulzu P-A, Andrei A-Ş, Salcher MM, Mehrshad M, Inoue K et al. 2019. Casting light on Asgardarchaeota metabolism in a sunlit microoxic niche. Nat. Microbiol. 4:71129–37
    [Google Scholar]
  22. 22. 
    Butterwick JA, del Mármol J, Kim KH, Kahlson MA, Rogow JA et al. 2018. Cryo-EM structure of the insect olfactory receptor Orco. Nature 560:7719447–52
    [Google Scholar]
  23. 23. 
    Ehlenbeck S, Gradmann D, Braun F-J, Hegemann P. 2002. Evidence for a light-induced H+ conductance in the eye of the green alga Chlamydomonas reinhardtii. Biophys. J. 82:2740–51
    [Google Scholar]
  24. 24. 
    Engelhard C, Chizhov I, Siebert F, Engelhard M. 2018. Microbial halorhodopsins: light-driven chloride pumps. Chem. Rev. 118:2110629–45
    [Google Scholar]
  25. 25. 
    Ernst OP, Lodowski DT, Elstner M, Hegemann P, Brown LS, Kandori H. 2014. Microbial and animal rhodopsins: structures, functions, and molecular mechanisms. Chem. Rev. 114:1126–63
    [Google Scholar]
  26. 26. 
    Estrada AF, Avalos J. 2009. Regulation and targeted mutation of opsA, coding for the NOP-1 opsin orthologue in Fusarium fujikuroi. J. Mol. Biol. 387:159–73
    [Google Scholar]
  27. 27. 
    Famintzin A. 1866. Die Wirkung des Lichtes auf die Bewegung der Chlamidomonas pulvisculus Ehr., Euglena viridis Ehr. und Oscillatoria insignis Tw. Mélanges Biol. Tirés Bull. Acad. Imp. Sci. St.-Pétersb 6:73–93
    [Google Scholar]
  28. 28. 
    Fan Y, Solomon P, Oliver RP, Brown LS. 2011. Photochemical characterization of a novel fungal rhodopsin from Phaeosphaeria nodorum. Biochim. Biophys. Acta Bioenerg 1807:111457–66
    [Google Scholar]
  29. 29. 
    Finkel OM, Béjà O, Belkin S. 2013. Global abundance of microbial rhodopsins. ISME J 7:2448–51
    [Google Scholar]
  30. 30. 
    Flores-Uribe J, Hevroni G, Ghai R, Pushkarev A, Inoue K et al. 2019. Heliorhodopsins are absent in diderm (Gram-negative) bacteria: some thoughts and possible implications for activity. Environ. Microbiol. Rep. 11:3419–24
    [Google Scholar]
  31. 31. 
    Foster KW, Saranak J, Patel N, Zarilli G, Okabe M et al. 1984. A rhodopsin is the functional photoreceptor for phototaxis in the unicellular eukaryote Chlamydomonas. Nature 311:5988756–59
    [Google Scholar]
  32. 32. 
    Fuhrman JA, Schwalbach MS, Stingl U. 2008. Proteorhodopsins: an array of physiological roles?. Nat. Rev. Microbiol. 6:6488–94
    [Google Scholar]
  33. 33. 
    Gao S, Nagpal J, Schneider MW, Kozjak-Pavlovic V, Nagel G, Gottschalk A. 2015. Optogenetic manipulation of cGMP in cells and animals by the tightly light-regulated guanylyl-cyclase opsin CyclOp. Nat. Commun. 6:8046
    [Google Scholar]
  34. 34. 
    García-Martínez J, Brunk M, Avalos J, Terpitz U. 2015. The CarO rhodopsin of the fungus Fusarium fujikuroi is a light-driven proton pump that retards spore germination. Sci. Rep. 5:17798
    [Google Scholar]
  35. 35. 
    Gómez-Consarnau L, Raven JA, Levine NM, Cutter LS, Wang D et al. 2019. Microbial rhodopsins are major contributors to the solar energy captured in the sea. Sci. Adv. 5:8eaaw8855
    [Google Scholar]
  36. 36. 
    Govorunova EG, Sineshchekov OA, Janz R, Liu X, Spudich JL. 2015. Natural light-gated anion channels: a family of microbial rhodopsins for advanced optogenetics. Science 349:6248647–50
    [Google Scholar]
  37. 37. 
