1932

Abstract

Temperate bacteriophages (phages) are viruses of bacteria. Upon infection of a susceptible host, a temperate phage can establish either a lytic cycle that kills the host or a lysogenic cycle as a stable prophage. The life cycle pursued by an infecting temperate phage can have a significant impact not only on the individual host bacterium at the cellular level but also on bacterial communities and evolution in the ecosystem. Thus, understanding the decision processes of temperate phages is crucial. This review delves into the molecular mechanisms behind lysis–lysogeny decision-making in Gram-positive phages. We discuss a variety of molecular mechanisms and the genetic organization of these well-understood systems. By elucidating the strategies used by phages to make lysis–lysogeny decisions, we can improve our understanding of phage–host interactions, which is crucial for a variety of studies including bacterial evolution, community and ecosystem diversification, and phage therapeutics.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-micro-033121-020757
2021-10-08
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/micro/75/1/annurev-micro-033121-020757.html?itemId=/content/journals/10.1146/annurev-micro-033121-020757&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Ackers GK, Johnson AD, Shea MA. 1982. Quantitative model for gene regulation by λ phage repressor. PNAS 79:41129–33
    [Google Scholar]
  2. 2. 
    Aggarwal AK, Rodgers DW, Drottar M, Ptashne M, Harrison SC. 1988. Recognition of a DNA operator by the repressor of phage 434: a view at high resolution. Science 242:4880899–907
    [Google Scholar]
  3. 3. 
    Alsing A, Pedersen M, Sneppen K, Hammer K. 2011. Key players in the genetic switch of bacteriophage TP901-1. Biophys. J. 100:2313–21
    [Google Scholar]
  4. 4. 
    Argov T, Azulay G, Pasechnek A, Stadnyuk O, Ran-Sapir S et al. 2017. Temperate bacteriophages as regulators of host behavior. Curr. Opin. Microbiol. 38:81–87
    [Google Scholar]
  5. 5. 
    Auchtung JM, Aleksanyan N, Bulku A, Berkmen MB. 2016. Biology of ICEBs1, an integrative and conjugative element in Bacillus subtilis. Plasmid 86:14–25
    [Google Scholar]
  6. 6. 
    Auchtung JM, Lee CA, Garrison KL, Grossman AD. 2007. Identification and characterization of the immunity repressor (ImmR) that controls the mobile genetic element ICEBs1 of Bacillus subtilis. Mol. Microbiol. 64:61515–28
    [Google Scholar]
  7. 7. 
    Auchtung JM, Lee CA, Monson RE, Lehman AP, Grossman AD. 2005. Regulation of a Bacillus subtilis mobile genetic element by intercellular signaling and the global DNA damage response. PNAS 102:3512554–59
    [Google Scholar]
  8. 8. 
    Berjón-Otero M, Lechuga A, Mehla J, Uetz P, Salas M, Redrejo-Rodríguez M. 2017. Bam35 tectivirus intraviral interaction map unveils new function and localization of phage ORFan proteins. J. Virol. 91:19870–87
    [Google Scholar]
  9. 9. 
    Biswas A, Mandal S, Sau S. 2017. Identification and characterization of a CI binding operator at a distant location in the temperate staphylococcal phage ϕ11. FEMS Microbiol. Lett. 364:20fnx201
    [Google Scholar]
  10. 10. 
    Blatny JM, Risoen PA, Lllehaug D, Lunde M, Nes IF. 2001. Analysis of a regulator involved in the genetic switch between lysis and lysogeny of the temperate Lactococcus lactis phage φLC3. Mol. Genet. Genom. 265:189–97
    [Google Scholar]
  11. 11. 
    Bose B, Auchtung JM, Lee CA, Grossman AD. 2008. A conserved anti-repressor controls horizontal gene transfer by proteolysis. Mol. Microbiol. 70:3570–82
    [Google Scholar]
  12. 12. 
    Bose B, Grossman AD. 2011. Regulation of horizontal gene transfer in Bacillus subtilis by activation of a conserved site-specific protease. J. Bacteriol. 193:122–29
    [Google Scholar]
  13. 13. 
    Brent R, Ptashne M. 1981. Mechanism of action of the lexA gene product. PNAS 78:74204–8
    [Google Scholar]
  14. 14. 
