1932

Abstract

Biofilms are a widely observed growth mode in which microbial communities are spatially structured and embedded in a polymeric extracellular matrix. Here, we focus on the model bacterium and summarize the current understanding of biofilm formation, including initial attachment, matrix components, community dynamics, social interactions, molecular regulation, and dispersal. The regulatory network that orchestrates the decision to form and disperse from biofilms coordinates various environmental inputs. These cues are integrated by several transcription factors, regulatory RNAs, and second-messenger molecules, including bis-(3′-5′)-cyclic dimeric guanosine monophosphate (c-di-GMP). Through complex mechanisms, weighs the energetic cost of forming biofilms against the benefits of protection and social interaction that biofilms provide.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-micro-111021-053553
2022-09-08
2024-04-23
Loading full text...

Full text loading...

/deliver/fulltext/micro/76/1/annurev-micro-111021-053553.html?itemId=/content/journals/10.1146/annurev-micro-111021-053553&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Absalon C, Van Dellen K, Watnick PI. 2011. A communal bacterial adhesin anchors biofilm and bystander cells to surfaces. PLOS Pathog 7:8e1002210
    [Google Scholar]
  2. 2.
    Acosta N, Pukatzki S, Raivio TL. 2015. The Vibrio cholerae Cpx envelope stress response senses and mediates adaptation to low iron. J. Bacteriol. 197:2262–76
    [Google Scholar]
  3. 3.
    Adams DW, Pereira JM, Stoudmann C, Stutzmann S, Blokesch M. 2019. The type IV pilus protein PilU functions as a PilT-dependent retraction ATPase. PLOS Genet 15:9e1008393
    [Google Scholar]
  4. 4.
    Adams DW, Stutzmann S, Stoudmann C, Blokesch M. 2019. DNA-uptake pili of Vibrio cholerae are required for chitin colonization and capable of kin recognition via sequence-specific self-interaction. Nat. Microbiol. 4:91545–57
    [Google Scholar]
  5. 5.
    Altindis E, Fu Y, Mekalanos JJ. 2014. Proteomic analysis of Vibrio cholerae outer membrane vesicles. PNAS 111:15E1548–56
    [Google Scholar]
  6. 6.
    Ayala JC, Silva AJ, Benitez JA. 2017. H-NS: an overarching regulator of the Vibrio cholerae life cycle. Res. Microbiol. 168:116–25
    [Google Scholar]
  7. 7.
    Ayala JC, Wang H, Benitez JA, Silva AJ. 2015. RNA-Seq analysis and whole genome DNA-binding profile of the Vibrio cholerae histone-like nucleoid structuring protein (H-NS). Genom. Data 5:147–50
    [Google Scholar]
  8. 8.
    Ayala JC, Wang H, Silva AJ, Benitez JA. 2015. Repression by H-NS of genes required for the biosynthesis of the Vibrio cholerae biofilm matrix is modulated by the second messenger cyclic diguanylic acid. Mol. Microbiol. 97:4630–45
    [Google Scholar]
  9. 9.
    Barrasso K, Chac D, Debela MD, Geigel C, Steenhaut Aet al 2022. Impact of a human gut microbe on Vibrio cholerae host colonization through biofilm enhancement. eLife 11e73010
  10. 10.
    Barraud N, Kelso M, Rice S, Kjelleberg S. 2014. Nitric oxide: a key mediator of biofilm dispersal with applications in infectious diseases. Curr. Pharm. Des. 21:131–42
    [Google Scholar]
  11. 11.
    Barraud N, Storey MV, Moore ZP, Webb JS, Rice SA, Kjelleberg S. 2009. Nitric oxide-mediated dispersal in single- and multi-species biofilms of clinically and industrially relevant microorganisms. Microb. Biotechnol. 2:3370–78
    [Google Scholar]
  12. 12.
    Baumgartner RJ, Van Kranendonk MJ, Wacey D, Fiorentini ML, Saunders M et al. 2019. Nano−porous pyrite and organic matter in 3.5-billion-year-old stromatolites record primordial life. Geology 47:111039–43
    [Google Scholar]
  13. 13.
    Belas R. 2014. Biofilms, flagella, and mechanosensing of surfaces by bacteria. Trends Microbiol 22:9517–27
    [Google Scholar]
  14. 14.
    Berk V, Fong JCN, Dempsey GT, Develioglu ON, Zhuang X et al. 2012. Molecular architecture and assembly principles of Vibrio cholerae biofilms. Science 337:6091236–39
    [Google Scholar]
  15. 15.
    Beyhan S, Bilecen K, Salama SR, Casper-Lindley C, Yildiz FH. 2007. Regulation of rugosity and biofilm formation in Vibrio cholerae: comparison of VpsT and VpsR regulons and epistasis analysis of vpsT, vpsR, and hapR. J. Bacteriol. 189:2388–402
    [Google Scholar]
  16. 16.
    Beyhan S, Tischler AD, Camilli A, Yildiz FH. 2006. Transcriptome and phenotypic responses of Vibrio cholerae to increased cyclic di-GMP level. J. Bacteriol. 188:103600–13
    [Google Scholar]
  17. 17.
    Bhowmick R, Ghosal A, Das B, Koley H, Saha DR et al. 2008. Intestinal adherence of Vibrio cholerae involves a coordinated interaction between colonization factor GbpA and mucin. Infect. Immun. 76:114968–77
    [Google Scholar]
  18. 18.
    Bilecen K, Yildiz FH. 2009. Identification of a calcium-controlled negative regulatory system affecting Vibrio cholerae biofilm formation. Environ. Microbiol. 11:82015–29
    [Google Scholar]
  19. 19.
    Blokesch M. 2012. Chitin colonization, chitin degradation and chitin-induced natural competence of Vibrio cholerae are subject to catabolite repression. Environ. Microbiol. 14:81898–912
    [Google Scholar]
  20. 20.
    Bomchil N, Watnick P, Kolter R. 2003. Identification and characterization of a Vibrio cholerae gene, mbaA, involved in maintenance of biofilm architecture. J. Bacteriol. 185:41384–90
    [Google Scholar]
  21. 21.
    Bond MC, Vidakovic L, Singh PK, Drescher K, Nadell CD. 2021. Matrix-trapped viruses can prevent invasion of bacterial biofilms by colonizing cells. eLife 10:e65355
    [Google Scholar]
  22. 22.
    Borgeaud S, Metzger LC, Scrignari T, Blokesch M. 2015. The type VI secretion system of Vibrio cholerae fosters horizontal gene transfer. Science 347:621763–67
    [Google Scholar]
  23. 23.
    Bridges AA, Bassler BL. 2019. The intragenus and interspecies quorum-sensing autoinducers exert distinct control over Vibrio cholerae biofilm formation and dispersal. PLOS Biol 17:11e3000429
    [Google Scholar]
  24. 24.