    Govorunova EG, Sineshchekov OA, Li H, Spudich JL. 2017. Microbial rhodopsins: diversity, mechanisms, and optogenetic applications. Annu. Rev. Biochem. 86:845–72
    [Google Scholar]
  38. 38. 
    Govorunova EG, Sineshchekov OA, Li H, Wang Y, Brown LS, Spudich JL 2020. RubyACRs, nonalgal anion channelrhodopsins with highly red-shifted absorption. PNAS 117:3722833–40
    [Google Scholar]
  39. 39. 
    Govorunova EG, Sineshchekov OA, Rodarte EM, Janz R, Morelle O et al. 2017. The expanding family of natural anion channelrhodopsins reveals large variations in kinetics, conductance, and spectral sensitivity. Sci. Rep. 7:43358
    [Google Scholar]
  40. 40. 
    Govorunova EG, Sineshchekov OA, Spudich JL. 2016. Structurally distinct cation channelrhodopsins from cryptophyte algae. Biophys. J. 110:112302–4
    [Google Scholar]
  41. 41. 
    Greiner A, Kelterborn S, Evers H, Kreimer G, Sizova I, Hegemann P. 2017. Targeting of photoreceptor genes in Chlamydomonas reinhardtii via zinc-finger nucleases and CRISPR/Cas9. Plant Cell 29:102498–518
    [Google Scholar]
  42. 42. 
    Harris A, Lazaratos M, Siemers M, Watt E, Hoang A et al. 2020. Mechanism of inward proton transport in an Antarctic microbial rhodopsin. J. Phys. Chem. B 124:244851–72
    [Google Scholar]
  43. 43. 
    Harris A, Ljumovic M, Bondar A-N, Shibata Y, Ito S et al. 2015. A new group of eubacterial light-driven retinal-binding proton pumps with an unusual cytoplasmic proton donor. Biochim. Biophys. Acta Bioenerg. 1847:121518–29
    [Google Scholar]
  44. 44. 
    Harris A, Saita M, Resler T, Hughes-Visentin A, Maia R et al. 2018. Molecular details of the unique mechanism of chloride transport by a cyanobacterial rhodopsin. Phys. Chem. Chem. Phys. 20:53184–99
    [Google Scholar]
  45. 45. 
    Harz H, Hegemann P. 1991. Rhodopsin-regulated calcium currents in Chlamydomonas. Nature 351:6326489–91
    [Google Scholar]
  46. 46. 
    Hasegawa M, Hosaka T, Kojima K, Nishimura Y, Nakajima Y et al. 2020. A unique clade of light-driven proton-pumping rhodopsins evolved in the cyanobacterial lineage. Sci. Rep. 10:116752
    [Google Scholar]
  47. 47. 
    Hasemi T, Kikukawa T, Kamo N, Demura M. 2016. Characterization of a cyanobacterial chloride-pumping rhodopsin and its conversion into a proton pump. J. Biol. Chem. 291:1355–62
    [Google Scholar]
  48. 48. 
    Hashimoto M, Katayama K, Furutani Y, Kandori H. 2020. Zinc binding to heliorhodopsin. J. Phys. Chem. Lett. 11:208604–9
    [Google Scholar]
  49. 49. 
    Hegemann P, Fuhrmann M, Kateriya S. 2001. Algal sensory photoreceptors. J. Phycol. 37:668–76
    [Google Scholar]
  50. 50. 
    Hirschi S, Kalbermatter D, Ucurum Z, Fotiadis D. 2020. Cryo-electron microscopic and X-ray crystallographic analysis of the light-driven proton pump proteorhodopsin reveals a pentameric assembly. J. Struct. Biol. X 4:100024
    [Google Scholar]
  51. 51. 
    Ikuta T, Shihoya W, Sugiura M, Yoshida K, Watari M et al. 2020. Structural insights into the mechanism of rhodopsin phosphodiesterase. Nat. Commun. 11:15605
    [Google Scholar]
  52. 52. 
    Imasheva ES, Balashov SP, Choi AR, Jung K-H, Lanyi JK. 2009. Reconstitution of Gloeobacter violaceus rhodopsin with a light-harvesting carotenoid antenna. Biochemistry 48:4610948–55
    [Google Scholar]
  53. 53. 
