1932

Abstract

Throughout evolutionary history in the kingdom Fungi, taxa have exchanged genetic information among species, as revealed in particular by analyses of genome sequences. In fungi, hybridization can occur by sexual mating or by fusion of vegetative structures giving rise to new species or leaving traces of introgression in the genome. Furthermore, gene exchange can occur by horizontal gene transfer between species and can even include organisms outside the kingdom Fungi. In several cases, interspecific gene exchange has been instrumental in rapid adaptive evolution of fungal species and has notably played a role in the emergence of new pathogens. Here we summarize mechanisms and examples of gene exchange in fungi with a particular focus on the genomic context. We emphasize the need for and potential of applying population genetic approaches to better understand the processes and the impact of interspecific gene exchange in rapid adaptive evolution and species diversification. The broad occurrence of gene exchange among fungal species challenges our species concepts in the kingdom Fungi.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-micro-090817-062753
2018-09-08
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/micro/72/1/annurev-micro-090817-062753.html?itemId=/content/journals/10.1146/annurev-micro-090817-062753&mimeType=html&fmt=ahah

Literature Cited

  1. 1.  Abraham G, Inouye M 2014. Fast principal component analysis of large-scale genome-wide data. PLOS ONE 9:4e93766
    [Google Scholar]
  2. 2.  Alexander DH, Lange K 2011. Enhancements to the ADMIXTURE algorithm for individual ancestry estimation. BMC Bioinform 12:246
    [Google Scholar]
  3. 3.  Alexander DH, Novembre J, Lange K 2009. Fast model-based estimation of ancestry in unrelated individuals. Genome Res 19:91655–64
    [Google Scholar]
  4. 4.  Anderson JB, Korhonen K, Ullrich RC 1980. Relationships between European and North American biological species of Armillaria mellea. Exp. . Mycol 4:178–86
    [Google Scholar]
  5. 5.  Baack EJ, Rieseberg LH 2007. A genomic view of introgression and hybrid speciation. Curr. Opin. Genet. Dev. 17:6513–18
    [Google Scholar]
  6. 6.  Bansal MS, Alm EJ, Kellis M 2012. Efficient algorithms for the reconciliation problem with gene duplication, horizontal transfer and loss. Bioinformatics 28:12i283–91
    [Google Scholar]
  7. 7.  Baran Y, Pasaniuc B, Sankararaman S, Torgerson DG, Gignoux C et al. 2012. Fast and accurate inference of local ancestry in Latino populations. Bioinformatics 28:101359–67
    [Google Scholar]
  8. 8.  Becq J, Churlaud C, Deschavanne P 2010. A benchmark of parametric methods for horizontal transfers detection. PLOS ONE 5:4e9989
    [Google Scholar]
  9. 9.  Bernardes JP, Stelkens RB, Greig D 2017. Heterosis in hybrids within and between yeast species. J. Evol. Biol. 30:3538–48
    [Google Scholar]
  10. 10.  Boothby TC, Tenlen JR, Smith FW, Wang JR, Patanella KA et al. 2015. Evidence for extensive horizontal gene transfer from the draft genome of a tardigrade. PNAS 112:5215976–81
    [Google Scholar]
  11. 11.  Boynton PJ, Janzen T, Greig D 2018. Modeling the contributions of chromosome segregation errors and aneuploidy to Saccharomyces hybrid sterility. Yeast 35:185–98
    [Google Scholar]
  12. 12.  Brisbin A, Bryc K, Byrnes J, Zakharia F, Omberg L et al. 2012. PCAdmix: principal components-based assignment of ancestry along each chromosome in individuals with admixed ancestry from two or more populations. Hum. Biol. 84:4343–64
    [Google Scholar]