    Brüssow H, Canchaya C, Hardt W-D. 2004. Phages and the evolution of bacterial pathogens: from genomic rearrangements to lysogenic conversion. Microbiol. Mol. Biol. Rev. 68:3560–602
    [Google Scholar]
  15. 15. 
    Bruttin A, Desiere F, Lucchini S, Foley S, Brüssow H. 1997. Characterization of the lysogeny DNA module from the temperate Streptococcus thermophilus bacteriophage Sfi21. Virology 233:136–48
    [Google Scholar]
  16. 16. 
    Bruttin A, Foley S, Brüssow H. 2002. DNA-binding activity of the Streptococcus thermophilus phage ϕSfi21 repressor. Virology 303:1100–9
    [Google Scholar]
  17. 17. 
    Carrasco B, Escobedo S, Alonso JC, Suárez JE. 2016. Modulation of Lactobacillus casei bacteriophage A2 lytic/lysogenic cycles by binding of Gp25 to the early lytic mRNA. Mol. Microbiol. 99:2328–37
    [Google Scholar]
  18. 18. 
    Casjens SR, Hendrix RW. 2015. Bacteriophage lambda: early pioneer and still relevant. Virology 479/480:310–30
    [Google Scholar]
  19. 19. 
    Caveney NA, Pavlin A, Caballero G, Bahun M, Hodnik V et al. 2019. Structural insights into bacteriophage GIL01 gp7 inhibition of host LexA repressor. Structure 27:1094–102
    [Google Scholar]
  20. 20. 
    Chen J, Quiles-Puchalt N, Chiang YN, Bacigalupe R, Fillol-Salom A et al. 2018. Genome hypermobility by lateral transduction. Science 362:6411207–12
    [Google Scholar]
  21. 21. 
    Chiang YN, Penadés JR, Chen J 2019. Genetic transduction by phages and chromosomal islands: the new and noncanonical. PLOS Pathog 15:8e1007878
    [Google Scholar]
  22. 22. 
    Cox MM, Goodman MF, Kreuzer KN, Sherratt DJ, Sandler SJ, Marians KJ. 2000. The importance of repairing stalled replication forks. Nature 404:37–41
    [Google Scholar]
  23. 23. 
    Das A, Biswas M. 2019. Cloning, overexpression and purification of a novel two-domain protein of Staphylococcus aureus phage Phi11. Protein Expr. Purif. 154:104–11
    [Google Scholar]
  24. 24. 
    Das A, Biswas S, Biswas M. 2018. Expression of Phi11 Gp07 causes filamentation in Escherichia coli. Open Microbiol. J. 12:1107–15
    [Google Scholar]
  25. 25. 
    Das A, Mandal S, Hemmadi V, Ratre V, Biswas M et al. 2020. Studies on the gene regulation involved in the lytic–lysogenic switch in Staphylococcus aureus temperate bacteriophage Phi11. J. Biochem. 168:6659–68
    [Google Scholar]
  26. 26. 
    Davies EV, Winstanley C, Fothergill JL, James CE. 2016. The role of temperate bacteriophages in bacterial infection. FEMS Microbiol. Lett. 363:5fnw015
    [Google Scholar]
  27. 27. 
    De Anda J, Poteete AR, Sauer RT. 1983. P22 c2 repressor. Domain structure and function. J. Biol. Chem. 258:10536–42
    [Google Scholar]
  28. 28. 
    Desiere F, Lucchini S, Canchaya C, Ventura M, Brüssow H 2002. Comparative genomics of phages and prophages in lactic acid bacteria. Lactic Acid Bacteria: Genetics, Metabolism and Applications W Konings, OP Kuipers, JHJ Huis in ’t Veld 73–91 Dordrecht, Neth: Springer
    [Google Scholar]
  29. 29. 
    Devigne A, Ithurbide S, Bouthier de la Tour C, Passot F, Mathieu M et al. 2015. DdrO is an essential protein that regulates the radiation desiccation response and the apoptotic-like cell death in the radioresistant Deinococcus radiodurans bacterium. Mol. Microbiol. 96:51069–84
    [Google Scholar]
  30. 30. 
    Dou C, Xiong J, Gu Y, Yin K, Wang J et al. 2018. Structural and functional insights into the regulation of the lysis-lysogeny decision in viral communities. Nat. Microbiol. 3:111285–94
    [Google Scholar]
  31. 31. 
