1932

Abstract

Glia are abundant components of animal nervous systems. Recognized 170 years ago, concerted attempts to understand these cells began only recently. From these investigations glia, once considered passive filler material in the brain, have emerged as active players in neuron development and activity. Glia are essential for nervous system function, and their disruption leads to disease. The nematode possesses glial types similar to vertebrate glia, based on molecular, morphological, and functional criteria, and has become a powerful model in which to study glia and their neuronal interactions. Facile genetic and transgenic methods in this animal allow the discovery of genes required for glial functions, and effects of glia at single synapses can be monitored by tracking neuron shape, physiology, or animal behavior. Here, we review recent progress in understanding glia-neuron interactions in . We highlight similarities with glia in other animals, and suggest conserved emerging principles of glial function.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-neuro-070918-050314
2019-07-08
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/neuro/42/1/annurev-neuro-070918-050314.html?itemId=/content/journals/10.1146/annurev-neuro-070918-050314&mimeType=html&fmt=ahah

Literature Cited

  1. Ackley BD, Crew JR, Elamaa H, Pihlajaniemi T, Kuo CJ, Kramer JM 2001. The NC1/endostatin domain of Caenorhabditis elegans type XVIII collagen affects cell migration and axon guidance. J. Cell Biol. 152:61219–32
    [Google Scholar]
  2. Agarwal A, Wu PH, Hughes EG, Fukaya M, Tischfield MA et al. 2017. Transient opening of the mitochondrial permeability transition pore induces microdomain calcium transients in astrocyte processes. Neuron 93:3587–605.e7
    [Google Scholar]
  3. Allen NJ, Eroglu C. 2017. Cell biology of astrocyte-synapse interactions. Neuron 96:3697–708
    [Google Scholar]
  4. Altun ZF, Chen B, Wang Z, Hall DH 2010. High resolution map of Caenorhabditis elegans gap junction proteins. Dev. Dyn. 238:81936–50
    [Google Scholar]
  5. Bacaj T, Tevlin M, Lu Y, Shaham S 2008. Glia are essential for sensory organ function in C. elegans. . Science 322:5902744–47
    [Google Scholar]
  6. Bargmann CI. 1993. Genetic and cellular analysis of behavior in C. elegans.Annu.Rev. . Neurosci 16:47–71
    [Google Scholar]
  7. Bargmann CI. 1998. Neurobiology of the Caenorhabditis elegans genome. Science 282:53962028–33
    [Google Scholar]
  8. Cao J, Packer JS, Ramani V, Cusanovich DA, Huynh C et al. 2017. Comprehensive single-cell transcriptional profiling of a multicellular organism. Science 357:661–67
    [Google Scholar]
  9. Chen W, Hing H. 2008. The L1-CAM, Neuroglian, functions in glial cells for Drosophila antennal lobe development. Dev. Neurobiol. 68:1029–45
    [Google Scholar]
  10. Christopherson KS, Ullian EM, Stokes CCA, Mullowney CE, Hell JW et al. 2005. Thrombospondins are astrocyte-secreted proteins that promote CNS synaptogenesis. Cell 120:3421–33
    [Google Scholar]
  11. Chung W-S, Welsh CA, Barres BA, Stevens B 2015. Do glia drive synaptic and cognitive impairment in disease. ? Nat. Neurosci. 18:111539–45
    [Google Scholar]
  12. Clarke LE, Barres BA. 2013. Emerging roles of astrocytes in neural circuit development. Nat. Rev. Neurosci. 14:5311–21
    [Google Scholar]
  13. Colamarino SA, Tessier-Lavigne M. 1995. The role of the floor plate in axon guidance. Annu. Rev. Neurosci. 18:497–529