  13. 13.  Campbell MA, Rokas A, Slot JC 2012. Horizontal transfer and death of a fungal secondary metabolic gene cluster. Genome Biol. Evol. 4:3289–93
    [Google Scholar]
  14. 14.  Caye K, Deist TM, Martins H, Michel O, François O 2016. TESS3: fast inference of spatial population structure and genome scans for selection. Mol. Ecol. Resour. 16:2540–48
    [Google Scholar]
  15. 15.  Cheeseman K, Ropars J, Renault P, Dupont J, Gouzy J et al. 2014. Multiple recent horizontal transfers of a large genomic region in cheese making fungi. Nat. Commun. 5:2876
    [Google Scholar]
  16. 16.  Chen C, Durand E, Forbes F, François O 2007. Bayesian clustering algorithms ascertaining spatial population structure: a new computer program and a comparison study. Mol. Ecol. Notes 7:5747–56
    [Google Scholar]
  17. 17.  Chen K, Durand D, Farach-Colton M 2000. NOTUNG: a program for dating gene duplications and optimizing gene family trees. J. Comput. Biol. 7:3–4429–47
    [Google Scholar]
  18. 18.  Chuma I, Isobe C, Hotta Y, Ibaragi K, Futamata N et al. 2011. Multiple translocation of the AVR-pita effector gene among chromosomes of the rice blast fungus Magnaporthe oryzae and related species. PLOS Pathog 7:7e1002147
    [Google Scholar]
  19. 19.  Coelho MA, Gonçalves C, Sampaio JP, Gonçalves P 2013. Extensive intra-kingdom horizontal gene transfer converging on a fungal fructose transporter gene. PLOS Genet 9:6e1003587
    [Google Scholar]
  20. 20.  Croll D, Zala M, McDonald BA 2013. Breakage-fusion-bridge cycles and large insertions contribute to the rapid evolution of accessory chromosomes in a fungal pathogen. PLOS Genet 9:6e1003567
    [Google Scholar]
  21. 21.  Cruickshank TE, Hahn MW 2014. Reanalysis suggests that genomic islands of speciation are due to reduced diversity, not reduced gene flow. Mol. Ecol. 23:133133–57
    [Google Scholar]
  22. 22.  de Jonge R, van Esse HP, Maruthachalam K, Bolton MD, Santhanam P et al. 2012. Tomato immune receptor Ve1 recognizes effector of multiple fungal pathogens uncovered by genome and RNA sequencing. PNAS 109:135110–15
    [Google Scholar]
  23. 23.  Desjardins CA, Giamberardino C, Sykes SM, Yu C-HH, Tenor JL et al. 2017. Population genomics and the evolution of virulence in the fungal pathogen Cryptococcus neoformans. . Genome Res 27:71207–19
    [Google Scholar]
  24. 24.  Dettman JR, Anderson JB, Kohn LM 2008. Divergent adaptation promotes reproductive isolation among experimental populations of the filamentous fungus Neurospora. BMC Evol. . Biol 8:135
    [Google Scholar]
  25. 25.  Dettman JR, Jacobson DJ, Turner E, Pringle A, Taylor JW 2003. Reproductive isolation and phylogenetic divergence in Neurospora: comparing methods of species recognition in a model eukaryote. Evolution 57:122721–41
    [Google Scholar]
  26. 26.  Dunn B, Paulish T, Stanbery A, Piotrowski J, Koniges G et al. 2013. Recurrent rearrangement during adaptive evolution in an interspecific yeast hybrid suggests a model for rapid introgression. PLOS Genet 9:3e1003366
    [Google Scholar]
  27. 27.  Dupont P-Y, Cox MP 2017. Genomic data quality impacts automated detection of lateral gene transfer in fungi. G3 7:41301–14
    [Google Scholar]
  28. 28.  Durand EY, Patterson N, Reich D, Slatkin M 2011. Testing for ancient admixture between closely related populations. Mol. Biol. Evol. 28:82239–52
    [Google Scholar]
  29. 29.  Elshire RJ, Glaubitz JC, Sun Q, Poland JA, Kawamoto K et al. 2011. A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLOS ONE 6:5e19379
    [Google Scholar]
  30. 30.  Falush D, Stephens M, Pritchard JK 2003. Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics 164:41567–87
