1932

Abstract

Astrocyte endfeet enwrap the entire vascular tree within the central nervous system, where they perform important functions in regulating the blood-brain barrier (BBB), cerebral blood flow, nutrient uptake, and waste clearance. Accordingly, astrocyte endfeet contain specialized organelles and proteins, including local protein translation machinery and highly organized scaffold proteins, which anchor channels, transporters, receptors, and enzymes critical for astrocyte-vascular interactions. Many neurological diseases are characterized by the loss of polarization of specific endfoot proteins, vascular dysregulation, BBB disruption, altered waste clearance, or, in extreme cases, loss of endfoot coverage. A role for astrocyte endfeet has been demonstrated or postulated in many of these conditions. This review provides an overview of the development, composition, function, and pathological changes of astrocyte endfeet and highlights the gaps in our knowledge that future research should address.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-neuro-091922-031205
2023-07-10
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/neuro/46/1/annurev-neuro-091922-031205.html?itemId=/content/journals/10.1146/annurev-neuro-091922-031205&mimeType=html&fmt=ahah

Literature Cited

  1. Agrawal S, Anderson P, Durbeej M, van Rooijen N, Ivars F et al. 2006. Dystroglycan is selectively cleaved at the parenchymal basement membrane at sites of leukocyte extravasation in experimental autoimmune encephalomyelitis. J. Exp. Med. 203:41007–19
    [Google Scholar]
  2. Aldea R, Weller RO, Wilcock DM, Carare RO, Richardson G. 2019. Cerebrovascular smooth muscle cells as the drivers of intramural periarterial drainage of the brain. Front. Aging Neurosci. 11:1
    [Google Scholar]
  3. Allen NJ, Eroglu C. 2017. Cell biology of astrocyte-synapse interactions. Neuron 96:3697–708
    [Google Scholar]
  4. Alonso-Gardón M, Elorza-Vidal X, Castellanos A, La Sala G, Armand-Ugon M et al. 2021. Identification of the GlialCAM interactome: The G protein-coupled receptors GPRC5B and GPR37L1 modulate megalencephalic leukoencephalopathy proteins. Hum. Mol. Genet. 30:171649–65
    [Google Scholar]
  5. Anderson MA, Burda JE, Ren Y, Ao Y, O'Shea TM et al. 2016. Astrocyte scar formation aids central nervous system axon regeneration. Nature 532:7598195–200
    [Google Scholar]
  6. Antonakou EI, Triarhou LC. 2019. “Anatomical mechanism of ideation, association and attention” [1895] and “Certain points in neurological histophysiology” [1896]: Cajal's conjectures, then and now. J. Chem. Neuroanat. 104:101702
    [Google Scholar]
  7. Aoki-Yoshino K, Uchihara T, Duyckaerts C, Nakamura A, Hauw J-J, Wakayama Y. 2005. Enhanced expression of aquaporin 4 in human brain with inflammatory diseases. Acta Neuropathol. 110:3281–88
    [Google Scholar]
  8. Armulik A, Genové G, Mäe M, Nisancioglu MH, Wallgard E et al. 2010. Pericytes regulate the blood-brain barrier. Nature 468:7323557–61
    [Google Scholar]
  9. Balbi M, Koide M, Wellman GC, Plesnila N. 2017. Inversion of neurovascular coupling after subarachnoid hemorrhage in vivo. J. Cereb. Blood Flow Metab. 37:113625–34
    [Google Scholar]
  10. Banitalebi S, Skauli N, Geiseler S, Ottersen OP, Amiry-Moghaddam M. 2022. Disassembly and mislocalization of AQP4 in incipient scar formation after experimental stroke. Int. J. Mol. Sci. 23:31117
    [Google Scholar]
  11. Banks WA, Reed MJ, Logsdon AF, Rhea EM, Erickson MA. 2021. Healthy aging and the blood-brain barrier. Nat. Aging 1:3243–54
    [Google Scholar]
  12. Beck DW, Roberts RL, Olson JJ. 1986. Glial cells influence membrane-associated enzyme activity at the blood-brain barrier. Brain Res. 381:1131–37