    Inoue K 2021. Diversity, mechanism and optogenetic application of light-driven ion pump rhodopsins. Optogenetics: Light-Sensing Proteins and Their Applications in Neuroscience and Beyond H Yawo, H Kandori, A Koizumi, R Kageyama 89–126 Singapore: Springer
    [Google Scholar]
  54. 54. 
    Inoue K, Ito S, Kato Y, Nomura Y, Shibata M et al. 2016. A natural light-driven inward proton pump. Nat. Commun. 7:13415
    [Google Scholar]
  55. 55. 
    Inoue K, Koua FHM, Kato Y, Abe-Yoshizumi R, Kandori H 2014. Spectroscopic study of a light-driven chloride ion pump from marine bacteria. J. Phys. Chem. B 118:3811190–99
    [Google Scholar]
  56. 56. 
    Inoue K, Nomura Y, Kandori H. 2016. Asymmetric functional conversion of eubacterial light-driven ion pumps. J. Biol. Chem. 291:199883–93
    [Google Scholar]
  57. 57. 
    Inoue K, Ono H, Abe-Yoshizumi R, Yoshizawa S, Ito H et al. 2013. A light-driven sodium ion pump in marine bacteria. Nat. Commun. 4:11678
    [Google Scholar]
  58. 58. 
    Inoue K, Tsukamoto T, Sudo Y. 2014. Molecular and evolutionary aspects of microbial sensory rhodopsins. Biochim. Biophys. Acta Bioenerg. 1837:5562–77
    [Google Scholar]
  59. 59. 
    Inoue K, Tsunoda SP, Singh M, Tomida S, Hososhima S et al. 2020. Schizorhodopsins: a family of rhodopsins from Asgard archaea that function as light-driven inward H+ pumps. Sci. Adv. 6:15eaaz2441
    [Google Scholar]
  60. 60. 
    Inoue S, Yoshizawa S, Nakajima Y, Kojima K, Tsukamoto T et al. 2018. Spectroscopic characteristics of Rubricoccus marinus xenorhodopsin (RmXeR) and a putative model for its inward H+ transport mechanism. Phys. Chem. Chem. Phys. 20:53172–83
    [Google Scholar]
  61. 61. 
    Irieda H, Morita T, Maki K, Homma M, Aiba H, Sudo Y. 2012. Photo-induced regulation of the chromatic adaptive gene expression by Anabaena sensory rhodopsin. J. Biol. Chem. 287:3932485–93
    [Google Scholar]
  62. 62. 
    Janke C, Scholz F, Becker-Baldus J, Glaubitz C, Wood PG et al. 2013. Photocycle and vectorial proton transfer in a rhodopsin from the eukaryote Oxyrrhis marina. Biochemistry 52:162750–63
    [Google Scholar]
  63. 63. 
    Jung K-H, Trivedi VD, Spudich JL. 2003. Demonstration of a sensory rhodopsin in eubacteria. Mol. Microbiol. 47:61513–22
    [Google Scholar]
  64. 64. 
    Kandori H. 2019. Retinal proteins: photochemistry and optogenetics. Bull. Chem. Soc. Jpn. 93:176–85
    [Google Scholar]
  65. 65. 
    Kandori H. 2020. Biophysics of rhodopsins and optogenetics. Biophys. Rev. 12:2355–61
    [Google Scholar]
  66. 66. 
    Kang I, Oh H-M, Lim S-I, Ferriera S, Giovannoni SJ, Cho J-C. 2010. Genome sequence of Fulvimarina pelagi HTCC2506T, a Mn(II)-oxidizing alphaproteobacterium possessing an aerobic anoxygenic photosynthetic gene cluster and xanthorhodopsin. J. Bacteriol. 192:184798–99
    [Google Scholar]
  67. 67. 
    Kateriya S, Nagel G, Bamberg E, Hegemann P. 2004.. “ Vision” in single-celled algae. News Physiol. Sci. 19:3133–37
    [Google Scholar]
  68. 68. 
    Kawanabe A, Furutani Y, Jung K-H, Kandori H. 2009. Engineering an inward proton transport from a bacterial sensor rhodopsin. J. Am. Chem. Soc. 131:4516439–44
    [Google Scholar]
  69. 69. 
    Kianianmomeni A, Hallmann A. 2015. Transcriptional analysis of Volvox photoreceptors suggests the existence of different cell-type specific light-signaling pathways. Curr. Genet. 61:13–18
    [Google Scholar]
  70. 70. 