    [Google Scholar]
  31. 31.  Falush D, van Dorp L, Lawson D 2016. A tutorial on how (not) to over-interpret STRUCTURE/ADMIXTURE bar plots. bioRxiv 66431
  32. 32.  Fitzpatrick DA 2012. Horizontal gene transfer in fungi. FEMS Microbiol. Lett. 329:11–8
    [Google Scholar]
  33. 33.  Fogelqvist J, Tzelepis G, Bejai S, Ilbäck J, Schwelm A, Dixelius C 2018. Analysis of the hybrid genomes of two field isolates of the soil-borne fungal species Verticillium longisporum. . BMC Genom 19:114
    [Google Scholar]
  34. 34.  Frichot E, Mathieu F, Trouillon T, Bouchard G, François O 2014. Fast and efficient estimation of individual ancestry coefficients. Genetics 196:4973–83
    [Google Scholar]
  35. 35.  Friesen TL, Stukenbrock EH, Liu Z, Meinhardt S, Ling H et al. 2006. Emergence of a new disease as a result of interspecific virulence gene transfer. Nat. Genet. 38:8953–56
    [Google Scholar]
  36. 36.  Galeote V, Novo M, Salema-Oom M, Brion C, Valerio E et al. 2010. FSY1, a horizontally transferred gene in the Saccharomyces cerevisiae EC1118 wine yeast strain, encodes a high-affinity fructose/H+ symporter. Microbiology 156:123754–61
    [Google Scholar]
  37. 37.  Gao H, Williamson S, Bustamante CD 2007. A Markov chain Monte Carlo approach for joint inference of population structure and inbreeding rates from multilocus genotype data. Genetics 176:31635–51
    [Google Scholar]
  38. 38.  Garcia-Vallvé S, Romeu A, Palau J 2000. Horizontal gene transfer of glycosyl hydrolases of the rumen fungi. Mol. Biol. Evol. 17:3352–61
    [Google Scholar]
  39. 39.  Geneva AJ, Muirhead CA, Kingan SB, Garrigan D 2015. A new method to scan genomes for introgression in a secondary contact model. PLOS ONE 10:4e0118621
    [Google Scholar]
  40. 40.  Giraud T, Villaréal LMMA, Austerlitz F, Le Gac M, Lavigne C 2006. Importance of the life cycle in sympatric host race formation and speciation of pathogens. Phytopathology 96:3280–87
    [Google Scholar]
  41. 41.  Gladieux P, Condon B, Ravel S, Soanes D, Maciel JLN et al. 2018. Gene flow between divergent cereal- and grass-specific lineages of the rice blast fungus Magnaporthe oryzae. . mBio 9:1e01219–17
    [Google Scholar]
  42. 42.  Gladieux P, Vercken E, Fontaine MC, Hood ME, Jonot O et al. 2011. Maintenance of fungal pathogen species that are specialized to different hosts: allopatric divergence and introgression through secondary contact. Mol. Biol. Evol. 28:1459–71
    [Google Scholar]
  43. 43.  Glass NL, Jacobson DJ, Shiu PKT 2000. The genetics of hyphal fusion and vegetative incompatibility in filamentous ascomycete fungi. Annu. Rev. Genet. 34:1165–86
    [Google Scholar]
  44. 44.  Gojković Z, Knecht W, Zameitat E, Warneboldt J, Coutelis J-B et al. 2004. Horizontal gene transfer promoted evolution of the ability to propagate under anaerobic conditions in yeasts. Mol. Genet. Genom. 271:4387–93
    [Google Scholar]
  45. 45.  Gordon TR, Martyn RD 1997. The evolutionary biology of Fusarium oxysporum. Annu. Rev. . Phytopathol 35:1111–28
    [Google Scholar]
  46. 46.  Goulet BE, Roda F, Hopkins R 2017. Hybridization in plants: old ideas, new techniques. Plant Physiol 173:165–78
    [Google Scholar]
  47. 47.  Green RE, Krause J, Briggs AW, Maricic T, Stenzel U et al. 2010. A draft sequence of the Neandertal genome. Science 328:5979710–22
    [Google Scholar]
  48. 48.  Greig D, Louis EJ, Borts RH, Travisano M 2002. Hybrid speciation in experimental populations of yeast. Science 298:55991773–75
    [Google Scholar]