    [Google Scholar]
  13. Begum G, Song S, Wang S, Zhao H, Bhuiyan MIH et al. 2018. Selective knockout of astrocytic Na+/H+ exchanger isoform 1 reduces astrogliosis, BBB damage, infarction, and improves neurological function after ischemic stroke. Glia 66:1126–44
    [Google Scholar]
  14. Belmaati Cherkaoui M, Vacca O, Izabelle C, Boulay A-C, Boulogne C et al. 2021. Dp71 contribution to the molecular scaffold anchoring aquaporine-4 channels in brain macroglial cells. Glia 69:4954–70
    [Google Scholar]
  15. Berthiaume A-A, Grant RI, McDowell KP, Underly RG, Hartmann DA et al. 2018. Dynamic remodeling of pericytes in vivo maintains capillary coverage in the adult mouse brain. Cell Rep. 22:18–16
    [Google Scholar]
  16. Bertossi M, Virgintino D, Maiorano E, Occhiogrosso M, Roncali L. 1997. Ultrastructural and morphometric investigation of human brain capillaries in normal and peritumoral tissues. Ultrastruct. Pathol. 21:141–49
    [Google Scholar]
  17. Blanco VM, Stern JE, Filosa JA. 2008. Tone-dependent vascular responses to astrocyte-derived signals. Am. J. Physiol. Heart Circ. Physiol. 294:6H2855–63
    [Google Scholar]
  18. Boisvert MM, Erikson GA, Shokhirev MN, Allen NJ. 2018. The aging astrocyte transcriptome from multiple regions of the mouse brain. Cell Rep. 22:1269–85
    [Google Scholar]
  19. Bors L, Tóth K, Tóth EZ, Bajza Á, Csorba A et al. 2018. Age-dependent changes at the blood-brain barrier. A comparative structural and functional study in young adult and middle aged rats. Brain Res. Bull. 139:269–77
    [Google Scholar]
  20. Boulay A-C, Saubaméa B, Adam N, Chasseigneaux S, Mazaré N et al. 2017. Translation in astrocyte distal processes sets molecular heterogeneity at the gliovascular interface. Cell Discov. 3:17005
    [Google Scholar]
  21. Brosnan CF, Raine CS. 2013. The astrocyte in multiple sclerosis revisited. Glia 61:4453–65
    [Google Scholar]
  22. Bush TG, Puvanachandra N, Horner CH, Polito A, Ostenfeld T et al. 1999. Leukocyte infiltration, neuronal degeneration, and neurite outgrowth after ablation of scar-forming, reactive astrocytes in adult transgenic mice. Neuron 23:2297–308
    [Google Scholar]
  23. Bushong EA, Martone ME, Ellisman MH. 2004. Maturation of astrocyte morphology and the establishment of astrocyte domains during postnatal hippocampal development. Int. J. Dev. Neurosci. 22:273–86
    [Google Scholar]
  24. Canfield SG, Stebbins MJ, Morales BS, Asai SW, Vatine GD et al. 2017. An isogenic blood-brain barrier model comprising brain endothelial cells, astrocytes, and neurons derived from human induced pluripotent stem cells. J. Neurochem. 140:6874–88
    [Google Scholar]
  25. Carotenuto A, Cacciaguerra L, Pagani E, Preziosa P, Filippi M, Rocca MA. 2022. Glymphatic system impairment in multiple sclerosis: relation with brain damage and disability. Brain J. Neurol. 145:82785–95
    [Google Scholar]
  26. Chai H, Diaz-Castro B, Shigetomi E, Monte E, Octeau JC et al. 2017. Neural circuit-specialized astrocytes: transcriptomic, proteomic, morphological, and functional evidence. Neuron 95:3531–49.e9
    [Google Scholar]
  27. Chakraborty A, Kamermans A, van Het Hof B, Castricum K, Aanhane E et al. 2018. Angiopoietin like-4 as a novel vascular mediator in capillary cerebral amyloid angiopathy. Brain J. Neurol. 141:123377–88
    [Google Scholar]
  28. Chuquet J, Hollender L, Nimchinsky EA. 2007. High-resolution in vivo imaging of the neurovascular unit during spreading depression. J. Neurosci. 27:154036–44
    [Google Scholar]
  29. Clavreul S, Abdeladim L, Hernández-Garzón E, Niculescu D, Durand J et al. 2019. Cortical astrocytes develop in a plastic manner at both clonal and cellular levels. Nat. Commun. 10:14884