    Eguchi Y, Ogawa T, Ogawa H. 1988. Cleavage of bacteriophage ϕ80 CI repressor by RecA protein. J. Mol. Biol. 202:3565–73
    [Google Scholar]
  32. 32. 
    Engel G, Altermann E, Klein JR, Henrich B. 1998. Structure of a genome region of the Lactobacillus gasseri temperate phage ϕadh covering a repressor gene and cognate promoters. Gene 210:161–70
    [Google Scholar]
  33. 33. 
    Erez Z, Steinberger-Levy I, Shamir M, Doron S, Stokar-Avihail A et al. 2017. Communication between viruses guides lysis–lysogeny decisions. Nature 541:7638488–93
    [Google Scholar]
  34. 34. 
    Feiner R, Argov T, Rabinovitch L, Sigal N, Borovok I, Herskovits AA. 2015. A new perspective on lysogeny: prophages as active regulatory switches of bacteria. Nat. Rev. Microbiol. 13:10641–50
    [Google Scholar]
  35. 35. 
    Fillol-Salom A, Alsaadi A, de Sousa JAM, Zhong L, Foster KR et al. 2019. Bacteriophages benefit from generalized transduction. PLOS Pathog 15:7e1007888
    [Google Scholar]
  36. 36. 
    Fornelos N, Bamford JKH, Mahillon J. 2011. Phage-borne factors and host LexA regulate the lytic switch in phage GIL01. J. Bacteriol. 193:216008–19
    [Google Scholar]
  37. 37. 
    Fornelos N, Browning DF, Pavlin A, Podlesek Z, Hodnik V et al. 2018. Lytic gene expression in the temperate bacteriophage GIL01 is activated by a phage-encoded LexA homologue. Nucleic Acids Res 46:189432–43
    [Google Scholar]
  38. 38. 
    Fornelos N, Butala M, Hodnik V, Anderluh G, Bamford JK, Salas M. 2015. Bacteriophage GIL01 gp7 interacts with host LexA repressor to enhance DNA binding and inhibit RecA-mediated auto-cleavage. Nucleic Acids Res 43:157315–29
    [Google Scholar]
  39. 39. 
    Gallego del Sol F, Penadés JR, Marina A 2019. Deciphering the molecular mechanism underpinning phage arbitrium communication systems. Mol. Cell 74:159–72.e3
    [Google Scholar]
  40. 40. 
    Gandon S. 2016. Why be temperate: lessons from bacteriophage λ. Trends Microbiol 24:5356–65
    [Google Scholar]
  41. 41. 
    García P, Ladero V, Alonso JC, Suárez JE. 1999. Cooperative interaction of CI protein regulates lysogeny of Lactobacillus casei by bacteriophage A2. J. Virol. 73:53920–29
    [Google Scholar]
  42. 42. 
    Garneau JE, Moineau S. 2011. Bacteriophages of lactic acid bacteria and their impact on milk fermentations. Microb. Cell Fact. 10:Suppl. 1S20
    [Google Scholar]
  43. 43. 
    Goerke C, Wirtz C, Flückiger U, Wolz C. 2006. Extensive phage dynamics in Staphylococcus aureus contributes to adaptation to the human host during infection. Mol. Microbiol. 61:61673–85
    [Google Scholar]
  44. 44. 
    Hampton HG, Watson BNJ, Fineran PC. 2020. The arms race between bacteria and their phage foes. Nature 577:327–36
    [Google Scholar]
  45. 45. 
    Hendrix RW, Smith MCM, Burns RN, Ford ME, Hatfull GF. 1999. Evolutionary relationships among diverse bacteriophages and prophages: All the world's a phage. PNAS 96:52192–97
    [Google Scholar]
  46. 46. 
    Howard-Varona C, Hargreaves KR, Abedon ST, Sullivan MB. 2017. Lysogeny in nature: mechanisms, impact and ecology of temperate phages. ISME J 11:71511–20
    [Google Scholar]
  47. 47. 
    Jalasvuori M, Koskinen K. 2018. Extending the hosts of Tectiviridae into four additional genera of Gram-positive bacteria and more diverse Bacillus species. Virology 518:136–42
    [Google Scholar]
  48. 48. 
    Johansen AH, Brøndsted L, Hammer K. 2003. Identification of operator sites of the CI repressor of phage TP901-1: evolutionary link to other phages. Virology 311:1144–56
    [Google Scholar]
  49. 49. 