  49. 49.  Gross BL, Rieseberg LH 2005. The ecological genetics of homoploid hybrid speciation. J. Hered. 96:3241–52
    [Google Scholar]
  50. 50.  Guillot G, Mortier F, Estoup A 2005. GENELAND: a computer package for landscape genetics. Mol. Ecol. Notes 5:3712–15
    [Google Scholar]
  51. 51.  Hall C, Brachat S, Dietrich FS 2005. Contribution of horizontal gene transfer to the evolution of Saccharomyces cerevisiae. Eukaryot. . Cell 4:61102–15
    [Google Scholar]
  52. 52.  Hegarty MJ, Barker GL, Brennan AC, Edwards KJ, Abbott RJ, Hiscock SJ 2008. Changes to gene expression associated with hybrid speciation in plants: further insights from transcriptomic studies in Senecio. Philos. Trans. R. Soc. B Biol. . Sci 363:15063055–69
    [Google Scholar]
  53. 53.  Hellenthal G, Busby GBJ, Band G, Wilson JF, Capelli C et al. 2014. A genetic atlas of human admixture history. Science 343:6172747–51
    [Google Scholar]
  54. 54.  Heller J, Zhao J, Rosenfield G, Kowbel DJ, Gladieux P, Glass NL 2016. Characterization of greenbeard genes involved in long-distance kind discrimination in a microbial eukaryote. PLOS Biol 14:4e1002431
    [Google Scholar]
  55. 55.  Hickman MA, Paulson C, Dudley A, Berman J 2015. Parasexual ploidy reduction drives population heterogeneity through random and transient aneuploidy in Candida albicans. . Genetics 200:3781–94
    [Google Scholar]
  56. 56.  Hickman MA, Zeng G, Forche A, Hirakawa MP, Abbey D et al. 2013. The “obligate diploid” Candida albicans forms mating-competent haploids. Nature 494:743555–59
    [Google Scholar]
  57. 57.  Hubbard A, Lewis CM, Yoshida K, Ramirez-Gonzalez RH, de Vallavieille-Pope C et al. 2015. Field pathogenomics reveals the emergence of a diverse wheat yellow rust population. Genome Biol 16:11–15
    [Google Scholar]
  58. 58.  Inderbitzin P, Davis RM, Bostock RM, Subbarao KV 2011. The ascomycete Verticillium longisporum is a hybrid and a plant pathogen with an expanded host range. PLOS ONE 6:3e18260
    [Google Scholar]
  59. 59.  Jaramillo VDA, Sukno SA, Thon MR 2015. Identification of horizontally transferred genes in the genus Colletotrichum reveals a steady tempo of bacterial to fungal gene transfer. BMC Genom 16:12
    [Google Scholar]
  60. 60.  Joly S 2012. JML: testing hybridization from species trees. Mol. Ecol. Resour. 12:1179–84
    [Google Scholar]
  61. 61.  Joly S, McLenachan PA, Lockhart PJ 2009. A statistical approach for distinguishing hybridization and incomplete lineage sorting. Am. Nat. 174:2E54–70
    [Google Scholar]
  62. 62.  Jombart T 2008. adegenet: a R package for the multivariate analysis of genetic markers. Bioinformatics 24:111403–5
    [Google Scholar]
  63. 63.  Jombart T, Ahmed I 2011. adegenet 1.3–1: New tools for the analysis of genome-wide SNP data. Bioinformatics 27:213070–71
    [Google Scholar]
  64. 64.  Keeling PJ, Palmer JD 2008. Horizontal gene transfer in eukaryotic evolution. Nat. Rev. Genet. 9:8605–18
    [Google Scholar]
  65. 65.  Kloesges T, Popa O, Martin W, Dagan T 2011. Networks of gene sharing among 329 proteobacterial genomes reveal differences in lateral gene transfer frequency at different phylogenetic depths. Mol. Biol. Evol. 28:21057–74
    [Google Scholar]
  66. 66.  Kohn LM 2005. Mechanisms of fungal speciation. Annu. Rev. Phytopathol. 43:1279–308
    [Google Scholar]
  67. 67.  Koonin EV, Makarova KS, Aravind L 2001. Horizontal gene transfer in prokaryotes: quantification and classification. Annu. Rev. Microbiol. 55:1709–42
    [Google Scholar]
  68. 68.  Koutsovoulos G, Kumar S, Laetsch DR, Stevens L, Daub J et al. 2016. No evidence for extensive horizontal gene transfer in the genome of the tardigrade Hypsibius dujardini. . PNAS 113:185053–58