    Bridges AA, Bassler BL. 2021. Inverse regulation of Vibrio cholerae biofilm dispersal by polyamine signals. eLife 10:e65487
    [Google Scholar]
  25. 25.
    Bridges AA, Fei C, Bassler BL. 2020. Identification of signaling pathways, matrix-digestion enzymes, and motility components controlling Vibrio cholerae biofilm dispersal. PNAS 117:5132639–47
    [Google Scholar]
  26. 26.
    Butz HA, Mey AR, Ciosek AL, Crofts AA, Davies BW, Payne SM. 2021. Regulatory effects of CsrA in Vibrio cholerae. mBio 12:1e03380–20
    [Google Scholar]
  27. 27.
    Butz HA, Mey AR, Ciosek AL, Payne SM. 2019. Vibrio cholerae CsrA directly regulates varA to increase expression of the three nonredundant Csr small RNAs. mBio 10:3e01042–19
    [Google Scholar]
  28. 28.
    Casper-Lindley C, Yildiz FH. 2004. VpsT is a transcriptional regulator required for expression of vps biosynthesis genes and the development of rugose colonial morphology in Vibrio cholerae O1 El Tor. J. Bacteriol. 186:51574–78
    [Google Scholar]
  29. 29.
    Chakrabortty T, Roy Chowdhury S, Ghosh B, Sen U 2022. Crystal structure of VpsR revealed novel dimeric architecture and c-di-GMP binding site: mechanistic implications in oligomerization, ATPase activity and DNA binding. J. Mol. Biol. 434:2167354
    [Google Scholar]
  30. 30.
    Chakraborty S, Biswas M, Dey S, Agarwal S, Chakrabortty T et al. 2020. The heptameric structure of the flagellar regulatory protein FlrC is indispensable for ATPase activity and disassembled by cyclic-di-GMP. J. Biol. Chem. 295:5016960
    [Google Scholar]
  31. 31.
    Chekabab SM, Harel J, Dozois CM. 2015. Interplay between genetic regulation of phosphate homeostasis and bacterial virulence. Virulence 5:8786–93
    [Google Scholar]
  32. 32.
    Cheng AT, Zamorano-Sánchez D, Teschler JK, Wu D, Yildiz FH. 2018. NtrC adds a new node to the complex regulatory network of biofilm formation and vps expression in Vibrio cholerae. J. Bacteriol. 200:15e00025–18
    [Google Scholar]
  33. 33.
    Chiavelli DA, Marsh JW, Taylor RK. 2001. The mannose-sensitive hemagglutinin of Vibrio cholerae promotes adherence to zooplankton. Appl. Environ. Microbiol. 67:73220–25
    [Google Scholar]
  34. 34.
    Chlebek JL, Hughes HQ, Ratkiewicz AS, Rayyan R, Wang JC-Y et al. 2019. PilT and PilU are homohexameric ATPases that coordinate to retract type IVa pili. PLOS Genet 15:10e1008448
    [Google Scholar]
  35. 35.
    Clemens JD, Nair GB, Ahmed T, Qadri F, Holmgren J. 2017. Cholera. Lancet 390:101011539–49
    [Google Scholar]
  36. 36.
    Cockerell SR, Rutkovsky AC, Zayner JP, Cooper RE, Porter LR et al. 2014. Vibrio cholerae NspS, a homologue of ABC-type periplasmic solute binding proteins, facilitates transduction of polyamine signals independent of their transport. Microbiology 160:Part 5832–43
    [Google Scholar]
  37. 37.
    Collins AJ, Smith TJ, Sondermann H, O'Toole GA. 2020. From input to output: the Lap/c-di-GMP biofilm regulatory circuit. Annu. Rev. Microbiol. 74:607–31
    [Google Scholar]
  38. 38.
    Conner JG, Zamorano-Sánchez D, Park JH, Sondermann H, Yildiz FH. 2017. The ins and outs of cyclic di-GMP signaling in Vibrio cholerae. Curr. Opin. Microbiol. 36:20–29
    [Google Scholar]
  39. 39.
    Cornforth DM, Foster KR. 2013. Competition sensing: the social side of bacterial stress responses. Nat. Rev. Micro. 11:4285–93
    [Google Scholar]
  40. 40.
    Dalia AB, Lazinski DW, Camilli A. 2014. Identification of a membrane-bound transcriptional regulator that links chitin and natural competence in Vibrio cholerae. mBio 5:1e01028–13
    [Google Scholar]
  41. 41.
    Daniel DM, Barbosa LC, Mantuano N, Goulart CL, Veríssimo da Costa GC et al. 2017. Transcriptional and post-transcriptional regulation of pst2 operon expression in Vibrio cholerae O1. Infect. Genet. Evol. 51:10–16
    [Google Scholar]
  42. 42.
    Datta MS, Sliwerska E, Gore J, Polz MF, Cordero OX. 2016. Microbial interactions lead to rapid micro-scale successions on model marine particles. Nat. Commun. 7:111965
    [Google Scholar]
  43. 43.
    Davis BM, Quinones M, Pratt J, Ding Y, Waldor MK. 2005. Characterization of the small untranslated RNA RyhB and its regulon in Vibrio cholerae. J. Bacteriol. 187:124005–14
    [Google Scholar]
  44. 44.
    De S, Kaus K, Sinclair S, Case BC, Olson R. 2018. Structural basis of mammalian glycan targeting by Vibrio cholerae cytolysin and biofilm proteins. PLOS Pathog 14:2e1006841
    [Google Scholar]
  45. 45.
    De Silva RS, Kovacikova G, Lin W, Taylor RK, Skorupski K, Kull FJ. 2007. Crystal structure of the Vibrio cholerae quorum-sensing regulatory protein HapR. J. Bacteriol. 189:155683–91
    [Google Scholar]
  46. 46.
    del Peso Santos T, Alvarez L, Sit B, Irazoki O, Blake J et al. 2021. BipA exerts temperature-dependent translational control of biofilm-associated colony morphology in Vibrio cholerae. eLife 10:e60607
    [Google Scholar]
  47. 47.
    Díaz-Pascual F, Hartmann R, Lempp M, Vidakovic L, Song B et al. 2019. Breakdown of Vibrio cholerae biofilm architecture induced by antibiotics disrupts community barrier function. Nat. Microbiol. 4:2136–45
    [Google Scholar]
  48. 48.
    Dieltjens L, Appermans K, Lissens M, Lories B, Kim W et al. 2020. Inhibiting bacterial cooperation is an evolutionarily robust anti-biofilm strategy. Nat. Commun. 11:1107
    [Google Scholar]
  49. 49.