    Kim SY, Yoon SR, Han S, Yun Y, Jung K-H. 2014. A role of Anabaena sensory rhodopsin transducer (ASRT) in photosensory transduction. Mol. Microbiol. 93:3403–14
    [Google Scholar]
  71. 71. 
    Klyszejko AL, Shastri S, Mari SA, Grubmüller H, Muller DJ, Glaubitz C. 2008. Folding and assembly of proteorhodopsin. J. Mol. Biol. 376:135–41
    [Google Scholar]
  72. 72. 
    Kovalev K, Volkov D, Astashkin R, Alekseev A, Gushchin I et al. 2020. High-resolution structural insights into the heliorhodopsin family. PNAS 117:84131–41
    [Google Scholar]
  73. 73. 
    Kwon S-K, Jun S-H, Kim JF. 2020. Omega rhodopsins: a versatile class of microbial rhodopsins. J. Microbiol. Biotechnol. 30:5633–41
    [Google Scholar]
  74. 74. 
    Kwon S-K, Kim BK, Song JY, Kwak M-J, Lee CH et al. 2013. Genomic makeup of the marine flavobacterium Nonlabens (Donghaeana) dokdonensis and identification of a novel class of rhodopsins. Genome Biol. Evol. 5:1187–99
    [Google Scholar]
  75. 75. 
    Kwon YM, Kim S-J. 2018. Complete genomes of the marine flavobacterium Nonlabens strains YIK11 and MIC269. Mar. Genom. 37:46–49
    [Google Scholar]
  76. 76. 
    Kwon YM, Kim S-Y, Jung K-H, Kim S-J 2016. Diversity and functional analysis of light-driven pumping rhodopsins in marine Flavobacteria. Microbiol. Open 5:2212–23
    [Google Scholar]
  77. 77. 
    Lamarche LB, Kumar RP, Trieu MM, Devine EL, Cohen-Abeles LE et al. 2017. Purification and characterization of RhoPDE, a retinylidene/phosphodiesterase fusion protein and potential optogenetic tool from the choanoflagellate Salpingoeca rosetta. Biochemistry 56:435812–22
    [Google Scholar]
  78. 78. 
    Lin S, Zhang H, Zhuang Y, Tran B, Gill J 2010. Spliced leader-based metatranscriptomic analyses lead to recognition of hidden genomic features in dinoflagellates. PNAS 107:4620033–38
    [Google Scholar]
  79. 79. 
    Lu Y, Zhou XE, Gao X, Wang N, Xia R et al. 2020. Crystal structure of heliorhodopsin 48C12. Cell Res 30:188–90
    [Google Scholar]
  80. 80. 
    Luck M, Hegemann P. 2017. The two parallel photocycles of the Chlamydomonas sensory photoreceptor histidine kinase rhodopsin 1. J. Plant Physiol. 217:77–84
    [Google Scholar]
  81. 81. 
    Luck M, Mathes T, Bruun S, Fudim R, Hagedorn R et al. 2012. A photochromic histidine kinase rhodopsin (HKR1) that is bimodally switched by ultraviolet and blue light. J. Biol. Chem. 287:4740083–90
    [Google Scholar]
  82. 82. 
    Luecke H, Schobert B, Stagno J, Imasheva ES, Wang JM et al. 2008. Crystallographic structure of xanthorhodopsin, the light-driven proton pump with a dual chromophore. PNAS 105:4316561–65
    [Google Scholar]
  83. 83. 
    Lyu X, Shen C, Fu Y, Xie J, Jiang D et al. 2016. The microbial opsin homolog sop1 is involved in Sclerotinia sclerotiorum development and environmental stress response. Front. Microbiol. 6:1504
    [Google Scholar]
  84. 84. 
    Maciejko J, Kaur J, Becker-Baldus J, Glaubitz C 2019. Photocycle-dependent conformational changes in the proteorhodopsin cross-protomer Asp-His-Trp triad revealed by DNP-enhanced MAS-NMR. PNAS 116:178342–49
    [Google Scholar]
  85. 85. 
    Man D, Wang W, Sabehi G, Aravind L, Post AF et al. 2003. Diversification and spectral tuning in marine proteorhodopsins. EMBO J 22:81725–31
    [Google Scholar]
  86. 86. 