    [Google Scholar]
  30. Cleary CM, Moreira TS, Takakura AC, Nelson MT, Longden TA, Mulkey DK. 2020. Vascular control of the CO2/H+-dependent drive to breathe. eLife 9:e59499
    [Google Scholar]
  31. Coelho-Santos V, Berthiaume A-A, Ornelas S, Stuhlmann H, Shih AY. 2021. Imaging the construction of capillary networks in the neonatal mouse brain. PNAS 118:26e2100866118
    [Google Scholar]
  32. Coelho-Santos V, Shih AY 2020. Postnatal development of cerebrovascular structure and the neurogliovascular unit. Wiley Interdiscip. Rev. Dev. Biol. 9:2e363
    [Google Scholar]
  33. Connors NC, Adams ME, Froehner SC, Kofuji P. 2004. The potassium channel Kir4.1 associates with the dystrophin-glycoprotein complex via α-syntrophin in glia. J. Biol. Chem. 279:2728387–92
    [Google Scholar]
  34. Crago EA, Thampatty BP, Sherwood PR, Kuo C-WJ, Bender C et al. 2011. Cerebrospinal fluid 20-HETE is associated with delayed cerebral ischemia and poor outcomes after aneurysmal subarachnoid hemorrhage. Stroke 42:71872–77
    [Google Scholar]
  35. Culligan K, Ohlendieck K. 2002. Diversity of the brain dystrophin-glycoprotein complex. J. Biomed. Biotechnol. 2:131–36
    [Google Scholar]
  36. Daneman R, Zhou L, Kebede AA, Barres BA. 2010. Pericytes are required for blood-brain barrier integrity during embryogenesis. Nature 468:7323562–66
    [Google Scholar]
  37. de Majo M, Koontz M, Rowitch D, Ullian EM. 2020. An update on human astrocytes and their role in development and disease. Glia 68:4685–704
    [Google Scholar]
  38. De Strooper B, Karran E. 2016. The cellular phase of Alzheimer's disease. Cell 164:4603–15
    [Google Scholar]
  39. Del Franco AP, Chiang P-P, Newman EA. 2022. Dilation of cortical capillaries is not related to astrocyte calcium signaling. Glia 70:3508–21
    [Google Scholar]
  40. Delgado J, Masoli J, Hase Y, Akinyemi R, Ballard C et al. 2022. Trajectories of cognitive change following stroke: stepwise decline towards dementia in the elderly. Brain Commun. 4:3fcac129
    [Google Scholar]
  41. Diaz-Castro B, Bernstein AM, Coppola G, Sofroniew MV, Khakh BS. 2021. Molecular and functional properties of cortical astrocytes during peripherally induced neuroinflammation. Cell Rep. 36:6109508
    [Google Scholar]
  42. Diem AK, Carare RO, Weller RO, Bressloff NW. 2018. A control mechanism for intra-mural peri-arterial drainage via astrocytes: how neuronal activity could improve waste clearance from the brain. PLOS ONE 13:10e0205276
    [Google Scholar]
  43. Ding S, Wang T, Cui W, Haydon PG. 2009. Photothrombosis ischemia stimulates a sustained astrocytic Ca2+ signaling in vivo. Glia 57:7767–76
    [Google Scholar]
  44. Djukic B, Casper KB, Philpot BD, Chin L-S, McCarthy KD. 2007. Conditional knock-out of Kir4.1 leads to glial membrane depolarization, inhibition of potassium and glutamate uptake, and enhanced short-term synaptic potentiation. J. Neurosci. 27:4211354–65
    [Google Scholar]
  45. Donnelly MK, Crago EA, Conley YP, Balzer JR, Ren D et al. 2015. 20-HETE is associated with unfavorable outcomes in subarachnoid hemorrhage patients. J. Cereb. Blood Flow Metab. 35:91515–22
    [Google Scholar]
  46. Eilam R, Segal M, Malach R, Sela M, Arnon R, Aharoni R. 2018. Astrocyte disruption of neurovascular communication is linked to cortical damage in an animal model of multiple sclerosis. Glia 66:51098–117
    [Google Scholar]
  47. Escartin C, Galea E, Lakatos A, O'Callaghan JP, Petzold GC et al. 2021. Reactive astrocyte nomenclature, definitions, and future directions. Nat. Neurosci. 24:3312–25
    [Google Scholar]