    Dorman CJ. 2015. Integrating small molecule signalling and H-NS antagonism in Vibrio cholerae, a bacterium with two chromosomes. Mol. Microbiol. 97:4612–15
    [Google Scholar]
  50. 50.
    Dorman MJ, Dorman CJ. 2018. Regulatory hierarchies controlling virulence gene expression in Shigella flexneri and Vibrio cholerae. Front. Microbiol. 9:2686
    [Google Scholar]
  51. 51.
    Dragoš A, Kiesewalter H, Martin M, Hsu C-Y, Hartmann R et al. 2018. Division of labor during biofilm matrix production. Curr. Biol. 28:121903–13
    [Google Scholar]
  52. 52.
    Drescher K, Dunkel J, Nadell CD, van Teeffelen S, Grnja I et al. 2016. Architectural transitions in Vibrio cholerae biofilms at single-cell resolution. PNAS 113:14E2066–72
    [Google Scholar]
  53. 53.
    Drescher K, Nadell CD, Stone HA, Wingreen NS, Bassler BL. 2014. Solutions to the public goods dilemma in bacterial biofilms. Curr. Biol. 24:150–55
    [Google Scholar]
  54. 54.
    Duncan MC, Forbes JC, Nguyen Y, Shull LM, Gillette RK et al. 2018. Vibrio cholerae motility exerts drag force to impede attack by the bacterial predator Bdellovibrio bacteriovorus. Nat. Commun. 9:14757
    [Google Scholar]
  55. 55.
    Duperthuy M, Sjöström AE, Sabharwal D, Damghani F, Uhlin BE, Wai SN. 2013. Role of the Vibrio cholerae matrix protein Bap1 in cross-resistance to antimicrobial peptides. PLOS Pathog 9:10e1003620
    [Google Scholar]
  56. 56.
    Ebrahimi A, Schwartzman J, Cordero OX. 2019. Cooperation and spatial self-organization determine rate and efficiency of particulate organic matter degradation in marine bacteria. PNAS 116:4623309–16
    [Google Scholar]
  57. 57.
    Enke TN, Datta MS, Schwartzman J, Cermak N, Schmitz D et al. 2019. Modular assembly of polysaccharide-degrading marine microbial communities. Curr. Biol. 29:91528–1535.e6
    [Google Scholar]
  58. 58.
    Enke TN, Leventhal GE, Metzger M, Saavedra JT, Cordero OX. 2018. Microscale ecology regulates particulate organic matter turnover in model marine microbial communities. Nat. Commun. 9:12743
    [Google Scholar]
  59. 59.
    Fernandez NL, Hsueh BY, Nhu NTQ, Franklin JL, Dufour YS, Waters CM. 2020. Vibrio cholerae adapts to sessile and motile lifestyles by cyclic di-GMP regulation of cell shape. PNAS 117:4629046–54
    [Google Scholar]
  60. 60.
    Flaugnatti N, Isaac S, Lemos Rocha LF, Stutzmann S, Rendueles O et al. 2021. Human commensal gut Proteobacteria withstand type VI secretion attacks through immunity protein-independent mechanisms. Nat. Commun. 12:15751
    [Google Scholar]
  61. 61.
    Flemming H-C, Wingender J. 2010. The biofilm matrix. Nat. Rev. Microbiol. 8:9623–33
    [Google Scholar]
  62. 62.
    Flemming H-C, Wingender J, Szewzyk U, Steinberg P, Rice SA, Kjelleberg S. 2016. Biofilms: an emergent form of bacterial life. Nat. Rev. Microbiol. 14:9563–75
    [Google Scholar]
  63. 63.
    Flemming H-C, Wuertz S. 2019. Bacteria and archaea on Earth and their abundance in biofilms. Nat. Rev. Microbiol. 17:4247–60
    [Google Scholar]
  64. 64.
    Floyd KA, Lee CK, Xian W, Nametalla M, Valentine A et al. 2020. C-di-GMP modulates type IV MSHA pilus retraction and surface attachment in Vibrio cholerae. Nat. Commun. 11:11549
    [Google Scholar]
  65. 65.
    Fong JCN, Rogers A, Michael AK, Parsley NC, Cornell W-C et al. 2017. Structural dynamics of RbmA governs plasticity of Vibrio cholerae biofilms. eLife 6:e26163
    [Google Scholar]
  66. 66.
    Fong JCN, Yildiz FH. 2007. The rbmBCDEF gene cluster modulates development of rugose colony morphology and biofilm formation in Vibrio cholerae. J. Bacteriol. 189:62319–30
    [Google Scholar]
  67. 67.
    Fong JCN, Yildiz FH. 2008. Interplay between cyclic AMP-cyclic AMP receptor protein and cyclic di-GMP signaling in Vibrio cholerae biofilm formation. J. Bacteriol. 190:206646–59
    [Google Scholar]
  68. 68.
    Gallego-Hernandez AL, DePas WH, Park JH, Teschler JK, Hartmann R et al. 2020. Upregulation of virulence genes promotes Vibrio cholerae biofilm hyperinfectivity. PNAS 117:2011010–17
    [Google Scholar]
  69. 69.
    Galperin MY. 2006. Structural classification of bacterial response regulators: diversity of output domains and domain combinations. J. Bacteriol. 188:124169–82
    [Google Scholar]
  70. 70.
    Gao H, Ma L, Qin Q, Qiu Y, Zhang J et al. 2020. Fur represses Vibrio cholerae biofilm formation via direct regulation of vieSAB, cdgD, vpsU, and vpsA-K transcription. Front. Microbiol. 11:587159
    [Google Scholar]
  71. 71.
    Gardner A, West SA. 2004. Spite and the scale of competition. J. Evol. Biol. 17:61195–203
    [Google Scholar]
  72. 72.
    Giglio KM, Fong JC, Yildiz FH, Sondermann H. 2013. Structural basis for biofilm formation via the Vibrio cholerae matrix protein RbmA. J. Bacteriol. 195:143277–86
    [Google Scholar]
  73. 73.
    Guest T, Haycocks JRJ, Warren GZL, Grainger DC. 2022. Genome-wide mapping of Vibrio cholerae VpsT binding identifies a mechanism for c-di-GMP homeostasis. Nucleic Acids Res 50:1149–59
    [Google Scholar]
  74. 74.
    Gumpenberger T, Vorkapic D, Zingl FG, Pressler K, Lackner S et al. 2016. Nucleoside uptake in Vibrio cholerae and its role in the transition fitness from host to environment. Mol. Microbiol. 99:3470–83
    [Google Scholar]
  75. 75.
    Guo S, Vance TDR, Stevens CA, Voets IK, Davies PL. 2019. RTX adhesins are key bacterial surface megaproteins in the formation of biofilms. Trends Microbiol 27:5453–67
    [Google Scholar]
  76. 76.