    [Google Scholar]
  69. 69.  Kunte K, Shea C, Aardema ML, Scriber JM, Juenger TE et al. 2011. Sex chromosome mosaicism and hybrid speciation among tiger swallowtail butterflies. PLOS Genet 7:9e1002274
    [Google Scholar]
  70. 70.  Lacroix B, Citovsky V 2016. Transfer of DNA from bacteria to eukaryotes. mBio 7:4e00863–16
    [Google Scholar]
  71. 71.  Lamichhaney S, Han F, Webster MT, Andersson L, Grant BR, Grant PR 2018. Rapid hybrid speciation in Darwin's finches. Science 359:6372224–28
    [Google Scholar]
  72. 72.  Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC et al. 2001. Initial sequencing and analysis of the human genome. Nature 409:6822860–921
    [Google Scholar]
  73. 73.  Lawson DJ, Hellenthal G, Myers S, Falush D 2012. Inference of population structure using dense haplotype data. PLOS Genet 8:1e1002453
    [Google Scholar]
  74. 74.  Leroy T, Caffier V, Celton J-M, Anger N, Durel C-E et al. 2016. When virulence originates from nonagricultural hosts: evolutionary and epidemiological consequences of introgressions following secondary contacts in Venturia inaequalis. . New Phytol 210:41443–52
    [Google Scholar]
  75. 75.  Ma L-J, van der Does HC, Borkovich KA, Coleman JJ, Daboussi M-J et al. 2010. Comparative genomics reveals mobile pathogenicity chromosomes in Fusarium. . Nature 464:7287367–73
    [Google Scholar]
  76. 76.  Ma Y, Zhao J, Wong J-S, Ma L, Li W et al. 2014. Accurate inference of local phased ancestry of modern admixed populations. Sci. Rep. 4:15800
    [Google Scholar]
  77. 77.  Maddison W, Knowles L 2006. Inferring phylogeny despite incomplete lineage sorting. Syst. Biol. 55:121–30
    [Google Scholar]
  78. 78.  Mallet J, Besansky N, Hahn MW 2016. How reticulated are species?. BioEssays 38:2140–49
    [Google Scholar]
  79. 79.  Mallet LV, Becq J, Deschavanne P 2010. Whole genome evaluation of horizontal transfers in the pathogenic fungus Aspergillus fumigatus. . BMC Genom 11:1171
    [Google Scholar]
  80. 80.  Manning VA, Chu AL, Steeves JE, Wolpert TJ, Ciuffetti LM 2009. A host-selective toxin of Pyrenophora tritici-repentis, Ptr ToxA, induces photosystem changes and reactive oxygen species accumulation in sensitive wheat. Mol. Plant Microbe Interact. 22:6665–76
    [Google Scholar]
  81. 81.  Marcet-Houben M, Gabaldón T 2010. Acquisition of prokaryotic genes by fungal genomes. Trends Genet 26:15–8
    [Google Scholar]
  82. 82.  Marsit S, Mena A, Bigey F, Sauvage FX, Couloux A et al. 2015. Evolutionary advantage conferred by an eukaryote-to-eukaryote gene transfer event in wine yeasts. Mol. Biol. Evol. 32:71695–707
    [Google Scholar]
  83. 83.  Martin SH, Davey JW, Jiggins CD 2015. Evaluating the use of ABBA-BABA statistics to locate introgressed loci. Mol. Biol. Evol. 32:1244–57
    [Google Scholar]
  84. 84.  McDonald MC, Ahren D, Simpfendorfer S, Milgate A, Solomon PS 2017. The discovery of the virulence gene ToxA in the wheat and barley pathogen Bipolaris sorokiniana. Mol. . Plant Pathol 19:2432–39
    [Google Scholar]
  85. 85.  McVean G 2009. A genealogical interpretation of principal components analysis. PLOS Genet 5:10e1000686
    [Google Scholar]
  86. 86.  Menardo F, Praz CR, Wyder S, Ben-David R, Bourras S et al. 2016. Hybridization of powdery mildew strains gives rise to pathogens on novel agricultural crop species. Nat. Genet. 48:2201–5
    [Google Scholar]
  87. 87.  Menkis A, Jacobson DJ, Gustafsson T, Johannesson H 2008. The mating-type chromosome in the filamentous ascomycete Neurospora tetrasperma represents a model for early evolution of sex chromosomes. PLOS Genet 4:3e1000030