  48. Farmer WT, Abrahamsson T, Chierzi S, Lui C, Zaelzer C et al. 2016. Neurons diversify astrocytes in the adult brain through sonic hedgehog signaling. Science 351:6275849–54
    [Google Scholar]
  49. Farrall AJ, Wardlaw JM. 2009. Blood-brain barrier: ageing and microvascular disease—systematic review and meta-analysis. Neurobiol. Aging 30:3337–52
    [Google Scholar]
  50. Filosa JA, Bonev AD, Straub SV, Meredith AL, Wilkerson MK et al. 2006. Local potassium signaling couples neuronal activity to vasodilation in the brain. Nat. Neurosci. 9:111397–403
    [Google Scholar]
  51. Fordsmann JC, Ko RWY, Choi HB, Thomsen K, Witgen BM et al. 2013. Increased 20-HETE synthesis explains reduced cerebral blood flow but not impaired neurovascular coupling after cortical spreading depression in rat cerebral cortex. J. Neurosci. 33:62562–70
    [Google Scholar]
  52. Fournier AP, Gauberti M, Quenault A, Vivien D, Macrez R, Docagne F. 2019. Reduced spinal cord parenchymal cerebrospinal fluid circulation in experimental autoimmune encephalomyelitis. J. Cereb. Blood Flow Metab. 39:71258–65
    [Google Scholar]
  53. Garcia V, Gilani A, Shkolnik B, Pandey V, Zhang FF et al. 2017. 20-HETE signals through G-protein-coupled receptor GPR75 (Gq) to affect vascular function and trigger hypertension. Circ. Res. 120:111776–88
    [Google Scholar]
  54. García-Marín V, García-López P, Freire M. 2007. Cajal's contributions to glia research. Trends Neurosci. 30:9479–87
    [Google Scholar]
  55. Ge W-P, Miyawaki A, Gage FH, Jan YN, Jan LY 2012. Local generation of glia is a major astrocyte source in postnatal cortex. Nature 484:7394376–80
    [Google Scholar]
  56. Gebremedhin D, Ma YH, Falck JR, Roman RJ, VanRollins M, Harder DR. 1992. Mechanism of action of cerebral epoxyeicosatrienoic acids on cerebral arterial smooth muscle. Am. J. Physiol. 263:2H519–25
    [Google Scholar]
  57. Gee SH, Montanaro F, Lindenbaum MH, Carbonetto S. 1994. Dystroglycan-α, a dystrophin-associated glycoprotein, is a functional agrin receptor. Cell 77:5675–86
    [Google Scholar]
  58. George KK, Heithoff BP, Shandra O, Robel S 2022. Mild traumatic brain injury/concussion initiates an atypical astrocyte response caused by blood-brain barrier dysfunction. J. Neurotrauma 39:1–2211–26
    [Google Scholar]
  59. Gilbert A, Elorza-Vidal X, Rancillac A, Chagnot A, Yetim M et al. 2021. Megalencephalic leukoencephalopathy with subcortical cysts is a developmental disorder of the gliovascular unit. eLife 10:e71379
    [Google Scholar]
  60. Gilbert A, Vidal XE, Estevez R, Cohen-Salmon M, Boulay A-C. 2019. Postnatal development of the astrocyte perivascular MLC1/GlialCAM complex defines a temporal window for the gliovascular unit maturation. Brain Struct. Funct. 224:31267–78
    [Google Scholar]
  61. Göbel J, Engelhardt E, Pelzer P, Sakthivelu V, Jahn HM et al. 2020. Mitochondria-endoplasmic reticulum contacts in reactive astrocytes promote vascular remodeling. Cell Metab. 31:4791–808.e8
    [Google Scholar]
  62. Gonzalez-Fernandez E, Staursky D, Lucas K, Nguyen BV, Li M et al. 2020. 20-HETE enzymes and receptors in the neurovascular unit: implications in cerebrovascular disease. Front. Neurol. 11:983
    [Google Scholar]
  63. Gordon GRJ, Choi HB, Rungta RL, Ellis-Davies GCR, MacVicar BA. 2008. Brain metabolism dictates the polarity of astrocyte control over arterioles. Nature 456:7223745–49
    [Google Scholar]
  64. Gourine AV, Kasymov V, Marina N, Tang F, Figueiredo MF et al. 2010. Astrocytes control breathing through pH-dependent release of ATP. Science 329:5991571–75
    [Google Scholar]
  65. Gu X, Chen W, Volkow ND, Koretsky AP, Du C, Pan Y. 2018. Synchronized astrocytic Ca2+ responses in neurovascular coupling during somatosensory stimulation and for the resting state. Cell Rep. 23:133878–90