    Hamilton WD. 1964. The genetical evolution of social behaviour. II. J. Theor. Biol. 7:117–52
    [Google Scholar]
  77. 77.
    Hamilton WD. 1970. Selfish and spiteful behaviour in an evolutionary model. Nature 228:52771218–20
    [Google Scholar]
  78. 78.
    Hartmann R, Singh PK, Pearce P, Mok R, Song B et al. 2018. Emergence of three-dimensional order and structure in growing biofilms. Nat. Phys. 15:3251–56
    [Google Scholar]
  79. 79.
    Hatzios SK, Abel S, Martell J, Hubbard T, Sasabe J et al. 2016. Chemoproteomic profiling of host and pathogen enzymes active in cholera. Nat. Chem. Biol. 12:4268–74
    [Google Scholar]
  80. 80.
    Hayes CA, Dalia TN, Dalia AB. 2017. Systematic genetic dissection of chitin degradation and uptake in Vibrio cholerae. Environ. Microbiol. 19:104154–63
    [Google Scholar]
  81. 81.
    Heo K, Park Y-H, Lee K-A, Kim J, Ham H-I et al. 2019. Sugar-mediated regulation of a c-di-GMP phosphodiesterase in Vibrio cholerae. Nat. Commun. 10:15358
    [Google Scholar]
  82. 82.
    Hobley L, Harkins C, MacPhee CE, Stanley-Wall NR. 2015. Giving structure to the biofilm matrix: an overview of individual strategies and emerging common themes. FEMS Microbiol. Rev. 39:5649–69
    [Google Scholar]
  83. 83.
    Houot L, Chang S, Pickering BS, Absalon C, Watnick PI. 2010. The phosphoenolpyruvate phosphotransferase system regulates Vibrio cholerae biofilm formation through multiple independent pathways. J. Bacteriol. 192:123055–67
    [Google Scholar]
  84. 84.
    Hsiao A, Liu Z, Joelsson A, Zhu J. 2006. Vibrio cholerae virulence regulator-coordinated evasion of host immunity. PNAS 103:3914542–47
    [Google Scholar]
  85. 85.
    Hsieh M-L, Hinton DM, Waters CM. 2018. VpsR and cyclic di-GMP together drive transcription initiation to activate biofilm formation in Vibrio cholerae. Nucleic Acids Res 46:178876–87
    [Google Scholar]
  86. 86.
    Hughes HQ, Floyd KA, Hossain S, Anantharaman S, Kysela DT et al. 2022. Nitric oxide stimulates type IV MSHA pilus retraction in Vibrio cholerae via activation of the phosphodiesterase CdpA. PNAS 119:7e2108349119
    [Google Scholar]
  87. 87.
    Ibáñez de Aldecoa AL, Zafra O, González-Pastor JE. 2017. Mechanisms and regulation of extracellular DNA release and its biological roles in microbial communities. Front. Microbiol. 8:1390
    [Google Scholar]
  88. 88.
    Irie Y, Roberts AEL, Kragh KN, Gordon VD, Hutchison J et al. 2017. The Pseudomonas aeruginosa PSL polysaccharide is a social but noncheatable trait in biofilms. mBio 8:3e00374–17
    [Google Scholar]
  89. 89.
    Jang J, Jung K-T, Park J, Yoo C-K, Rhie G-E. 2011. The Vibrio cholerae VarS/VarA two-component system controls the expression of virulence proteins through ToxT regulation. Microbiology 157:51466–73
    [Google Scholar]
  90. 90.
    Jemielita M, Mashruwala AA, Valastyan JS, Wingreen NS, Bassler BL. 2021. Secreted proteases control the timing of aggregative community formation in Vibrio cholerae. mBio 12:6e01518–21
    [Google Scholar]
  91. 91.
    Jemielita M, Wingreen NS, Bassler BL. 2018. Quorum sensing controls Vibrio cholerae multicellular aggregate formation. eLife 7:e42057
    [Google Scholar]
  92. 92.
    Jenal U, Reinders A, Lori C. 2017. Cyclic di-GMP: second messenger extraordinaire. Nat. Rev. Microbiol. 15:5271–84
    [Google Scholar]
  93. 93.
    Johnson TL, Fong JC, Rule C, Rogers A, Yildiz FH, Sandkvist M. 2014. The type II secretion system delivers matrix proteins for biofilm formation by Vibrio cholerae. J. Bacteriol. 196:244245–52
    [Google Scholar]
  94. 94.
    Jones CJ, Utada A, Davis KR, Thongsomboon W, Zamorano Sanchez D et al. 2015. C-di-GMP regulates motile to sessile transition by modulating MshA pili biogenesis and near-surface motility behavior in Vibrio cholerae. PLOS Pathog 11:10e1005068
    [Google Scholar]
  95. 95.
    Kanampalliwar A, Singh DV. 2020. Extracellular DNA builds and interacts with Vibrio polysaccharide in the biofilm matrix formed by Vibrio cholerae. Environ. Microbiol. Rep. 12:5594–606
    [Google Scholar]
  96. 96.
    Karatan E, Watnick P. 2009. Signals, regulatory networks, and materials that build and break bacterial biofilms. Microbiol. Mol. Biol. Rev. 73:2310–47
    [Google Scholar]
  97. 97.
    Kariisa AT, Weeks K, Tamayo R. 2016. The RNA domain Vc1 regulates downstream gene expression in response to cyclic diguanylate in Vibrio cholerae. PLOS ONE 11:2e0148478
    [Google Scholar]
  98. 98.
    Karygianni L, Ren Z, Koo H, Thurnheer T. 2020. Biofilm matrixome: extracellular components in structured microbial communities. Trends Microbiol 28:8668–81
    [Google Scholar]
  99. 99.
    Kaus K, Biester A, Chupp E, Lu J, Visudharomn C, Olson R. 2019. The 1.9 Å crystal structure of the extracellular matrix protein Bap1 from Vibrio cholerae provides insights into bacterial biofilm adhesion. J. Biol. Chem. 294:4014499–511
    [Google Scholar]
  100. 100.
    Kazi MI, Conrado AR, Mey AR, Payne SM, Davies BW. 2016. ToxR antagonizes H-NS regulation of horizontally acquired genes to drive host colonization. PLOS Pathog 12:4e1005570
    [Google Scholar]
  101. 101.
    Kirn TJ, Jude BA, Taylor RK. 2005. A colonization factor links Vibrio cholerae environmental survival and human infection. Nature 438:7069863–66
    [Google Scholar]
  102. 102.
    Kitts G, Giglio KM, Zamorano-Sánchez D, Park JH, Townsley L et al. 2019. A conserved regulatory circuit controls large adhesins in Vibrio cholerae. mBio 10:6e02822–19
    [Google Scholar]
  103. 103.