    [Google Scholar]
  14. Colón-Ramos DA, Margeta MA, Shen K 2007. Glia promote local synaptogenesis through UNC-6 (netrin) signaling in C. elegans. . Science 318:5847103–6
    [Google Scholar]
  15. Corty MM, Freeman MR. 2013. Architects in neural circuit design: Glia control neuron numbers and connectivity. J. Cell Biol. 203:395
    [Google Scholar]
  16. Ding G, Zou W, Zhang H, Xue Y, Cai Y et al. 2015. In vivo tactile stimulation-evoked responses in Caenorhabditis elegans amphid sheath glia. PLOS ONE 10:2e0117114
    [Google Scholar]
  17. Dominici C, Moreno-Bravo JA, Puiggros SR, Rappeneau Q, Rama N et al. 2017. Floor-plate-derived netrin-1 is dispensable for commissural axon guidance. Nature 545:7654350–54
    [Google Scholar]
  18. Doroquez DB, Berciu C, Anderson JR, Sengupta P, Nicastro D 2014. A high-resolution morphological and ultrastructural map of anterior sensory cilia and glia in Caenorhabditis elegans. . eLife 3:e01948
    [Google Scholar]
  19. Elias LAB, Kriegstein AR. 2008. Gap junctions: multifaceted regulators of embryonic cortical development. Trends Neurosci 31:5243–50
    [Google Scholar]
  20. Falk S, Götz M. 2017. Glial control of neurogenesis. Curr. Opin. Neurobiol. 47:188–95
    [Google Scholar]
  21. Featherstone DE. 2011. Glial solute carrier transporters in Drosophila and mice. Glia 59:91351–63
    [Google Scholar]
  22. Felton CM, Johnson CM. 2014. Dopamine signaling in C. elegans is mediated in part by HLH-17-dependent regulation of extracellular dopamine levels. G3 4:1081–89
    [Google Scholar]
  23. Gallemore RP, Hughes BA, Miller SS 1997. Retinal pigment epithelial transport mechanisms and their contributions to the electroretinogram. Prog. Retin. Eye Res. 16:4509–66
    [Google Scholar]
  24. García-Marín V, García-López P, Freire M 2007. Cajal's contributions to glia research. Trends Neurosci 30:9479–87
    [Google Scholar]
  25. Gendrel M, Atlas EG, Hobert O 2016. A cellular and regulatory map of the GABAergic nervous system of C. . elegans. eLife 5:e17686
    [Google Scholar]
  26. Gibson CL, Balbona JT, Niedzwiecki A, Rodriguez P, Nguyen KCQ et al. 2018. Glial loss of the metallo β-lactamase domain containing protein, SWIP-10, induces age- and glutamate-signaling dependent, dopamine neuron degeneration. PLOS Genet 14:e1007269
    [Google Scholar]
  27. Golden JW, Riddle DL. 1984. The Caenorhabditis elegans dauer larva: developmental effects of pheromone, food, and temperature. Dev. Biol. 102:2368–78
    [Google Scholar]
  28. Goodman M, Sterner KN, Islam M, Uddin M, Sherwood CC et al. 2009. Phylogenomic analyses reveal convergent patterns of adaptive evolution in elephant and human ancestries. PNAS 106:4920824–29
    [Google Scholar]
  29. Grant J, Matthewman C, Bianchi L 2015. A novel mechanism of pH buffering in C. elegans glia: bicarbonate transport via the voltage-gated CIC Cl channel CLH-1. J. Neurosci. 35:5016377–97
    [Google Scholar]
  30. Haim LB, Rowitch D. 2016. Functional diversity of astrocytes in neural circuit regulation. Nat. Rev. Neurosci. 18:131–41
    [Google Scholar]
  31. Halassa MM, Haydon PG. 2010. Integrated brain circuits: Astrocytic networks modulate neuronal activity and behavior. Annu. Rev. Physiol. 72:335–55
    [Google Scholar]
  32. Hall DH. 1977. The posterior nervous system of the nematode Caenorhabditis elegans PhD Diss., Calif. Inst. Technol Pasadena, CA:
    [Google Scholar]
  33. Han L, Wang Y, Sangaletti R, D'Urso G, Lu Y et al. 2013. Two novel DEG/ENaC channel subunits expressed in glia are needed for nose-touch sensitivity in Caenorhabditis elegans. J. Neurosci 33:3936–49
    [Google Scholar]
  34. Hardaway JA, Sturgeon SM, Snarrenberg CL, Li Z, Xu XZS et al. 2015. Glial expression of the Caenorhabditis elegans gene swip-10 supports glutamate dependent control of extrasynaptic dopamine signaling. J Neurosci 35:259409–23
    [Google Scholar]
  35. Haroon E, Miller AH, Sanacora G 2016. Inflammation, glutamate, and glia: a trio of trouble in mood disorders. Neuropsychopharmacology 42:1193–215
    [Google Scholar]
  36. Hatton GI. 1997. Function-related plasticity. Annu. Rev. Neurosci. 20:375–97
    [Google Scholar]
  37. Heiman MG, Shaham S. 2009. DEX-1 and DYF-7 establish sensory dendrite length by anchoring dendritic tips during cell migration. Cell 137:2344–55
    [Google Scholar]
  38. Heins N, Malatesta P, Cecconi F, Nakafuku M, Tucker KL et al. 2002. Glial cells generate neurons: the role of the transcription factor Pax6. Nat. Neurosci. 5:4308–15
    [Google Scholar]
  39. Hidalgo A, Kato K, Sutcliffe B, Mcilroy G, Bishop S, Alahmed S 2011. Trophic neuron-glia interactions and cell number adjustments in the fruit fly. Glia 59:91296–303
    [Google Scholar]
  40. Jankovski A, Sotelo C. 1996. Subventricular zone-olfactory bulb migratory pathway in the adult mouse: cellular composition and specificity as determined by heterochronic and heterotopic transplantation. J. Comp. Neurol. 371:3376–96
    [Google Scholar]
  41. Jarrell TA, Wang Y, Bloniarz AE, Brittin CA, Xu M et al. 2012. The connectome of a decision-making neural network. Science 337:6093437–44
    [Google Scholar]
  42. Kage-Nakadai E, Ohta A, Ujisawa T, Sun S, Nishikawa Y et al. 2016. Caenorhabditis elegans homologue of Prox1/prospero is expressed in the glia and is required for sensory behavior and cold tolerance. Genes Cells 21:936–48
    [Google Scholar]
  43. Kahle KT, Delpire E. 2015. Kinase-KCC2 coupling: Cl rheostasis, disease susceptibility, therapeutic target. J. Neurophysiol. 115:8–18
    [Google Scholar]
  44. Kaminsky N, Bihari O, Kanner S, Barzilai A 2016. Connecting malfunctioning glial cells and brain degenerative disorders. Genom. Proteom. Bioinform. 14:3155–65
    [Google Scholar]
  45. Katz M, Corson F, Iwanir S, Biron D, Shaham S et al. 2018. Glia modulate a neuronal circuit for locomotion suppression during sleep in C. elegans. Cell Rep 22:102575–83
    [Google Scholar]
  46. Katz M, Corson F, Keil W, Singhal A, Bae A et al. 2019. Glutamate spillover in C. elegans triggers repetitive behavior through presynaptic activation of MGL-2/mGluR5. Nat. Commun 10:1882
    [Google Scholar]
  47. Kettenmann H, Ransom BR, eds. 1995. Neuroglia Oxford, UK: Oxford Univ. Press
  48. Khakh BS, McCarthy KD. 2015. Astrocyte calcium signaling: from observations to functions and the challenges therein. Cold Spring Harb. Perspect. Biol. 7:4a020404
    [Google Scholar]
  49. Khakh BS, Sofroniew MV. 2015. Diversity of astrocyte functions and phenotypes in neural circuits. Nat. Neurosci. 18:7942–52
    [Google Scholar]
  50. Krause M, Harrison SW, Xu S, Chen L, Fire A 1994. Elements regulating cell- and stage-specific expression of the C. elegans MyoD family homolog hlh-1. Dev. Biol 166:133–48
    [Google Scholar]