    [Google Scholar]
  66. Habib N, McCabe C, Medina S, Varshavsky M, Kitsberg D et al. 2020. Disease-associated astrocytes in Alzheimer's disease and aging. Nat. Neurosci. 23:6701–6
    [Google Scholar]
  67. Hall CN, Reynell C, Gesslein B, Hamilton NB, Mishra A et al. 2014. Capillary pericytes regulate cerebral blood flow in health and disease. Nature 508:749455–60
    [Google Scholar]
  68. Harik SI, Hall AK, Richey P, Andersson L, Lundahl P, Perry G. 1993. Ontogeny of the erythroid/HepG2-type glucose transporter (GLUT-1) in the rat nervous system. Brain Res. Dev. Brain Res. 72:141–49
    [Google Scholar]
  69. Harrison IF, Ismail O, Machhada A, Colgan N, Ohene Y et al. 2020. Impaired glymphatic function and clearance of tau in an Alzheimer's disease model. Brain J. Neurol. 143:82576–93
    [Google Scholar]
  70. Heithoff BP, George KK, Phares AN, Zuidhoek IA, Munoz-Ballester C, Robel S. 2021. Astrocytes are necessary for blood-brain barrier maintenance in the adult mouse brain. Glia 69:2436–72
    [Google Scholar]
  71. Heuser K, Eid T, Lauritzen F, Thoren AE, Vindedal GF et al. 2012. Loss of perivascular Kir4.1 potassium channels in the sclerotic hippocampus of patients with mesial temporal lobe epilepsy. J. Neuropathol. Exp. Neurol. 71:9814–25
    [Google Scholar]
  72. Hoddevik EH, Khan FH, Rahmani S, Ottersen OP, Boldt HB, Amiry-Moghaddam M. 2017. Factors determining the density of AQP4 water channel molecules at the brain-blood interface. Brain Struct. Funct. 222:41753–66
    [Google Scholar]
  73. Hoegg-Beiler MB, Sirisi S, Orozco IJ, Ferrer I, Hohensee S et al. 2014. Disrupting MLC1 and GlialCAM and ClC-2 interactions in leukodystrophy entails glial chloride channel dysfunction. Nat. Commun. 5:3475
    [Google Scholar]
  74. Hoshi A, Yamamoto T, Shimizu K, Ugawa Y, Nishizawa M et al. 2012. Characteristics of aquaporin expression surrounding senile plaques and cerebral amyloid angiopathy in Alzheimer disease. J. Neuropathol. Exp. Neurol. 71:8750–59
    [Google Scholar]
  75. Hösli L, Zuend M, Bredell G, Zanker HS, Porto de Oliveira CE et al. 2022. Direct vascular contact is a hallmark of cerebral astrocytes. Cell Rep. 39:1110599
    [Google Scholar]
  76. Iadecola C. 2017. The neurovascular unit coming of age: a journey through neurovascular coupling in health and disease. Neuron 96:117–42
    [Google Scholar]
  77. Iliff JJ, Wang M, Liao Y, Plogg BA, Peng W et al. 2012. A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid β. Sci. Transl. Med. 4:147147ra111
    [Google Scholar]
  78. Institoris Á, Rosenegger DG, Gordon GR. 2015. Arteriole dilation to synaptic activation that is sub-threshold to astrocyte endfoot Ca2+ transients. J. Cereb. Blood Flow Metab. 35:91411–15
    [Google Scholar]
  79. Janzer RC, Raff MC. 1987. Astrocytes induce blood-brain barrier properties in endothelial cells. Nature 325:6101253–57
    [Google Scholar]
  80. Jessen NA, Munk ASF, Lundgaard I, Nedergaard M. 2015. The glymphatic system: a beginner's guide. Neurochem. Res. 40:122583–99
    [Google Scholar]
  81. Johnson VE, Stewart JE, Begbie FD, Trojanowski JQ, Smith DH, Stewart W. 2013. Inflammation and white matter degeneration persist for years after a single traumatic brain injury. Brain J. Neurol. 136:Pt. 128–42
    [Google Scholar]
  82. Ju Y-ES, McLeland JS, Toedebusch CD, Xiong C, Fagan AM et al. 2013. Sleep quality and preclinical Alzheimer disease. JAMA Neurol. 70:5587–93
    [Google Scholar]
  83. Kacem K, Lacombe P, Seylaz J, Bonvento G. 1998. Structural organization of the perivascular astrocyte endfeet and their relationship with the endothelial glucose transporter: a confocal microscopy study. Glia 23:11–10