    Kakikawa M, Ohkubo S, Syama M, Taketo A, Kodaira KI. 2000. The genetic switch for the regulatory pathway of Lactobacillus plantarum phage ϕg1e: characterization of the promoter PL, the repressor gene cpg, and the cpg-encoded protein Cpg in Escherichia coli. Gene 242:1/2155–66
    [Google Scholar]
  50. 50. 
    Kenny JG, Leach S, de la Hoz AB, Venema G, Kok J et al. 2006. Characterization of the lytic-lysogenic switch of the lactococcal bacteriophage Tuc2009. Virology 347:2434–46
    [Google Scholar]
  51. 51. 
    Kutter E, Kellenberger E, Carlson K, Eddy S, Neitzel J et al. 1994. Effects of bacterial growth conditions and physiology on T4 infection. Molecular Biology of Bacteriophage T4 JD Karam 406–18 Washington, DC: Am. Soc. Microbiol.
    [Google Scholar]
  52. 52. 
    Labrie SJ, Samson JE, Moineau S. 2010. Bacteriophage resistance mechanisms. Nat. Rev. Microbiol. 8:317–27
    [Google Scholar]
  53. 53. 
    Ladero V, García P, Alonso JC, Suárez JE. 1999. A2 Cro, the lysogenic cycle repressor, specifically binds to the genetic switch region of Lactobacillus casei bacteriophage A2. Virology 262:1220–29
    [Google Scholar]
  54. 54. 
    Ladero V, García P, Alonso JC, Suárez JE. 2002. Interaction of the Cro repressor with the lysis/lysogeny switch of the Lactobacillus casei temperate bacteriophage A2. J. Gen. Virol. 83:112891–95
    [Google Scholar]
  55. 55. 
    Laganenka L, Sander T, Lagonenko A, Chen Y, Link H, Sourjik V. 2019. Quorum sensing and metabolic state of the host control lysogeny–lysis switch of bacteriophage T1. mBio 10:501884-19
    [Google Scholar]
  56. 56. 
    Lee CA, Auchtung JM, Monson RE, Grossman AD. 2007. Identification and characterization of int (integrase), xis (excisionase) and chromosomal attachment sites of the integrative and conjugative element ICEBs1 of Bacillus subtilis. Mol. Microbiol. 66:61356–69
    [Google Scholar]
  57. 57. 
    Little JW, Mount DW, Yanisch-Perron CR. 1981. Purified lexA protein is a repressor of the recA and lexA genes. PNAS 78:74199–203
    [Google Scholar]
  58. 58. 
    Little JW. 1991. Mechanism of specific LexA cleavage: autodigestion and the role of RecA coprotease. Biochimie 73:4411–21
    [Google Scholar]
  59. 59. 
    Little JW, Mount DW. 1982. The SOS regulatory system of Escherichia coli. Cell 29:1122
    [Google Scholar]
  60. 60. 
    Łoś M, Wegrzyn G. 2012. Pseudolysogeny. Adv. Virus Res. 82:339–49
    [Google Scholar]
  61. 61. 
    Lucchini S, Desiere F, Brüssow H. 1999. Similarly organized lysogeny modules in temperate Siphoviridae from low GC content gram-positive bacteria. Virology 263:2427–35
    [Google Scholar]
  62. 62. 
    Luo Y, Pfuetzner RA, Mosimann S, Paetzel M, Frey EA et al. 2001. Crystal structure of LexA: a conformational switch for regulation of self-cleavage. Cell 106:5585–94
    [Google Scholar]
  63. 63. 
    Madsen PL, Johansen AH, Hammer K, Brøndsted L. 1999. The genetic switch regulating activity of early promoters of the temperate lactococcal bacteriophage TP901-1. J. Bacteriol. 181:247430–38
    [Google Scholar]
  64. 64. 
    Marr MT, Roberts JW, Brown SE, Klee M, Gussin GN 2004. Interactions among CII protein, RNA polymerase and the λ PRE promoter: Contacts between RNA polymerase and the −35 region of PRE are identical in the presence and absence of CII protein. Nucleic Acids Res 32:31083–90
    [Google Scholar]
  65. 65. 
    Martínez-Rubio R, Quiles-Puchalt N, Martí M, Humphrey S, Ram G et al. 2017. Phage-inducible islands in the Gram-positive cocci. ISME J 11:41029–42
    [Google Scholar]
  66. 66. 