    Marchetti A, Catlett D, Hopkinson BM, Ellis K, Cassar N. 2015. Marine diatom proteorhodopsins and their potential role in coping with low iron availability. ISME J 9:122745–48
    [Google Scholar]
  87. 87. 
    Marchetti A, Schruth DM, Durkin CA, Parker MS, Kodner RB et al. 2012. Comparative metatranscriptomics identifies molecular bases for the physiological responses of phytoplankton to varying iron availability. PNAS 109:6E317–25
    [Google Scholar]
  88. 88. 
    Matsuno-Yagi A, Mukohata Y. 1977. Two possible roles of bacteriorhodopsin: a comparative study of strains of Halobacterium halobium differing in pigmentation. Biochem. Biophys. Res. Commun. 78:1237–43
    [Google Scholar]
  89. 89. 
    Misra R, Eliash T, Sudo Y, Sheves M. 2019. Retinal-salinixanthin interactions in a thermophilic rhodopsin. J. Phys. Chem. B 123:110–20
    [Google Scholar]
  90. 90. 
    Mongodin EF, Nelson KE, Daugherty S, DeBoy RT, Wister J et al. 2005. The genome of Salinibacter ruber: convergence and gene exchange among hyperhalophilic bacteria and archaea. PNAS 102:5018147–52
    [Google Scholar]
  91. 91. 
    Mukherjee S, Hegemann P, Broser M. 2019. Enzymerhodopsins: novel photoregulated catalysts for optogenetics. Curr. Opin. Struct. Biol. 57:118–26
    [Google Scholar]
  92. 92. 
    Nagel G, Ollig D, Fuhrmann M, Kateriya S, Musti AM et al. 2002. Channelrhodopsin-1: a light-gated proton channel in green algae. Science 296:55772395–98
    [Google Scholar]
  93. 93. 
    Nagel G, Szellas T, Huhn W, Kateriya S, Adeishvili N et al. 2003. Channelrhodopsin-2, a directly light-gated cation-selective membrane channel. PNAS 100:2413940–45
    [Google Scholar]
  94. 94. 
    Nakajima Y, Tsukamoto T, Kumagai Y, Ogura Y, Hayashi T et al. 2018. Presence of a haloarchaeal halorhodopsin-like Cl pump in marine bacteria. Microbes Environ 33:189–97
    [Google Scholar]
  95. 95. 
    Nango E, Royant A, Kubo M, Nakane T, Wickstrand C et al. 2016. A three-dimensional movie of structural changes in bacteriorhodopsin. Science 354:63191552–57
    [Google Scholar]
  96. 96. 
    Needham DM, Poirier C, Hehenberger E, Jiménez V, Swalwell JE et al. 2019. Targeted metagenomic recovery of four divergent viruses reveals shared and distinctive characteristics of giant viruses of marine eukaryotes. Philos. Trans. R. Soc. Lond. B. 374: 1786.20190086
    [Google Scholar]
  97. 97. 
    Needham DM, Yoshizawa S, Hosaka T, Poirier C, Choi CJ et al. 2019. A distinct lineage of giant viruses brings a rhodopsin photosystem to unicellular marine predators. PNAS 116:4120574–83
    [Google Scholar]
  98. 98. 
    Niho A, Yoshizawa S, Tsukamoto T, Kurihara M, Tahara S et al. 2017. Demonstration of a light-driven SO42− transporter and its spectroscopic characteristics. J. Am. Chem. Soc. 139:124376–89
    [Google Scholar]
  99. 99. 
    Oesterhelt D, Stoeckenius W. 1971. Rhodopsin-like protein from the purple membrane of Halobacterium halobium. Nat. New Biol. 233:39149–52
    [Google Scholar]
  100. 100. 
    Oh H-M, Lee K, Jang Y, Kang I, Kim H-J et al. 2011. Genome sequence of strain IMCC9480, a xanthorhodopsin-bearing betaproteobacterium isolated from the Arctic Ocean. J. Bacteriol. 193:133421
    [Google Scholar]
  101. 101. 
    Oppermann J, Fischer P, Silapetere A, Liepe B, Rodriguez-Rozada S et al. 2019. MerMAIDs: a family of metagenomically discovered marine anion-conducting and intensely desensitizing channelrhodopsins. Nat. Commun. 10:13315
    [Google Scholar]
  102. 102. 