    Klancher CA, Yamamoto S, Dalia TN, Dalia AB. 2020. ChiS is a noncanonical DNA-binding hybrid sensor kinase that directly regulates the chitin utilization program in Vibrio cholerae. PNAS 117:3320180–89
    [Google Scholar]
  104. 104.
    Krasteva PV, Fong JCN, Shikuma NJ, Beyhan S, Navarro MVAS et al. 2010. Vibrio cholerae VpsT regulates matrix production and motility by directly sensing cyclic di-GMP. Science 327:5967866–68
    [Google Scholar]
  105. 105.
    Lauga E, DiLuzio WR, Whitesides GM, Stone HA. 2006. Swimming in circles: motion of bacteria near solid boundaries. Biophys. J. 90:2400–12
    [Google Scholar]
  106. 106.
    Lauriano CM, Ghosh C, Correa NE, Klose KE. 2004. The sodium-driven flagellar motor controls exopolysaccharide expression in Vibrio cholerae. J. Bacteriol. 186:154864–74
    [Google Scholar]
  107. 107.
    Leng Y, Vakulskas CA, Zere TR, Pickering BS, Watnick PI et al. 2016. Regulation of CsrB/C sRNA decay by EIIAGlc of the phosphoenolpyruvate: carbohydrate phosphotransferase system. Mol. Microbiol. 99:4627–39
    [Google Scholar]
  108. 108.
    Lenz DH, Miller MB, Zhu J, Kulkarni RV, Bassler BL. 2005. CsrA and three redundant small RNAs regulate quorum sensing in Vibrio cholerae. Mol. Microbiol. 58:41186–202
    [Google Scholar]
  109. 109.
    Liang W, Pascual-Montano A, Silva AJ, Benitez JA. 2007. The cyclic AMP receptor protein modulates quorum sensing, motility and multiple genes that affect intestinal colonization in Vibrio cholerae. Microbiology 153:Part 92964–75
    [Google Scholar]
  110. 110.
    Liang W, Silva AJ, Benitez JA. 2007. The cyclic AMP receptor protein modulates colonial morphology in Vibrio cholerae. Appl. Environ. Microbiol. 73:227482–87
    [Google Scholar]
  111. 111.
    Lin W, Kovacikova G, Skorupski K. 2007. The quorum sensing regulator HapR downregulates the expression of the virulence gene transcription factor AphA in Vibrio cholerae by antagonizing Lrp- and VpsR-mediated activation. Mol. Microbiol. 64:4953–67
    [Google Scholar]
  112. 112.
    Maestre-Reyna M, Huang W-C, Wu W-J, Singh PK, Hartmann R et al. 2021. Vibrio cholerae biofilm scaffolding protein RbmA shows an intrinsic, phosphate-dependent autoproteolysis activity. IUBMB Life 73:2418–31
    [Google Scholar]
  113. 113.
    Maestre-Reyna M, Wu W-J, Wang AH-J. 2013. Structural insights into RbmA, a biofilm scaffolding protein of V. cholerae. PLOS ONE 8:12e82458
    [Google Scholar]
  114. 114.
    Martínez-García R, Nadell CD, Hartmann R, Drescher K, Bonachela JA. 2018. Cell adhesion and fluid flow jointly initiate genotype spatial distribution in biofilms. PLOS Comput. Biol. 14:4e1006094
    [Google Scholar]
  115. 115.
    Martinez-Wilson HF, Tamayo R, Tischler AD, Lazinski DW, Camilli A. 2008. The Vibrio cholerae hybrid sensor kinase vieS contributes to motility and biofilm regulation by altering the cyclic diguanylate level. J. Bacteriol. 190:196439–47
    [Google Scholar]
  116. 116.
    Matson JS, Livny J, DiRita VJ. 2017. A putative Vibrio cholerae two-component system controls a conserved periplasmic protein in response to the antimicrobial peptide polymyxin B. PLOS ONE 12:10e0186199
    [Google Scholar]
  117. 117.
    Matson JS, Yoo HJ, Hakansson K, Dirita VJ. 2010. Polymyxin B resistance in El Tor Vibrio cholerae requires lipid acylation catalyzed by MsbB. J. Bacteriol. 192:82044–52
    [Google Scholar]
  118. 118.
    Matz C, McDougald D, Moreno AM, Yung PY, Yildiz FH, Kjelleberg S. 2005. Biofilm formation and phenotypic variation enhance predation-driven persistence of Vibrio cholerae. PNAS 102:4616819–24
    [Google Scholar]
  119. 119.
    McDonough E, Kamp H, Camilli A. 2016. Vibrio cholerae phosphatases required for the utilization of nucleotides and extracellular DNA as phosphate sources. Mol. Microbiol. 99:3453–69
    [Google Scholar]
  120. 120.
    McDonough E, Lazinski DW, Camilli A. 2014. Identification of in vivo regulators of the Vibrio cholerae xds gene using a high-throughput genetic selection. Mol. Microbiol. 92:2302–15
    [Google Scholar]
  121. 121.
    McDougald D, Rice SA, Barraud N, Steinberg PD, Kjelleberg S. 2012. Should we stay or should we go: mechanisms and ecological consequences for biofilm dispersal. Nat. Rev. Microbiol. 10:139–50
    [Google Scholar]
  122. 122.
    McNally L, Bernardy E, Thomas J, Kalziqi A, Pentz J et al. 2017. Killing by Type VI secretion drives genetic phase separation and correlates with increased cooperation. Nat. Commun. 8:114371
    [Google Scholar]
  123. 123.
    Meibom KL, Blokesch M, Dolganov NA, Wu C-Y, Schoolnik GK. 2005. Chitin induces natural competence in Vibrio cholerae. Science 310:57551824–27
    [Google Scholar]
  124. 124.
    Meibom KL, Li XB, Nielsen AT, Wu C-Y, Roseman S, Schoolnik GK. 2004. The Vibrio cholerae chitin utilization program. PNAS 101:82524–29
    [Google Scholar]
  125. 125.
    Mey AR, Craig SA, Payne SM. 2005. Characterization of Vibrio cholerae RyhB: the RyhB regulon and role of ryhB in biofilm formation. Infect. Immun. 73:95706–19
    [Google Scholar]
  126. 126.
    Mey AR, Wyckoff EE, Kanukurthy V, Fisher CR, Payne SM. 2005. Iron and Fur regulation in Vibrio cholerae and the role of Fur in virulence. Infect. Immun. 73:128167–78
    [Google Scholar]
  127. 127.
    Millet YA, Alvarez D, Ringgaard S, von Andrian UH, Davis BM, Waldor MK. 2014. Insights into Vibrio cholerae intestinal colonization from monitoring fluorescently labeled bacteria. PLOS Pathog 10:10e1004405
    [Google Scholar]
  128. 128.