  51. Leboeuf B, Correa P, Jee C, García LR 2014. Caenorhabditis elegans male sensory-motor neurons and dopaminergic support cells couple ejaculation and post-ejaculatory behaviors. eLife 3:e02938
    [Google Scholar]
  52. Leiserson WM, Forbush B, Keshishian H 2011. Drosophila glia use a conserved cotransporter mechanism to regulate extracellular volume. Glia 59:2320–32
    [Google Scholar]
  53. Lints R, Emmons SW. 1999. Patterning of dopaminergic neurotransmitter identity among Caenorhabditis elegans ray sensory neurons by a TGFbeta family signaling pathway and a Hox gene. Development 126:5819–31
    [Google Scholar]
  54. Lois C, García-Verdugo J-M, Alvarez-Buylla A 1996. Chain migration of neuronal precursors. Science 271:5251978–81
    [Google Scholar]
  55. Mano I, Straud S, Driscoll M 2007. Caenorhabditis elegans glutamate transporters influence synaptic function and behavior at sites distant from the synapse. J. Biol. Chem. 282:4734412–19
    [Google Scholar]
  56. McLachlan IG, Beets I, de Bono M, Heiman MG 2018. A neuronal MAP kinase constrains growth of a Caenorhabditis elegans sensory dendrite throughout the life of the organism. PLOS Genet 14:e1007435
    [Google Scholar]
  57. McQuary PR, Liao CY, Chang JT, Kumsta C, She X et al. 2016. C. elegans S6K mutants require a creatine-kinase-like effector for lifespan extension. Cell Rep 14:92059–67
    [Google Scholar]
  58. Medina I, Friedel P, Rivera C, Kahle KT, Kourdougli N et al. 2014. Current view on the functional regulation of the neuronal K+-Cl cotransporter KCC2. Front. Cell. Neurosci. 8:27
    [Google Scholar]
  59. Meng L, Zhang A, Jin Y, Yan D 2016. Regulation of neuronal axon specification by glia-neuron gap junctions in C. . elegans. eLife 5:e19510
    [Google Scholar]
  60. Murai KK, Nguyen LN, Irie F, Yamaguchi Y, Pasquale EB 2003. Control of hippocampal dendritic spine morphology through ephrin-A3/EphA4 signaling. Nat. Neurosci. 6:2153–60
    [Google Scholar]
  61. Murakami S, Kurachi Y. 2016. Mechanisms of astrocytic K+ clearance and swelling under high extracellular K+ concentrations. J. Physiol. Sci. 66:2127–42
    [Google Scholar]
  62. Nath RD, Chow ES, Wang H, Schwarz EM, Sternberg PW 2016. C. elegans stress-induced sleep emerges from the collective action of multiple neuropeptides. Curr. Biol. 26:182446–55
    [Google Scholar]
  63. Nedergaard M, Verkhratsky A. 2012. Artifact versus reality—how astrocytes contribute to synaptic events. Glia 60:71013–23
    [Google Scholar]
  64. Nichols ALA, Eichler T, Latham R, Zimmer M 2017. A global brain state underlies C. elegans sleep behavior. Science 356:6344eaam6851
    [Google Scholar]
  65. Oikonomou G, Perens EA, Lu Y, Shaham S 2012. Some, but not all, retromer components promote morphogenesis of C. elegans sensory compartments. Dev. Biol. 362:142–49
    [Google Scholar]
  66. Oikonomou G, Perens EA, Lu Y, Watanabe S, Jorgensen EM, Shaham S 2011. Opposing activities of LIT-1/NLK and DAF-6/patched-related direct sensory compartment morphogenesis in C. elegans. PLOS Biol 9:8e1001121
    [Google Scholar]
  67. Oikonomou G, Shaham S. 2011. The glia of Caenorhabditis elegans. . Glia 59:91253–63
    [Google Scholar]
  68. Parpura V, Zorec R, Verkhratsky A 2016. Astrocytes in physiological aging and Alzheimer's disease. Neuroscience 323:170–82
    [Google Scholar]
  69. Payne JA, Rivera C, Voipio J, Kaila K 2003. Cation-chloride co-transporters in neuronal communication, development and trauma. Trends Neurosci 26:199–206