    [Google Scholar]
  84. Kim KJ, Iddings JA, Stern JE, Blanco VM, Croom D et al. 2015. Astrocyte contributions to flow/pressure-evoked parenchymal arteriole vasoconstriction. J. Neurosci. 35:218245–57
    [Google Scholar]
  85. Kim KJ, Ramiro Diaz J, Iddings JA, Filosa JA 2016. Vasculo-neuronal coupling: retrograde vascular communication to brain neurons. J. Neurosci. 36:5012624–39
    [Google Scholar]
  86. Kimbrough IF, Robel S, Roberson ED, Sontheimer H. 2015. Vascular amyloidosis impairs the gliovascular unit in a mouse model of Alzheimer's disease. Brain J. Neurol. 138:Pt. 123716–33
    [Google Scholar]
  87. Koide M, Bonev AD, Nelson MT, Wellman GC. 2012. Inversion of neurovascular coupling by subarachnoid blood depends on large-conductance Ca2+-activated K+ (BK) channels. PNAS 109:21E1387–95
    [Google Scholar]
  88. Koide M, Ferris HR, Nelson MT, Wellman GC. 2021. Impaired cerebral autoregulation after subarachnoid hemorrhage: a quantitative assessment using a mouse model. Front. Physiol. 12:688468
    [Google Scholar]
  89. Krainik A, Hund-Georgiadis M, Zysset S, von Cramon DY. 2005. Regional impairment of cerebrovascular reactivity and BOLD signal in adults after stroke. Stroke 36:61146–52
    [Google Scholar]
  90. Kress BT, Iliff JJ, Xia M, Wang M, Wei HS et al. 2014. Impairment of paravascular clearance pathways in the aging brain. Ann. Neurol. 76:6845–61
    [Google Scholar]
  91. Kubotera H, Ikeshima-Kataoka H, Hatashita Y, Allegra Mascaro AL, Pavone FS, Inoue T 2019. Astrocytic endfeet re-cover blood vessels after removal by laser ablation. Sci. Rep. 9:11263
    [Google Scholar]
  92. Kur J, Newman EA. 2014. Purinergic control of vascular tone in the retina. J. Physiol. 592:3491–504
    [Google Scholar]
  93. Landis DM, Reese TS. 1974. Arrays of particles in freeze-fractured astrocytic membranes. J. Cell Biol. 60:1316–20
    [Google Scholar]
  94. Leegwater PA, Yuan BQ, van der Steen J, Mulders J, Könst AA et al. 2001. Mutations of MLC1 (KIAA0027), encoding a putative membrane protein, cause megalencephalic leukoencephalopathy with subcortical cysts. Am. J. Hum. Genet. 68:4831–38
    [Google Scholar]
  95. Levine DA, Galecki AT, Langa KM, Unverzagt FW, Kabeto MU et al. 2015. Trajectory of cognitive decline after incident stroke. JAMA 314:141–51
    [Google Scholar]
  96. Li Z, McConnell HL, Stackhouse TL, Pike MM, Zhang W, Mishra A 2021. Increased 20-HETE signaling suppresses capillary neurovascular coupling after ischemic stroke in regions beyond the infarct. Front. Cell Neurosci 15:762843
    [Google Scholar]
  97. Lin WH, Hao Q, Rosengarten B, Leung WH, Wong KS. 2011. Impaired neurovascular coupling in ischaemic stroke patients with large or small vessel disease. Eur. J. Neurol. 18:5731–36
    [Google Scholar]
  98. Lind BL, Jessen SB, Lønstrup M, Joséphine C, Bonvento G, Lauritzen M. 2018. Fast Ca2+ responses in astrocyte end-feet and neurovascular coupling in mice. Glia 66:2348–58
    [Google Scholar]
  99. Liu Y, Li Y, Zhan M, Liu Y, Li Z et al. 2019. Astrocytic cytochrome P450 4A/20-hydroxyeicosatetraenoic acid contributes to angiogenesis in the experimental ischemic stroke. Brain Res. 1708:160–70
    [Google Scholar]
  100. Liu Z, Li Y, Cui Y, Roberts C, Lu M et al. 2014. Beneficial effects of gfap/vimentin reactive astrocytes for axonal remodeling and motor behavioral recovery in mice after stroke. Glia 62:122022–33
    [Google Scholar]
  101. López-Hernández T, Ridder MC, Montolio M, Capdevila-Nortes X, Polder E et al. 2011. Mutant GlialCAM causes megalencephalic leukoencephalopathy with subcortical cysts, benign familial macrocephaly, and macrocephaly with retardation and autism. Am. J. Hum. Genet. 88:4422–32