    [Google Scholar]
  88. 88.  Möller M, Stukenbrock EH 2017. Evolution and genome architecture in fungal plant pathogens. Nat. Rev. Microbiol. 15:12756–71
    [Google Scholar]
  89. 89.  Moorjani P, Patterson N, Hirschhorn JN, Keinan A, Hao L et al. 2011. The history of African gene flow into Southern Europeans, Levantines, and Jews. PLOS Genet 7:4e1001373
    [Google Scholar]
  90. 90.  Neafsey DE, Barker BM, Sharpton TJ, Stajich JE, Park DJ et al. 2010. Population genomic sequencing of Coccidioides fungi reveals recent hybridization and transposon control. Genome Res 20:7938–46
    [Google Scholar]
  91. 91.  Ni M, Feretzaki M, Li W, Floyd-Averette A, Mieczkowski P et al. 2013. Unisexual and heterosexual meiotic reproduction generate aneuploidy and phenotypic diversity de novo in the yeast Cryptococcus neoformans. . PLOS Biol 11:9e1001653
    [Google Scholar]
  92. 92.  Nolte AW, Tautz D 2010. Understanding the onset of hybrid speciation. Trends Genet 26:254–58
    [Google Scholar]
  93. 93.  Novembre J 2016. Pritchard, Stephens, and Donnelly on population structure. Genetics 204:2391–93
    [Google Scholar]
  94. 94.  Novo M, Bigey F, Beyne E, Galeote V, Gavory F et al. 2009. Eukaryote-to-eukaryote gene transfer events revealed by the genome sequence of the wine yeast Saccharomyces cerevisiae EC1118. PNAS 106:3816333–38
    [Google Scholar]
  95. 95.  O'Donnell K, Sutton DA, Rinaldi MG, Magnon KC, Cox PA et al. 2004. Genetic diversity of human pathogenic members of the Fusarium oxysporum complex inferred from multilocus DNA sequence data and amplified fragment length polymorphism analyses: evidence for the recent dispersion of a geographically widespread clonal lineage and nosocomial origin. J. Clin. Microbiol. 42:115109–20
    [Google Scholar]
  96. 96.  Olson A, Stenlid J 2001. Plant pathogens: mitochondrial control of fungal hybrid virulence. Nature 411:6836438
    [Google Scholar]
  97. 97.  Patterson N, Price AL, Reich D 2006. Population structure and eigenanalysis. PLOS Genet 2:12e190
    [Google Scholar]
  98. 98.  Pool JE, Nielsen R 2009. Inference of historical changes in migration rate from the lengths of migrant tracts. Genetics 181:2711–19
    [Google Scholar]
  99. 99.  Price AL, Tandon A, Patterson N, Barnes KC, Rafaels N et al. 2009. Sensitive detection of chromosomal segments of distinct ancestry in admixed populations. PLOS Genet 5:6e1000519
    [Google Scholar]
  100. 100.  Pritchard JK, Stephens M, Donnelly P 2000. Inference of population structure using multilocus genotype data. Genetics 155:2945–59
    [Google Scholar]
  101. 101.  Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MAR et al. 2007. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 81:3559–75
    [Google Scholar]
  102. 102.  Racimo F, Sankararaman S, Nielsen R, Huerta-Sánchez E 2015. Evidence for archaic adaptive introgression in humans. Nat. Rev. Genet. 16:6359–71
    [Google Scholar]
  103. 103.  Raffaele S, Kamoun S 2012. Genome evolution in filamentous plant pathogens: why bigger can be better. Nat. Rev. Microbiol. 10:6417–30
    [Google Scholar]
  104. 104.  Raj A, Stephens M, Pritchard JK 2014. fastSTRUCTURE: variational inference of population structure in large SNP data sets. Genetics 197:2573–89
    [Google Scholar]
  105. 105.  Ravenhall M, Škunca N, Lassalle F, Dessimoz C 2015. Inferring horizontal gene transfer. PLOS Comput. Biol. 11:5e1004095
    [Google Scholar]
  106. 106.  Richards TA, Leonard G, Soanes DM, Talbot NJ 2011. Gene transfer into the fungi. Fungal Biol. Rev. 25:298–110