    Moorthy S, Watnick PI. 2005. Identification of novel stage-specific genetic requirements through whole genome transcription profiling of Vibrio cholerae biofilm development. Mol. Microbiol. 57:61623–35
    [Google Scholar]
  129. 129.
    Mudrak B, Tamayo R. 2012. The Vibrio cholerae Pst2 phosphate transport system is upregulated in biofilms and contributes to biofilm-induced hyperinfectivity. Infect. Immun. 80:51794–802
    [Google Scholar]
  130. 130.
    Mukherjee S, Bassler BL. 2019. Bacterial quorum sensing in complex and dynamically changing environments. Nat. Rev. Microbiol. 17:6371–82
    [Google Scholar]
  131. 131.
    Nadell CD, Bassler BL. 2011. A fitness trade-off between local competition and dispersal in Vibrio cholerae biofilms. PNAS 108:3414181–85
    [Google Scholar]
  132. 132.
    Nadell CD, Drescher K, Foster KR. 2016. Spatial structure, cooperation and competition in biofilms. Nat. Rev. Microbiol. 14:9589–600
    [Google Scholar]
  133. 133.
    Nadell CD, Drescher K, Wingreen NS, Bassler BL. 2015. Extracellular matrix structure governs invasion resistance in bacterial biofilms. ISME J 9:81700–9
    [Google Scholar]
  134. 134.
    Navarro MVAS, Newell PD, Krasteva PV, Chatterjee D, Madden DR et al. 2011. Structural basis for c-di-GMP-mediated inside-out signaling controlling periplasmic proteolysis. PLOS Biol 9:2e1000588
    [Google Scholar]
  135. 135.
    Oliveira NM, Martinez-Garcia E, Xavier J, Durham WM, Kolter R et al. 2015. Biofilm formation as a response to ecological competition. PLOS Biol 13:7e1002191
    [Google Scholar]
  136. 136.
    Otto SB, Martin M, Schäfer D, Hartmann R, Drescher K et al. 2020. Privatization of biofilm matrix in structurally heterogeneous biofilms. mSystems 5:4e00425–20
    [Google Scholar]
  137. 137.
    Papenfort K, Bassler BL. 2016. Quorum sensing signal-response systems in Gram-negative bacteria. Nat. Rev. Microbiol. 14:9576–88
    [Google Scholar]
  138. 138.
    Papenfort K, Silpe JE, Schramma KR, Cong J-P, Seyedsayamdost MR, Bassler BL. 2017. A Vibrio cholerae autoinducer-receptor pair that controls biofilm formation. Nat. Chem. Biol. 13:5551–57
    [Google Scholar]
  139. 139.
    Peschek N, Herzog R, Singh PK, Sprenger M, Meyer F et al. 2020. RNA-mediated control of cell shape modulates antibiotic resistance in Vibrio cholerae. Nat. Commun. 11:16067
    [Google Scholar]
  140. 140.
    Petrova OE, Sauer K. 2016. Escaping the biofilm in more than one way: desorption, detachment or dispersion. Curr. Opin. Microbiol. 30:67–78
    [Google Scholar]
  141. 141.
    Pickering BS, Smith DR, Watnick PI. 2012. Glucose-specific enzyme IIA has unique binding partners in the Vibrio cholerae biofilm. mBio 3:6e00228–12
    [Google Scholar]
  142. 142.
    Pratt JT, Ismail AM, Camilli A. 2010. PhoB regulates both environmental and virulence gene expression in Vibrio cholerae. Mol. Microbiol. 77:61595–605
    [Google Scholar]
  143. 143.
    Pratt JT, McDonough E, Camilli A. 2009. PhoB regulates motility, biofilms, and cyclic di-GMP in Vibrio cholerae. J. Bacteriol. 191:216632–42
    [Google Scholar]
  144. 144.
    Pressler K, Mitterer F, Vorkapic D, Reidl J, Oberer M, Schild S. 2019. Characterization of Vibrio cholerae’s extracellular nuclease Xds. Front. Microbiol. 10:2057
    [Google Scholar]
  145. 145.
    Reguera G, Kolter R. 2005. Virulence and the environment: a novel role for Vibrio cholerae toxin-coregulated pili in biofilm formation on chitin. J. Bacteriol. 187:103551–55
    [Google Scholar]
  146. 146.
    Roelofs KG, Jones CJ, Helman SR, Shang X, Orr MW et al. 2015. Systematic identification of cyclic-di-GMP binding proteins in Vibriocholerae reveals a novel class of cyclic-di-GMP-binding ATPases associated with type II secretion systems. PLOS Pathog 11:10e1005232
    [Google Scholar]
  147. 147.
    Rumbaugh KP, Sauer K. 2020. Biofilm dispersion. Nat. Rev. Microbiol. 18:571–86
    [Google Scholar]
  148. 148.
    Schild S, Tamayo R, Nelson EJ, Qadri F, Calderwood SB, Camilli A. 2007. Genes induced late in infection increase fitness of Vibrio cholerae after release into the environment. Cell Host Microbe 2:4264–77
    [Google Scholar]
  149. 149.
    Schluter J, Nadell CD, Bassler BL, Foster KR. 2015. Adhesion as a weapon in microbial competition. ISME J 9:1139–49
    [Google Scholar]
  150. 150.
    Schwechheimer C, Hebert K, Tripathi S, Singh PK, Floyd KA et al. 2020. A tyrosine phosphoregulatory system controls exopolysaccharide biosynthesis and biofilm formation in Vibrio cholerae. PLOS Pathog 16:8e1008745
    [Google Scholar]
  151. 151.
    Seitz P, Blokesch M. 2013. DNA-uptake machinery of naturally competent Vibrio cholerae. PNAS 110:4417987–92
    [Google Scholar]
  152. 152.
    Seper A, Fengler VHI, Roier S, Wolinski H, Kohlwein SD et al. 2011. Extracellular nucleases and extracellular DNA play important roles in Vibrio cholerae biofilm formation. Mol. Microbiol. 82:41015–37
    [Google Scholar]
  153. 153.
    Seper A, Pressler K, Kariisa A, Haid AG, Roier S et al. 2014. Identification of genes induced in Vibrio cholerae in a dynamic biofilm system. Int. J. Med. Microbiol. 304:5–6749–63
    [Google Scholar]
  154. 154.
    Shi M, Zheng Y, Wang X, Wang Z, Yang M 2021. Two regulatory factors of Vibrio cholerae activating the mannose-sensitive haemagglutinin pilus expression is important for biofilm formation and colonization in mice. Microbiology 167:10001098
    [Google Scholar]
  155. 155.