    Otomo A, Mizuno M, Singh M, Shihoya W, Inoue K et al. 2018. Resonance Raman investigation of the chromophore structure of heliorhodopsins. J. Phys. Chem. Lett. 9:226431–36
    [Google Scholar]
  103. 103. 
    Pfeuty B, Thommen Q, Corellou F, Djouani-Tahri EB, Bouget F-Y, Lefranc M. 2012. Circadian clocks in changing weather and seasons: lessons from the picoalga Ostreococcus tauri. BioEssays 34:9781–90
    [Google Scholar]
  104. 104. 
    Philosof A, Béjà O. 2013. Bacterial, archaeal and viral-like rhodopsins from the Red Sea. Environ. Microbiol. Rep. 5:3475–82
    [Google Scholar]
  105. 105. 
    Pinhassi J, DeLong EF, Béjà O, González JM, Pedrós-Alió C. 2016. Marine bacterial and archaeal ion-pumping rhodopsins: genetic diversity, physiology, and ecology. . Microbiol. Mol. Biol. Rev. 80:4929–54
    [Google Scholar]
  106. 106. 
    Pushkarev A, Béjà O. 2016. Functional metagenomic screen reveals new and diverse microbial rhodopsins. ISME J 10:92331–35
    [Google Scholar]
  107. 107. 
    Pushkarev A, Inoue K, Larom S, Flores-Uribe J, Singh M et al. 2018. A distinct abundant group of microbial rhodopsins discovered using functional metagenomics. Nature 558:7711595–99
    [Google Scholar]
  108. 108. 
    Ranjan P, Kateriya S. 2018. Localization and dimer stability of a newly identified microbial rhodopsin from a polar, non-motile green algae. BMC Res. Notes 11:65
    [Google Scholar]
  109. 109. 
    Riedel T, Gómez-Consarnau L, Tomasch J, Martin M, Jarek M et al. 2013. Genomics and physiology of a marine flavobacterium encoding a proteorhodopsin and a xanthorhodopsin-like protein. PLOS ONE 8:3e57487
    [Google Scholar]
  110. 110. 
    Riedel T, Held B, Nolan M, Lucas S, Lapidus A et al. 2012. Genome sequence of the Antarctic rhodopsins-containing flavobacterium Gillisia limnaea type strain (R-8282T). Stand. Genom. Sci. 7:1107
    [Google Scholar]
  111. 111. 
    Rozenberg A, Oppermann J, Wietek J, Fernandez Lahore RG, Sandaa R-A et al. 2020. Lateral gene transfer of anion-conducting channelrhodopsins between green algae and giant viruses. Curr. Biol. 30:244910–20.e5
    [Google Scholar]
  112. 112. 
    Salcher MM, Schaefle D, Kaspar M, Neuenschwander SM, Ghai R. 2019. Evolution in action: habitat transition from sediment to the pelagial leads to genome streamlining in Methylophilaceae. ISME J 13:112764–77
    [Google Scholar]
  113. 113. 
    Scheib U, Broser M, Constantin OM, Yang S, Gao S et al. 2018. Rhodopsin-cyclases for photocontrol of cGMP/cAMP and 2.3Å structure of the adenylyl cyclase domain. Nat. Commun. 9:12046
    [Google Scholar]
  114. 114. 
    Schneider F, Grimm C, Hegemann P. 2015. Biophysics of channelrhodopsin. Annu. Rev. Biophys. 44:167–86
    [Google Scholar]
  115. 115. 
    Shalaeva DN, Galperin MY, Mulkidjanian AY. 2015. Eukaryotic G protein-coupled receptors as descendants of prokaryotic sodium-translocating rhodopsins. Biol. Direct. 10:163
    [Google Scholar]
  116. 116. 
    Sharma AK, Spudich JL, Doolittle WF. 2006. Microbial rhodopsins: functional versatility and genetic mobility. Trends Microbiol 14:11463–69
    [Google Scholar]
  117. 117. 
    Shevchenko V, Mager T, Kovalev K, Polovinkin V, Alekseev A et al. 2017. Inward H+ pump xenorhodopsin: mechanism and alternative optogenetic approach. Sci. Adv. 3:9e1603187
    [Google Scholar]
  118. 118. 
    Shihoya W, Inoue K, Singh M, Konno M, Hososhima S et al. 2019. Crystal structure of heliorhodopsin. Nature 574:7776132–36
    [Google Scholar]
  119. 119. 