    [Google Scholar]
  102. Lunde LK, Camassa LMA, Hoddevik EH, Khan FH, Ottersen OP et al. 2015. Postnatal development of the molecular complex underlying astrocyte polarization. Brain Struct. Funct. 220:42087–101
    [Google Scholar]
  103. Ma S, Kwon HJ, Huang Z. 2012. A functional requirement for astroglia in promoting blood vessel development in the early postnatal brain. PLOS ONE 7:10e48001
    [Google Scholar]
  104. Major S, Petzold GC, Reiffurth C, Windmüller O, Foddis M et al. 2017. A role of the sodium pump in spreading ischemia in rats. J. Cereb. Blood Flow Metab. 37:51687–705
    [Google Scholar]
  105. Mapunda JA, Tibar H, Regragui W, Engelhardt B. 2022. How does the immune system enter the brain?. Front. Immunol. 13:805657
    [Google Scholar]
  106. Marín-Padilla M. 2012. The human brain intracerebral microvascular system: development and structure. Front. Neuroanat. 6:38
    [Google Scholar]
  107. Mathiisen TM, Lehre KP, Danbolt NC, Ottersen OP. 2010. The perivascular astroglial sheath provides a complete covering of the brain microvessels: an electron microscopic 3D reconstruction. Glia 58:91094–103
    [Google Scholar]
  108. Mestre H, Du T, Sweeney AM, Liu G, Samson AJ et al. 2020. Cerebrospinal fluid influx drives acute ischemic tissue swelling. Science 367:6483eaax7171
    [Google Scholar]
  109. Metea MR, Kofuji P, Newman EA. 2007. Neurovascular coupling is not mediated by potassium siphoning from glial cells. J. Neurosci. 27:102468–71
    [Google Scholar]
  110. Metea MR, Newman EA. 2006. Glial cells dilate and constrict blood vessels: a mechanism of neurovascular coupling. J. Neurosci. 26:112862–70
    [Google Scholar]
  111. Methner C, Cao Z, Mishra A, Kaul S 2021. Mechanism and potential treatment of the “no reflow” phenomenon after acute myocardial infarction: role of pericytes and GPR39. Am. J. Physiol. Heart Circ. Physiol 321:H1030–41
    [Google Scholar]
  112. Michinaga S, Koyama Y. 2019. Dual roles of astrocyte-derived factors in regulation of blood-brain barrier function after brain damage. Int. J. Mol. Sci. 20:3E571
    [Google Scholar]
  113. Mills WA, Woo AM, Jiang S, Martin J, Surendran D et al. 2022. Astrocyte plasticity in mice ensures continued endfoot coverage of cerebral blood vessels following injury and declines with age. Nat. Commun. 13:11794
    [Google Scholar]
  114. Mishra A, Reynolds JP, Chen Y, Gourine AV, Rusakov DA, Attwell D. 2016. Astrocytes mediate neurovascular signaling to capillary pericytes but not to arterioles. Nat. Neurosci. 19:121619–27
    [Google Scholar]
  115. Moore CI, Cao R. 2008. The hemo-neural hypothesis: on the role of blood flow in information processing. J. Neurophysiol. 99:52035–47
    [Google Scholar]
  116. Mugnaini E, Walberg F. 1965. The perivascular elements in the central nervous system. An electron microscopical study. Acta Neurol. Scand. Suppl. 13:Pt. 2629–36
    [Google Scholar]
  117. Mulligan SJ, MacVicar BA. 2004. Calcium transients in astrocyte endfeet cause cerebrovascular constrictions. Nature 431:7005195–99
    [Google Scholar]
  118. Nagai J, Yu X, Papouin T, Cheong E, Freeman MR et al. 2021. Behaviorally consequential astrocytic regulation of neural circuits. Neuron 109:4576–96
    [Google Scholar]
  119. Neely JD, Amiry-Moghaddam M, Ottersen OP, Froehner SC, Agre P, Adams ME. 2001. Syntrophin-dependent expression and localization of Aquaporin-4 water channel protein. PNAS 98:2414108–13
    [Google Scholar]
  120. Nizar K, Uhlirova H, Tian P, Saisan PA, Cheng Q et al. 2013. In vivo stimulus-induced vasodilation occurs without IP3 receptor activation and may precede astrocytic calcium increase. J. Neurosci. 33:198411–22