    [Google Scholar]
  70. Pelluru D, Konadhode RR, Bhat NR, Shiromani PJ 2016. Optogenetic stimulation of astrocytes in the posterior hypothalamus increases sleep at night in C57BL/6J mice. Eur. J. Neurosci. 43:1298–306
    [Google Scholar]
  71. Perens EA, Shaham S. 2005. C. elegans daf-6 encodes a patched-related protein required for lumen formation. Dev. Cell. 8:6893–906
    [Google Scholar]
  72. Perkins LA, Hedgecock EM, Thomson JN, Culotti JG 1986. Mutant sensory cilia in the nematode Caenorhabditis elegans. Dev. Biol 117:2456–87
    [Google Scholar]
  73. Poskanzer KE, Yuste R. 2016. Astrocytes regulate cortical state switching in vivo. PNAS 113:192675–84
    [Google Scholar]
  74. Procko C, Lu Y, Shaham S 2011. Glia delimit shape changes of sensory neuron receptive endings in. C. elegans. Development 138:71371–81
    [Google Scholar]
  75. Rakic P. 2003. Elusive radial glial cells: historical and evolutionary perspective. Glia 43:119–32
    [Google Scholar]
  76. Ramón y Cajal S. 1895. Algunas conjeturas sobre el mecanismo anatómico de la ideación, asociación y atención. Rev. Med. Cirug. Pract. 36:497–508
    [Google Scholar]
  77. Ramón y Cajal S. 1899. Textura del Sistema Nervioso del Hombre y Delos Vertebrados: Estudios Sobre el Plan Estructural y Composición Histológica de los Centros Nerviosos Adicionados de Consideraciones Fisiológicas Fundadas en los Nuevos Descubrimientos Madrid: Imprenta Libr. Nicolás Moya
  78. Ramón y Cajal S. 1984. The Neuron and the Glial Cell transl. J de la Torre, WC Gibson Springfield, IL: Charles C. Thomas
  79. Rapti G, Li C, Shan A, Lu Y, Shaham S 2017. Glia initiate brain assembly through noncanonical Chimaerin-Furin axon guidance in C. elegans. Nat. Neurosci 20:101350–60
    [Google Scholar]
  80. Rinke I, Artmann J, Stein V 2010. ClC-2 voltage-gated channels constitute part of the background conductance and assist chloride extrusion. J. Neurosci. 30:134776–86
    [Google Scholar]
  81. Rousse I, Robitaille R. 2006. Calcium signaling in Schwann cells at synaptic and extra-synaptic sites: active glial modulation of neuronal activity. Glia 54:14691–99
    [Google Scholar]
  82. Rusan ZM, Kingsford OA, Tanouye MA 2014. Modeling glial contributions to seizures and epileptogenesis: cation-chloride cotransporters in Drosophila melanogaster. . PLOS ONE 9:6e101117
    [Google Scholar]
  83. Sammut M, Cook SJ, Nguyen KCQ, Felton T, Hall DH et al. 2015. Glia-derived neurons are required for sex-specific learning in C. elegans. . Nature 526:7573385–90
    [Google Scholar]
  84. Schummers J, Yu H, Sur M 2008. Tuned responses of astrocytes and their influence on hemodynamic signals in the visual cortex. Science 320:1638–44
    [Google Scholar]
  85. Schwarz JM, Bilbo SD. 2012. Hormones and behavior sex, glia, and development: interactions in health and disease. Horm. Behav. 62:3243–53
    [Google Scholar]
  86. Shah PK, Santella A, Jacobo A, Siletti K, Hudspeth AJ et al. 2017. An in toto approach to dissecting cellular interactions in complex tissues. Dev. Cell 43:4530–40.e4
    [Google Scholar]
  87. Shaham S. 2010. Chemosensory organs as models of neuronal synapses. Nat. Rev. Neurosci. 11:3212–17
    [Google Scholar]
  88. Shaham S. 2015. Glial development and function in the nervous system of Caenorhabditis elegans.Cold Spring Harb. Perspect. Biol 7:4a020578
    [Google Scholar]