    Sineshchekov OA, Govorunova EG, Jung K-H, Zauner S, Maier U-G, Spudich JL. 2005. Rhodopsin-mediated photoreception in cryptophyte flagellates. Biophys. J. 89:64310–19
    [Google Scholar]
  120. 120. 
    Singh M, Inoue K, Pushkarev A, Béjà O, Kandori H. 2018. Mutation study of heliorhodopsin 48C12. Biochemistry 57:335041–49
    [Google Scholar]
  121. 121. 
    Slamovits CH, Okamoto N, Burri L, James ER, Keeling PJ. 2011. A bacterial proteorhodopsin proton pump in marine eukaryotes. Nat. Commun. 2:1183
    [Google Scholar]
  122. 122. 
    Spudich JL, Bogomolni RA. 1984. Mechanism of colour discrimination by a bacterial sensory rhodopsin. Nature 312:5994509–13
    [Google Scholar]
  123. 123. 
    Spudich JL, Jung K-H 2005. Microbial rhodopsins: phylogenetic and functional diversity. Handbook of Photosensory Receptors WR Briggs, JL Spudich 1–23 Weinheim, Ger: Wiley-VCH Verlag GmbH
    [Google Scholar]
  124. 124. 
    Spudich JL, Yang CS, Jung KH, Spudich EN. 2000. Retinylidene proteins: structures and functions from archaea to humans. Annu. Rev. Cell Dev. Biol. 16:365–92
    [Google Scholar]
  125. 125. 
    Sudo Y, Ihara K, Kobayashi S, Suzuki D, Irieda H et al. 2011. A microbial rhodopsin with a unique retinal composition shows both sensory rhodopsin II and bacteriorhodopsin-like properties. J. Biol. Chem. 286:85967–76
    [Google Scholar]
  126. 126. 
    Sudo Y, Yoshizawa S. 2016. Functional and photochemical characterization of a light-driven proton pump from the gammaproteobacterium Pantoea vagans. Photochem. Photobiol. 92:3420–27
    [Google Scholar]
  127. 127. 
    Sugiura M, Tsunoda SP, Hibi M, Kandori H. 2020. Molecular properties of new enzyme rhodopsins with phosphodiesterase activity. ACS Omega 5:1810602–9
    [Google Scholar]
  128. 128. 
    Tahara S, Singh M, Kuramochi H, Shihoya W, Inoue K et al. 2019. Ultrafast dynamics of heliorhodopsins. J. Phys. Chem. B 123:112507–12
    [Google Scholar]
  129. 129. 
    Tanabe H, Fujii Y, Okada-Iwabu M, Iwabu M, Nakamura Y et al. 2015. Crystal structures of the human adiponectin receptors. Nature 520:7547312–16
    [Google Scholar]
  130. 130. 
    Tanaka T, Singh M, Shihoya W, Yamashita K, Kandori H, Nureki O. 2020. Structural basis for unique color tuning mechanism in heliorhodopsin. Biochem. Biophys. Res. Commun. 533:3262–67
    [Google Scholar]
  131. 131. 
    Tang K, Lin D, Liu K, Jiao N. 2015. Draft genome sequence of Parvularcula oceani JLT2013T, a rhodopsin-containing bacterium isolated from deep-sea water of the Southeastern Pacific. Mar. Genom. 24:211–13
    [Google Scholar]
  132. 132. 
    Tarlachkov SV, Shevchuk TV, Montero-Calasanz MC, Starodumova IP 2020. Diversity of rhodopsins in cultivated bacteria of the family Geodermatophilaceae associated with non-aquatic environments. Bioinformatics 36:61668–72
    [Google Scholar]
  133. 133. 
    Tian Y, Gao S, von der Heyde EL, Hallmann A, Nagel G 2018. Two-component cyclase opsins of green algae are ATP-dependent and light-inhibited guanylyl cyclases. BMC Biol 16:1144
    [Google Scholar]
  134. 134. 
    Trieu MM, Devine EL, Lamarche LB, Ammerman AE, Greco JA et al. 2017. Expression, purification, and spectral tuning of RhoGC, a retinylidene/guanylyl cyclase fusion protein and optogenetics tool from the aquatic fungus Blastocladiella emersonii. J. Biol. Chem. 292:2510379–89
    [Google Scholar]
  135. 135. 