    Singh PK, Bartalomej S, Hartmann R, Jeckel H, Vidakovic L et al. 2017. Vibrio cholerae combines individual and collective sensing to trigger biofilm dispersal. Curr. Biol. 27:213359–66.e7
    [Google Scholar]
  156. 156.
    Singh PK, Rode DKH, Buffard P, Nosho K, Bayer M et al. 2021. Vibrio cholerae biofilm dispersal regulator causes cell release from matrix through type IV pilus retraction. bioRxiv 2021.05.02.442311. https://doi.org/10.1101/2021.05.02.442311
    [Crossref]
  157. 157.
    Smith DR, Maestre-Reyna M, Lee G, Gerard H, Wang AH-J, Watnick PI. 2015. In situ proteolysis of the Vibrio cholerae matrix protein RbmA promotes biofilm recruitment. PNAS 112:3310491–96
    [Google Scholar]
  158. 158.
    Smith WPJ, Vettiger A, Winter J, Ryser T, Comstock LE et al. 2020. The evolution of the type VI secretion system as a disintegration weapon. PLOS Biol 18:5e3000720
    [Google Scholar]
  159. 159.
    Sobe RC, Bond WG, Wotanis CK, Zayner JP, Burriss MA et al. 2017. Spermine inhibits Vibrio cholerae biofilm formation through the NspS-MbaA polyamine signaling system. J. Biol. Chem. 292:4117025–36
    [Google Scholar]
  160. 160.
    Song T, Mika F, Lindmark B, Liu Z, Schild S et al. 2008. A new Vibrio cholerae sRNA modulates colonization and affects release of outer membrane vesicles. Mol. Microbiol. 70:1100–11
    [Google Scholar]
  161. 161.
    Srivastava D, Harris RC, Waters CM. 2011. Integration of cyclic di-GMP and quorum sensing in the control of vpsT and aphA in Vibrio cholerae. J. Bacteriol. 193:226331–41
    [Google Scholar]
  162. 162.
    Srivastava D, Hsieh M-L, Khataokar A, Neiditch MB, Waters CM. 2013. Cyclic di-GMP inhibits Vibrio cholerae motility by repressing induction of transcription and inducing extracellular polysaccharide production. Mol. Microbiol. 90:61262–76
    [Google Scholar]
  163. 163.
    Stauder M, Vezzulli L, Pezzati E, Repetto B, Pruzzo C. 2010. Temperature affects Vibrio cholerae O1 El Tor persistence in the aquatic environment via an enhanced expression of GbpA and MSHA adhesins. Environ. Microbiol. Rep. 2:1140–44
    [Google Scholar]
  164. 164.
    Steinbach G, Crisan C, Ng SL, Hammer BK, Yunker PJ. 2020. Accumulation of dead cells from contact killing facilitates coexistence in bacterial biofilms. J. R. Soc. Interface 17:17320200486
    [Google Scholar]
  165. 165.
    Stewart PS, Franklin MJ. 2008. Physiological heterogeneity in biofilms. Nat. Rev. Microbiol. 6:3199–210
    [Google Scholar]
  166. 166.
    Sudarsan N, Lee ER, Weinberg Z, Moy RH, Kim JN et al. 2008. Riboswitches in eubacteria sense the second messenger cyclic di-GMP. Science 321:5887411–13
    [Google Scholar]
  167. 167.
    Sultan SZ, Silva AJ, Benitez JA. 2010. The PhoB regulatory system modulates biofilm formation and stress response in El Tor biotype Vibrio cholerae. FEMS Microbiol. Lett. 302:122–31
    [Google Scholar]
  168. 168.
    Svenningsen SL, Tu KC, Bassler BL. 2009. Gene dosage compensation calibrates four regulatory RNAs to control Vibrio cholerae quorum sensing. EMBO J 28:4429–39
    [Google Scholar]
  169. 169.
    Tai J-SB, Mukherjee S, Nero T, Olson R, Tithof J et al. 2021. Social evolution of shared biofilm matrix components. bioRxiv 2021.12.16.472970. https://doi.org/10.1101/2021.12.16.472970
    [Crossref]
  170. 170.
    Taylor RK, Miller VL, Furlong DB, Mekalanos JJ. 1987. Use of phoA gene fusions to identify a pilus colonization factor coordinately regulated with cholera toxin. PNAS 84:92833–37
    [Google Scholar]
  171. 170a.
    Teschler JK, Cheng AT, Yildiz FH 2017. The two-component signal transduction system VxrAB positively regulates Vibrio cholerae biofilm formation. J. Bacteriol 199:18e00139–17
    [Google Scholar]
  172. 171.
    Teschler JK, Zamorano-Sánchez D, Utada AS, Warner CJA, Wong GCL et al. 2015. Living in the matrix: assembly and control of Vibrio cholerae biofilms. Nat. Rev. Microbiol. 13:5255–68
    [Google Scholar]
  173. 172.
    Timmermans J, Van Melderen L. 2010. Post-transcriptional global regulation by CsrA in bacteria. Cell. Mol. Life Sci. 67:172897–908
    [Google Scholar]
  174. 173.
    Toska J, Ho BT, Mekalanos JJ. 2018. Exopolysaccharide protects Vibrio cholerae from exogenous attacks by the type 6 secretion system. PNAS 115:317997–8002
    [Google Scholar]
  175. 174.
    Townsley L, Sison Mangus MP, Mehic S, Yildiz FH 2016. Response of Vibrio cholerae to low-temperature shifts: CspV regulation of type VI secretion, biofilm formation, and association with zooplankton. Appl. Environ. Microbiol. 82:144441–52
    [Google Scholar]
  176. 175.
    Townsley L, Yildiz FH. 2015. Temperature affects c-di-GMP signaling and biofilm formation in Vibrio cholerae. Environ. Microbiol. 17:114290–305
    [Google Scholar]
  177. 176.
    Tsou AM, Cai T, Liu Z, Zhu J, Kulkarni RV. 2009. Regulatory targets of quorum sensing in Vibrio cholerae: evidence for two distinct HapR-binding motifs. Nucleic Acids Res 37:82747–56
    [Google Scholar]
  178. 177.
    Tsou AM, Liu Z, Cai T, Zhu J. 2011. The VarS/VarA two-component system modulates the activity of the Vibrio cholerae quorum-sensing transcriptional regulator HapR. Microbiology 157:Part 61620–28
    [Google Scholar]
  179. 178.
    Utada AS, Bennett RR, Fong JCN, Gibiansky ML, Yildiz FH et al. 2014. Vibrio cholerae use pili and flagella synergistically to effect motility switching and conditional surface attachment. Nat. Commun. 5:4913
    [Google Scholar]
  180. 179.