  89. Shao Z, Watanabe S, Christensen R, Jorgensen EM, Colón-Ramos DA 2013. Synapse location during growth depends on glia location. Cell 154:2337–50
    [Google Scholar]
  90. Sidman RL, Rakic P. 1973. Neuronal migration, with special reference to developing human brain: a review. Brain Res 62:11–35
    [Google Scholar]
  91. Singhal A, Shaham S. 2017. Infrared laser-induced gene expression for tracking development and function of single C. elegans embryonic neurons. Nat. Commun. 8:14100
    [Google Scholar]
  92. Singhvi A, Frank CA, Garriga G 2008. The T-box gene tbx-2, the homeobox gene egl-5, and the asymmetric cell division gene ham-1 specify neural fate in the HSN/PHB lineage. Genetics 179:2887–98
    [Google Scholar]
  93. Singhvi A, Liu B, Friedman CJ, Fong J, Lu Y et al. 2016. A glial K/Cl transporter controls neuronal receptive ending shape by chloride inhibition of an rGC. Cell 165:4936–48
    [Google Scholar]
  94. Sulston JE, Albertson D, Thomson JN 1980. The Caenorhabditis elegans male: postembryonic development of nongonadal structures. Dev. Biol. 78:542–76
    [Google Scholar]
  95. Sulston JE, Schierenberg E, White JG, Thomson JN 1983. The embryonic cell lineage of the nematode Caenorhabditis elegans. Dev. Biol 100:164–119
    [Google Scholar]
  96. Sultan S, Li L, Moss J, Petrelli F, Casse F et al. 2015. Synaptic integration of adult-born hippocampal neurons is locally controlled by astrocytes. Neuron 88:957–72
    [Google Scholar]
  97. Sun YT, Lin TS, Tzeng SF, Delpire E, Shen MR 2010. Deficiency of electroneutral K+-Cl cotransporter 3 causes a disruption in impulse propagation along peripheral nerves. Glia 58:131544–52
    [Google Scholar]
  98. Tatsumi K, Isonishi A, Yamasaki M, Kawabe Y, Morita-Takemura S et al. 2018. Olig2-lineage astrocytes: a distinct subtype of astrocytes that differs from GFAP astrocytes. Front. Neuroanat. 12:8
    [Google Scholar]
  99. Taverna E, Götz M, Huttner WB 2014. The cell biology of neurogenesis: toward an understanding of the development and evolution of the neocortex. Annu. Rev. Cell Dev. Biol. 30:465–502
    [Google Scholar]
  100. Theodosis DT, Poulain DA, Oliet SHR 2009. Activity-dependent structural and functional plasticity of astrocyte-neuron interactions. Physiol. Rev. 88:983–1008
    [Google Scholar]
  101. Tong X, Ao Y, Faas GC, Nwaobi SE, Xu J et al. 2014. Astrocyte Kir4.1 ion channel deficits contribute to neuronal dysfunction in Huntington's disease model mice. Nat. Neurosci. 17:5694–703
    [Google Scholar]
  102. Ullian EM, Sapperstein SK, Christopherson KS, Barres BA 2001. Control of synapse number by glia. Science 291:5504657–61
    [Google Scholar]
  103. Varadarajan SG, Kong JH, Phan KD, Kao TJ, Panaitof SC et al. 2017. Netrin1 produced by neural progenitors, not floor plate cells, is required for axon guidance in the spinal cord. Neuron 94:4790–99.e3
    [Google Scholar]
  104. Varshney LR, Chen BL, Paniagua E, Hall DH, Chklovskii DB 2011. Structural properties of the Caenorhabditis elegans neuronal network. PLOS Comput. Biol. 7:2e1001066
    [Google Scholar]
  105. Verkhratsky A, Butt AM. 2013. Neuroglia: definition, classification, evolution, numbers, development. Glial Physiology and Pathophysiology73–104 Chichester, UK: Wiley-Blackwell
    [Google Scholar]
  106. Verkhratsky A, Parpura V, Pekna M, Pekny M, Sofroniew M 2014. Glia in the pathogenesis of neurodegenerative diseases. Biochem. Soc. Trans. 42:51291–301