    Tsukamoto T, Inoue K, Kandori H, Sudo Y. 2013. Thermal and spectroscopic characterization of a proton pumping rhodopsin from an extreme thermophile. J. Biol. Chem. 288:3021581–92
    [Google Scholar]
  136. 136. 
    Tsunoda SP, Ewers D, Gazzarrini S, Moroni A, Gradmann D, Hegemann P. 2006. H+-pumping rhodopsin from the marine alga Acetabularia. Biophys. J. 91:41471–79
    [Google Scholar]
  137. 137. 
    Ugalde JA, Podell S, Narasingarao P, Allen EE 2011. Xenorhodopsins, an enigmatic new class of microbial rhodopsins horizontally transferred between archaea and bacteria. Biol. Direct. 6:152
    [Google Scholar]
  138. 138. 
    Vavourakis CD, Ghai R, Rodriguez-Valera F, Sorokin DY, Tringe SG et al. 2016. Metagenomic insights into the uncultured diversity and physiology of microbes in four hypersaline soda lake brines. Front. Microbiol. 7:211
    [Google Scholar]
  139. 139. 
    Vollmers J, Voget S, Dietrich S, Gollnow K, Smits M et al. 2013. Poles apart: Arctic and Antarctic Octadecabacter strains share high genome plasticity and a new type of xanthorhodopsin. PLOS ONE 8:5e63422
    [Google Scholar]
  140. 140. 
    Wada T, Shimono K, Kikukawa T, Hato M, Shinya N et al. 2011. Crystal structure of the eukaryotic light-driven proton-pumping rhodopsin, Acetabularia rhodopsin II, from marine alga. J. Mol. Biol. 411:5986–98
    [Google Scholar]
  141. 141. 
    Waschuk SA, Bezerra AG, Shi L, Brown LS 2005. Leptosphaeria rhodopsin: bacteriorhodopsin-like proton pump from a eukaryote. PNAS 102:196879–83
    [Google Scholar]
  142. 142. 
    Wietek J, Wiegert JS, Adeishvili N, Schneider F, Watanabe H et al. 2014. Conversion of channelrhodopsin into a light-gated chloride channel. Science 344:6182409–12
    [Google Scholar]
  143. 143. 
    Wolf S, Grünewald S. 2015. Sequence, structure and ligand binding evolution of rhodopsin-like G protein-coupled receptors: a crystal structure-based phylogenetic analysis. PLOS ONE 10:4e0123533
    [Google Scholar]
  144. 144. 
    Yamauchi Y, Konno M, Ito S, Tsunoda SP, Inoue K, Kandori H. 2017. Molecular properties of a DTD channelrhodopsin from Guillardia theta. Biophys. Physicobiol. 14:57–66
    [Google Scholar]
  145. 145. 
    Yamauchi Y, Konno M, Yamada D, Yura K, Inoue K et al. 2019. Engineered functional recovery of microbial rhodopsin without retinal-binding lysine. Photochem. Photobiol. 95:51116–21
    [Google Scholar]
  146. 146. 
    Yoshida K, Tsunoda SP, Brown LS, Kandori H. 2017. A unique choanoflagellate enzyme rhodopsin exhibits light-dependent cyclic nucleotide phosphodiesterase activity. J. Biol. Chem. 292:187531–41
    [Google Scholar]
  147. 147. 
    Yoshizawa S, Kumagai Y, Kim H, Ogura Y, Hayashi T et al. 2014. Functional characterization of flavobacteria rhodopsins reveals a unique class of light-driven chloride pump in bacteria. PNAS 111:186732–37
    [Google Scholar]
  148. 148. 
    Yutin N, Koonin EV. 2012. Proteorhodopsin genes in giant viruses. Biol. Direct. 7:34
    [Google Scholar]
  149. 149. 
    Zabelskii D, Alekseev A, Kovalev K, Rankovic V, Balandin T et al. 2020. Viral rhodopsins 1 are an unique family of light-gated cation channels. Nat. Commun 11:5707
    [Google Scholar]
  150. 150. 
    Zhai Y, Heijne WHM, Smith DW, Saier MH. 2001. Homologues of archaeal rhodopsins in plants, animals and fungi: structural and functional predications for a putative fungal chaperone protein. Biochim. Biophys. Acta Biomembr. 1511:2206–23
    [Google Scholar]
/content/journals/10.1146/annurev-micro-031721-020452
Loading
/content/journals/10.1146/annurev-micro-031721-020452
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error