    [Google Scholar]
  107. 107.  Richards TA, Monier A 2016. A tale of two tardigrades. PNAS 113:184892–94
    [Google Scholar]
  108. 108.  Richards TA, Soanes DM, Foster PG, Leonard G, Thornton CR, Talbot NJ 2009. Phylogenomic analysis demonstrates a pattern of rare and ancient horizontal gene transfer between plants and fungi. Plant Cell 21:71897–911
    [Google Scholar]
  109. 109.  Rieseberg LH, Raymond O, Rosenthal DM, Lai Z, Livingstone K et al. 2003. Major ecological transitions in wild sunflowers facilitated by hybridization. Science 301:56371211–16
    [Google Scholar]
  110. 110.  Ropars J, Aguileta G, de Vienne DM, Giraud T 2014. Massive gene swamping among cheese-making Penicillium fungi. Microb. . Cell 1:3107–9
    [Google Scholar]
  111. 111.  Ropars J, Rodríguez de la Vega RC, López-Villavicencio M, Gouzy J, Sallet E et al. 2015. Adaptive horizontal gene transfers between multiple cheese-associated fungi. Curr. Biol. 25:192562–69
    [Google Scholar]
  112. 112.  Roper M, Ellison C, Taylor JW, Glass NL 2011. Nuclear and genome dynamics in multinucleate Ascomycete fungi. Curr. Biol. 21:18R786–93
    [Google Scholar]
  113. 113.  Rosenzweig BK, Pease JB, Besansky NJ, Hahn MW 2016. Powerful methods for detecting introgressed regions from population genomic data. Mol. Ecol. 25:112387–97
    [Google Scholar]
  114. 114.  Rövenich HJ 2017. Evasion of chitin-triggered immunity by fungal plant pathogens PhD Thesis, Wageningen Univ., Wageningen, Neth.
  115. 115.  Rutschmann F 2006. Molecular dating of phylogenetic trees: A brief review of current methods that estimate divergence times. Divers. Distrib. 12:135–48
    [Google Scholar]
  116. 116.  Salzberg SL 2017. Horizontal gene transfer is not a hallmark of the human genome. Genome Biol 18:185
    [Google Scholar]
  117. 117.  Schardl CL, Craven KD 2003. Interspecific hybridization in plant-associated fungi and oomycetes: a review. Mol. Ecol. 12:112861–73
    [Google Scholar]
  118. 118.  Schmidt SM, Lukasiewicz J, Farrer R, van Dam P, Bertoldo C, Rep M 2016. Comparative genomics of Fusarium oxysporum f. sp. melonis reveals the secreted protein recognized by the Fom-2 resistance gene in melon. New Phytol 209:1307–18
    [Google Scholar]
  119. 119.  Seidl MF, Thomma BPHJ 2014. Sex or no sex: evolutionary adaptation occurs regardless. BioEssays 36:4335–45
    [Google Scholar]
  120. 120.  Shriner D 2013. Overview of admixture mapping. Curr. Protoc. Hum. Genet. 94:11–23
    [Google Scholar]
  121. 121.  Silva DN, Várzea V, Paulo OS, Batista D 2018. Population genomic footprints of host adaptation, introgression and recombination in coffee leaf rust. Mol. Plant Pathol. 19:71742–53
    [Google Scholar]
  122. 122.  Slot JC, Rokas A 2011. Horizontal transfer of a large and highly toxic secondary metabolic gene cluster between fungi. Curr. Biol. 21:2134–39
    [Google Scholar]
  123. 123.  Soanes D, Richards TA 2014. Horizontal gene transfer in eukaryotic plant pathogens. Annu. Rev. Phytopathol. 52:1583–614
    [Google Scholar]
  124. 124.  Solís-Lemus C, Ané C 2016. Inferring phylogenetic networks with maximum pseudolikelihood under incomplete lineage sorting. PLOS Genet 12:3e1005896
    [Google Scholar]
  125. 125.  Soucy SM, Huang J, Gogarten JP 2015. Horizontal gene transfer: building the web of life. Nat. Rev. Genet. 16:8472–82
    [Google Scholar]
  126. 126.  Stajich JE 2017. Fungal genomes and insights into the evolution of the kingdom. Microbiol. Spectr. 5:4619–33
    [Google Scholar]