    Maslowska KH, Makiela-Dzbenska K, Fijalkowska IJ. 2019. The SOS system: a complex and tightly regulated response to DNA damage. Environ. Mol. Mutagen. 60:4368–84
    [Google Scholar]
  67. 67. 
    Mason SW, Greenblatt J. 1991. Assembly of transcription elongation complexes containing the N protein of phage λ and the Escherichia coli elongation factors NusA, NusB, NusG, and S10. Genes Dev 5:81504–12
    [Google Scholar]
  68. 68. 
    Miller RV, Ripp SA 2002. Pseudolysogeny: a bacteriophage strategy for increasing longevity in situ. Horizontal Gene Transfer M Syvanen, CI Kado 81–91 Amsterdam: Elsevier, 2nd ed..
    [Google Scholar]
  69. 69. 
    Nauta A, van Sinderen O, Karsens H, Smit E, Venema G, Kok J. 1996. Inducible gene expression mediated by a repressor-operator system isolated from Lactococcus lactis bacteriophage r1t. Mol. Microbiol. 19:61331–41
    [Google Scholar]
  70. 70. 
    Olsen RH, Siak J-S, Gray RH. 1974. Characteristics of PRD1, a plasmid-dependent broad host range DNA bacteriophage. J. Virol. 14:3689–99
    [Google Scholar]
  71. 71. 
    Oppenheim AB, Kobiler O, Stavans J, Court DL, Adhya S. 2005. Switches in bacteriophage lambda development. Annu. Rev. Genet. 39:409–29
    [Google Scholar]
  72. 72. 
    Pabo CO, Sauer RT, Sturtevant JM, Ptashne M. 1979. The λ repressor contains two domains. PNAS 76:41608–12
    [Google Scholar]
  73. 73. 
    Pedersen M, Neergaard JT, Cassias J, Rasmussen KK, Lo Leggio L et al. 2020. Repression of the lysogenic PR promoter in bacteriophage TP901-1 through binding of a CI-MOR complex to a composite OM-OR operator. Sci. Rep. 10:8659
    [Google Scholar]
  74. 74. 
    Pedersen M, Hammer K. 2008. The role of MOR and the CI operator sites on the genetic switch of the temperate bacteriophage TP901-1. J. Mol. Biol. 384:3577–89
    [Google Scholar]
  75. 75. 
    Penadés JR, Christie GE. 2015. The phage-inducible chromosomal islands: a family of highly evolved molecular parasites. Annu. Rev. Virol. 2:181–201
    [Google Scholar]
  76. 76. 
    Perego M. 1997. A peptide export-import control circuit modulating bacterial development regulates protein phosphatases of the phosphorelay. PNAS 94:168612–17
    [Google Scholar]
  77. 77. 
    Perego M, Higgins CF, Pearce SR, Gallagher MP, Hoch JA. 1991. The oligopeptide transport system of Bacillus subtilis plays a role in the initiation of sporulation. Mol. Microbiol. 5:1173–85
    [Google Scholar]
  78. 78. 
    Pottathil M, Lazazzera BA. 2003. The extracellular Phr peptide–Rap phosphatase signaling circuit of Bacillus subtilis. Front. Biosci. 8:32–45
    [Google Scholar]
  79. 79. 
    Proux C, van Sinderen D, Suárez J, García P, Ladero V et al. 2002. The dilemma of phage taxonomy illustrated by comparative genomics of Sfi21-like Siphoviridae in lactic acid bacteria. J. Bacteriol. 184:216026–36
    [Google Scholar]
  80. 80. 
    Ptashne M. 2004. A Genetic Switch: Phage Lambda Revisited Cold Spring Harbor, NY: Cold Spring Harbor Lab. Press
  81. 81. 
    Ptashne M, Jeffrey A, Johnson AD, Maurer F, Meyer J et al. 1980. How the lambda repressor and cro work. Cell 19:11–11
    [Google Scholar]
  82. 82. 
    Rostøl JT, Marraffini L. 2019. Ph)ighting phages: how bacteria resist their parasites. Cell Host Microbe 25:2184–94
    [Google Scholar]
  83. 83. 
    Sakaguchi Y, Hayashi T, Kurokawa K, Nakayama K, Oshima K et al. 2005. The genome sequence of Clostridium botulinum type C neurotoxin-converting phage and the molecular mechanisms of unstable lysogeny. PNAS 102:4817472–77
    [Google Scholar]
  84. 84. 