    Van Gestel J, Weissing FJ, Kuipers OP, Kovács ÁT. 2014. Density of founder cells affects spatial pattern formation and cooperation in Bacillus subtilis biofilms. ISME J 8:102069–79
    [Google Scholar]
  181. 180.
    Vijayakumar V, Vanhove AS, Pickering BS, Liao J, Tierney BT et al. 2018. Removal of a membrane anchor reveals the opposing regulatory functions of Vibrio cholerae glucose-specific enzyme IIA in biofilms and the mammalian intestine. mBio 9:5e00858–18
    [Google Scholar]
  182. 181.
    Wang H, Ayala JC, Silva AJ, Benitez JA. 2012. The histone-like nucleoid structuring protein (H-NS) is a repressor of Vibrio cholerae exopolysaccharide biosynthesis (vps) genes. Appl. Environ. Microbiol. 78:72482–88
    [Google Scholar]
  183. 182.
    Wang Y-C, Chin K-H, Tu Z-L, He J, Jones CJ et al. 2016. Nucleotide binding by the widespread high-affinity cyclic di-GMP receptor MshEN domain. Nat. Commun. 7:112481
    [Google Scholar]
  184. 183.
    Waters CM, Lu W, Rabinowitz JD, Bassler BL. 2008. Quorum sensing controls biofilm formation in Vibrio cholerae through modulation of cyclic di-GMP levels and repression of vpsT. J. Bacteriol. 190:72527–36
    [Google Scholar]
  185. 184.
    Watnick PI, Kolter R. 1999. Steps in the development of a Vibrio cholerae El Tor biofilm. Mol. Microbiol. 34:3586–95
    [Google Scholar]
  186. 185.
    West SA, Diggle SP, Buckling A, Gardner A, Griffin AS. 2007. The social lives of microbes. Annu. Rev. Ecol. Evol. Syst. 38:53–77
    [Google Scholar]
  187. 186.
    Wille J, Coenye T. 2020. Biofilm dispersion: the key to biofilm eradication or opening Pandora's box?. Biofilm 2:100027
    [Google Scholar]
  188. 187.
    Wu DC, Zamorano-Sánchez D, Pagliai FA, Park JH, Floyd KA et al. 2020. Reciprocal c-di-GMP signaling: Incomplete flagellum biogenesis triggers c-di-GMP signaling pathways that promote biofilm formation. PLOS Genet 16:3e1008703
    [Google Scholar]
  189. 188.
    Wucher BR, Bartlett TM, Hoyos M, Papenfort K, Persat A, Nadell CD. 2019. Vibrio cholerae filamentation promotes chitin surface attachment at the expense of competition in biofilms. PNAS 116:2814216–21
    [Google Scholar]
  190. 189.
    Wucher BR, Elsayed M, Adelman JS, Kadouri DE, Nadell CD. 2021. Bacterial predation transforms the landscape and community assembly of biofilms. Curr. Biol. 31:122643–2651.e3
    [Google Scholar]
  191. 190.
    Wyckoff EE, Mey AR, Leimbach A, Fisher CF, Payne SM. 2006. Characterization of ferric and ferrous iron transport systems in Vibrio cholerae. J. Bacteriol. 188:186515–23
    [Google Scholar]
  192. 191.
    Xavier JB, Foster KR. 2007. Cooperation and conflict in microbial biofilms. PNAS 104:3876–81
    [Google Scholar]
  193. 192.
    Yamamoto S, Ohnishi M. 2017. Glucose-specific enzyme IIA of the phosphoenolpyruvate:carbohydrate phosphotransferase system modulates chitin signaling pathways in Vibrio cholerae. J. Bacteriol. 199:18e00127–17
    [Google Scholar]
  194. 193.
    Yan J, Nadell CD, Bassler BL. 2017. Environmental fluctuation governs selection for plasticity in biofilm production. ISME J 11:71569–77
    [Google Scholar]
  195. 194.
    Yan J, Nadell CD, Stone HA, Wingreen NS, Bassler BL. 2017. Extracellular-matrix-mediated osmotic pressure drives Vibrio cholerae biofilm expansion and cheater exclusion. Nat. Commun. 8:1327
    [Google Scholar]
  196. 195.
    Yanni D, Márquez-Zacarías P, Yunker PJ, Ratcliff WC. 2019. Drivers of spatial structure in social microbial communities. Curr. Biol. 29:11R545–50
    [Google Scholar]
  197. 196.
    Yawata Y, Cordero OX, Menolascina F, Hehemann J-H, Polz MF, Stocker R. 2014. Competition-dispersal tradeoff ecologically differentiates recently speciated marine bacterioplankton populations. PNAS 111:155622–27
    [Google Scholar]
  198. 197.
    Yildiz F, Fong J, Sadovskaya I, Grard T, Vinogradov E. 2014. Structural characterization of the extracellular polysaccharide from Vibrio cholerae O1 El Tor. PLOS ONE 9:1e86751
    [Google Scholar]
  199. 198.
    Yildiz FH, Dolganov NA, Schoolnik GK. 2001. VpsR, a member of the response regulators of the two-component regulatory systems, is required for expression of vps biosynthesis genes and EPS(ETr)-associated phenotypes in Vibrio cholerae O1 El Tor. J. Bacteriol. 183:51716–26
    [Google Scholar]
  200. 199.
    Yildiz FH, Liu XS, Heydorn A, Schoolnik GK. 2004. Molecular analysis of rugosity in a Vibrio cholerae O1 El Tor phase variant. Mol. Microbiol. 53:2497–515
    [Google Scholar]
  201. 200.
    Ymele-Leki P, Houot L, Watnick PI. 2013. Mannitol and the mannitol-specific enzyme IIB subunit activate Vibrio cholerae biofilm formation. Appl. Environ. Microbiol. 79:154675–83
    [Google Scholar]
  202. 201.
    Zamorano-Sánchez D, Fong JCN, Kilic S, Erill I, Yildiz FH. 2015. Identification and characterization of VpsR and VpsT binding sites in Vibrio cholerae. J. Bacteriol. 197:71221–35
    [Google Scholar]
  203. 202.
    Zhang W, Luo M, Feng C, Liu H, Zhang H et al. 2021. Crash landing of Vibrio cholerae by MSHA pili-assisted braking and anchoring in a viscoelastic environment. eLife 10:e60655
    [Google Scholar]
  204. 203.
    Zhao X, Koestler BJ, Waters CM, Hammer BK. 2013. Post-transcriptional activation of a diguanylate cyclase by quorum sensing small RNAs promotes biofilm formation in Vibrio cholerae. Mol. Microbiol. 89:5989–1002
    [Google Scholar]
/content/journals/10.1146/annurev-micro-111021-053553
Loading
/content/journals/10.1146/annurev-micro-111021-053553
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error