  127. 127.  Stanhope MJ, Lupas A, Italia MJ, Koretke KK, Volker C, Brown JR 2001. Phylogenetic analyses do not support horizontal gene transfers from bacteria to vertebrates. Nature 411:6840940–44
    [Google Scholar]
  128. 128.  Stelkens RB, Brockhurst MA, Hurst GDD, Miller EL, Greig D 2014. The effect of hybrid transgression on environmental tolerance in experimental yeast crosses. J. Evol. Biol. 27:112507–19
    [Google Scholar]
  129. 129.  Stolzer M, Lai H, Xu M, Sathaye D, Vernot B, Durand D 2012. Inferring duplications, losses, transfers and incomplete lineage sorting with nonbinary species trees. Bioinformatics 28:18i409–15
    [Google Scholar]
  130. 130.  Stukenbrock EH 2016. the role of hybridization in the evolution and emergence of new fungal plant pathogens. Phytopathology 106:2104–12
    [Google Scholar]
  131. 131.  Stukenbrock EH, Christiansen FB, Hansen TT, Dutheil JY, Schierup MH 2012. Fusion of two divergent fungal individuals led to the recent emergence of a unique widespread pathogen species. PNAS 109:2710954–59
    [Google Scholar]
  132. 132.  Sun BF, Xiao JH, He S, Liu L, Murphy RW, Huang DW 2013. Multiple interkingdom horizontal gene transfers in Pyrenophora and closely related species and their contributions to phytopathogenic lifestyles. PLOS ONE 8:3e60029
    [Google Scholar]
  133. 133.  Sun S, Billmyre RB, Mieczkowski PA, Heitman J 2014. Unisexual reproduction drives meiotic recombination and phenotypic and karyotypic plasticity in Cryptococcus neoformans. . PLOS Genet 10:12e1004849
    [Google Scholar]
  134. 134.  Sun Y, Corcoran P, Menkis A, Whittle CA, Andersson SGE, Johannesson H 2012. Large-scale introgression shapes the evolution of the mating-type chromosomes of the filamentous ascomycete Neurospora tetrasperma. . PLOS Genet 8:7e1002820
    [Google Scholar]
  135. 135.  Turner E, Jacobson DJ, Taylor JW 2011. Genetic architecture of a reinforced, postmating, reproductive isolation barrier between Neurospora species indicates evolution via natural selection. PLOS Genet 7:8e1002204
    [Google Scholar]
  136. 136.  Twyford AD, Ennos RA 2012. Next-generation hybridization and introgression. Heredity 108:3179–89
    [Google Scholar]
  137. 137.  Vlaardingerbroek I, Beerens B, Rose L, Fokkens L, Cornelissen BJCC, Rep M 2016. Exchange of core chromosomes and horizontal transfer of lineage-specific chromosomes in Fusarium oxysporum. Environ. . Microbiol 18:113702–13
    [Google Scholar]
  138. 138.  Wisecaver JH, Alexander WG, King SB, Hittinger CT, Rokas A 2016. Dynamic evolution of nitric oxide detoxifying flavohemoglobins, a family of single-protein metabolic modules in bacteria and eukaryotes. Mol. Biol. Evol. 33:81979–87
    [Google Scholar]
  139. 139.  Wisecaver JH, Rokas A 2015. Fungal metabolic gene clusters—caravans traveling across genomes and environments. Front. Microbiol. 6:161
    [Google Scholar]
  140. 140.  Wisecaver JH, Slot JC, Rokas A 2014. The evolution of fungal metabolic pathways. PLOS Genet 10:12e1004816
    [Google Scholar]
  141. 141.  Zhao H, Xu C, Lu H-L, Chen X, St. Leger RJ, Fang W 2014. Host-to-pathogen gene transfer facilitated infection of insects by a pathogenic fungus. PLOS Pathog 10:4e1004009
    [Google Scholar]
  142. 142.  Zheng X, Levine D, Shen J, Gogarten SM, Laurie C, Weir BS 2012. A high-performance computing toolset for relatedness and principal component analysis of SNP data. Bioinformatics 28:243326–28
    [Google Scholar]
/content/journals/10.1146/annurev-micro-090817-062753
Loading
/content/journals/10.1146/annurev-micro-090817-062753
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error