    Santillán M, Mackey MC. 2004. Why the lysogenic state of phage λ is so stable: a mathematical modeling approach. Biophys. J. 86:1 I75–84
    [Google Scholar]
  85. 85. 
    Sauer RT, Ross MJ, Ptashne M. 1982. Cleavage of the lambda and P22 repressors by recA protein. J. Biol. Chem. 257:4458–62
    [Google Scholar]
  86. 86. 
    Schlacher K, Goodman MF. 2007. Lessons from 50 years of SOS DNA-damage induced mutagenesis. Nat. Rev. Mol. Cell Biol. 8:587–94
    [Google Scholar]
  87. 87. 
    Shea MA, Ackers GK. 1985. The OR control system of bacteriophage lambda. A physical-chemical model for gene regulation. J. Mol. Biol. 181:2211–30
    [Google Scholar]
  88. 88. 
    Silpe JE, Bassler BL. 2019. A host-produced quorum-sensing autoinducer controls a phage lysis–lysogeny decision. Cell 176:1/2268–80.e13
    [Google Scholar]
  89. 89. 
    Stokar-Avihail A, Tal N, Erez Z, Lopatina A, Sorek R. 2019. Widespread utilization of peptide communication in phages infecting soil and pathogenic bacteria. Cell Host Microbe 25:5746–55.e5
    [Google Scholar]
  90. 90. 
    Strömsten NJ, Benson SD, Burnett RM, Bamford DH, Bamford JKH. 2003. The Bacillus thuringiensis linear double-stranded DNA phage Bam35, which is highly similar to the Bacillus cereus linear plasmid pBClin15, has a prophage state. J. Bacteriol. 185:236985–89
    [Google Scholar]
  91. 91. 
    Svenningsen SL, Costantino M, Court DL, Adhya S. 2005. On the role of Cro in λ prophage induction. PNAS 102:124465–69
    [Google Scholar]
  92. 92. 
    Taylor VL, Fitzpatrick AD, Islam Z, Maxwell KL. 2019. The diverse impacts of phage morons on bacterial fitness and virulence. Adv. Virus Res. 103:1–31
    [Google Scholar]
  93. 93. 
    Utter B, Deutsch DR, Schuch R, Winer BY, Verratti K et al. 2014. Beyond the chromosome: the prevalence of unique extra-chromosomal bacteriophages with integrated virulence genes in pathogenic Staphylococcus aureus. PLOS ONE 9:6e100502
    [Google Scholar]
  94. 94. 
    Venema G, Kok J, van Sinderen D 1999. From DNA sequence to application: possibilities and complications. Lactic Acid Bacteria: Genetics, Metabolism and Applications W Konings, OP Kuipers, JHJ Huis in ’t Veld 3–23 Dordrecht, Neth: Springer
    [Google Scholar]
  95. 95. 
    Verheust C, Fornelos N, Mahillon J. 2005. GIL16, a new gram-positive tectiviral phage related to the Bacillus thuringiensis GIL01 and the Bacillus cereus pBClin15 elements. J. Bacteriol. 187:61966–73
    [Google Scholar]
  96. 96. 
    Verheust C, Jensen G, Mahillon J. 2003. pGIL01, a linear tectiviral plasmid prophage originating from Bacillus thuringiensis serovar Israelensis. Microbiology 149:82083–92
    [Google Scholar]
  97. 97. 
    Vujičić-Žagar A, Dulermo R, Le Gorrec M, Vannier F, Servant P et al. 2009. Crystal structure of the IrrE protein, a central regulator of DNA damage repair in Deinococcaceae. J. Mol. Biol. 386:3704–16
    [Google Scholar]
  98. 98. 
    Wang Q, Guan Z, Pei K, Wang J, Liu Z et al. 2018. Structural basis of the arbitrium peptide–AimR communication system in the phage lysis-lysogeny decision. Nat. Microbiol. 3:111266–73
    [Google Scholar]
  99. 99. 
    Zemskov EA, Kang W, Maeda S. 2000. Evidence for nucleic acid binding ability and nucleosome association of Bombyx mori nucleopolyhedrovirus BRO proteins. J. Virol. 74:156784–89
    [Google Scholar]
/content/journals/10.1146/annurev-micro-033121-020757
Loading
/content/journals/10.1146/annurev-micro-033121-020757
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error