    [Google Scholar]
  107. von Bartheld CS, Bahney J, Herculano-Houzel S 2016. The search for true numbers of neurons and glial cells in the human brain: a review of 150 years of cell counting. J. Comp. Neurol. 524:183865–95
    [Google Scholar]
  108. Wadsworth WG, Bhatt H, Hedgecock EM 1996. Neuroglia and pioneer neurons express UNC-6 to provide global and local netrin cues for guiding migrations in C. elegans. . Neuron 16:35–46
    [Google Scholar]
  109. Wallace SW, Singhvi A, Liang Y, Lu Y, Shaham S 2016. PROS-1/prospero is a major regulator of the glia-specific secretome controlling sensory-neuron shape and function in C. elegans. Cell Rep 15:3550–62
    [Google Scholar]
  110. Wang HC, Lin C, Ellis-Davies G, Bergles DE, Wang HC et al. 2015. Spontaneous activity of cochlear hair cells triggered by fluid secretion mechanism in adjacent support cells. Cell 163:1348–59
    [Google Scholar]
  111. Wang W, Perens EA, Oikonomou G, Wallace SW, Lu Y, Shaham S 2017. IGDB-2, an Ig/FNIII protein, binds the ion channel LGC-34 and controls sensory compartment morphogenesis in C. elegans. Dev. Biol 430:1105–12
    [Google Scholar]
  112. Wang Y, Urso GD, Bianchi L 2012. Knockout of glial channel ACD-1 exacerbates sensory deficits in a C. elegans mutant by regulating calcium levels of sensory neurons. J. Neurophysiol. 107:148–58
    [Google Scholar]
  113. Ward S, Thomson N, White JG, Brenner S 1975. Electron microscopical reconstruction of the anterior sensory anatomy of the nematode Caenorhabditis elegans. J. Comp. Neurol 160:3313–37
    [Google Scholar]
  114. Whalley K. 2013. Astroglial regulation of sleep homeostasis. Curr. Opin. Neurobiol. 23:5812–18
    [Google Scholar]
  115. Whalley K. 2017. Astrocytes keep time. Nat. Rev. Neurosci. 18:264
    [Google Scholar]
  116. White JG, Southgate E, Thomson JN, Brenner S 1986. The structure of the nervous system of the nematode Caenorhabditis elegans. Philos. Trans. R. Soc. Lond. B Biol. Sci 314:11651–340
    [Google Scholar]
  117. Wimmers S, Karl MO, Strauss O 2007. Ion channels in the RPE. Prog. Retin. Eye Res. 26:263–301
    [Google Scholar]
  118. Yin JA, Gao G, Liu XJ, Hao ZQ, Li K et al. 2017. Genetic variation in glia-neuron signaling modulates ageing rate. Nature 551:7679198–203
    [Google Scholar]
  119. Yoshida A, Nakano S, Suzuki T 2016. A glial K+ /Cl cotransporter modifies temperature-evoked dynamics in Caenorhabditis elegans sensory neurons. Genes Brain Behav 15:429–40
    [Google Scholar]
  120. Yoshimura S, Murray JI, Lu Y, Waterston RH, Shaham S 2008. mls-2 and vab-3 control glia development, hlh-17/Olig expression and glia-dependent neurite extension in C. . elegans. Development 135:132263–75
    [Google Scholar]
  121. Yu X, Taylor AMW, Nagai J, Golshani P, Evans CJ et al. 2018. Reducing astrocyte calcium signaling in vivo alters striatal microcircuits and causes repetitive behavior. Neuron 99:1170–87.e9
    [Google Scholar]
  122. Zhang K, Sejnowski TJ. 2000. A universal scaling law between gray matter and white matter of cerebral cortex. PNAS 97:105621–26
    [Google Scholar]
  123. Zuchero JB, Barres BA. 2015. Glia in mammalian development and disease. Development 142:223805–9
    [Google Scholar]
/content/journals/10.1146/annurev-neuro-070918-050314
Loading
/content/journals/10.1146/annurev-neuro-070918-050314
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error