    [Google Scholar]
  121. Oberheim NA, Tian G-F, Han X, Peng W, Takano T et al. 2008. Loss of astrocytic domain organization in the epileptic brain. J. Neurosci. 28:133264–76
    [Google Scholar]
  122. Østergaard L, Engedal TS, Aamand R, Mikkelsen R, Iversen NK et al. 2014. Capillary transit time heterogeneity and flow-metabolism coupling after traumatic brain injury. J. Cereb. Blood Flow Metab. 34:101585–98
    [Google Scholar]
  123. O'Sullivan ML, Puñal VM, Kerstein PC, Brzezinski JA, Glaser T et al. 2017. Astrocytes follow ganglion cell axons to establish an angiogenic template during retinal development. Glia 65:101697–716
    [Google Scholar]
  124. Owasil R, O'Neill R, Keable A, Nimmo J, MacGregor Sharp M et al. 2020. The pattern of AQP4 expression in the ageing human brain and in cerebral amyloid angiopathy. Int. J. Mol. Sci. 21:4E1225
    [Google Scholar]
  125. Pappas AC, Koide M, Wellman GC. 2015. Astrocyte Ca2+ signaling drives inversion of neurovascular coupling after subarachnoid hemorrhage. J. Neurosci. 35:3913375–84
    [Google Scholar]
  126. Pappas AC, Koide M, Wellman GC. 2016. Purinergic signaling triggers endfoot high-amplitude Ca2+ signals and causes inversion of neurovascular coupling after subarachnoid hemorrhage. J. Cereb. Blood Flow Metab. 36:111901–12
    [Google Scholar]
  127. Paquette T, Piché M, Leblond H. 2021. Contribution of astrocytes to neurovascular coupling in the spinal cord of the rat. J. Physiol. Sci. 71:116
    [Google Scholar]
  128. Paulson OB, Newman EA. 1987. Does the release of potassium from astrocyte endfeet regulate cerebral blood flow?. Science 237:4817896–98
    [Google Scholar]
  129. Peng X, Carhuapoma JR, Bhardwaj A, Alkayed NJ, Falck JR et al. 2002. Suppression of cortical functional hyperemia to vibrissal stimulation in the rat by epoxygenase inhibitors. Am. J. Physiol. Heart Circ. Physiol. 283:5H2029–37
    [Google Scholar]
  130. Perez-Nievas BG, Serrano-Pozo A. 2018. Deciphering the astrocyte reaction in Alzheimer's disease. Front. Aging Neurosci. 10:114
    [Google Scholar]
  131. Procter TV, Williams A, Montagne A. 2021. Interplay between brain pericytes and endothelial cells in dementia. Am. J. Pathol. 191:111917–31
    [Google Scholar]
  132. Qin X, Wang J, Chen S, Liu G, Wu C et al. 2022. Astrocytic p75NTR expression provoked by ischemic stroke exacerbates the blood-brain barrier disruption. Glia 70:5892–912
    [Google Scholar]
  133. Rakers C, Petzold GC. 2017. Astrocytic calcium release mediates peri-infarct depolarizations in a rodent stroke model. J. Clin. Investig. 127:2511–16
    [Google Scholar]
  134. Ramón y Cajal S. 1895. Algunas conjeturas sobre el mecanismo anatómico de la ideación, asociación y atención. Rev. Med. Cir. Pract. 36:497–508
    [Google Scholar]
  135. Ramón y Cajal S. 1913. Sobre un nuevo proceder de impregnación de la neuroglia y sus resultados en los centros nerviosos del hombre y animales. Trab. Lab. Investig. Biol. Univ. Madrid 11:219–37
    [Google Scholar]
  136. Rash JE, Yasumura T, Hudson CS, Agre P, Nielsen S. 1998. Direct immunogold labeling of aquaporin-4 in square arrays of astrocyte and ependymocyte plasma membranes in rat brain and spinal cord. PNAS 95:2011981–86
    [Google Scholar]
  137. Rempe RG, Hartz AMS, Bauer B. 2016. Matrix metalloproteinases in the brain and blood-brain barrier: versatile breakers and makers. J. Cereb. Blood Flow Metab. 36:91481–507
    [Google Scholar]
  138. Ren Z, Iliff JJ, Yang L, Yang J, Chen X et al. 2013.. “ Hit & Run” model of closed-skull traumatic brain injury (TBI) reveals complex patterns of post-traumatic AQP4 dysregulation. J. Cereb. Blood Flow Metab. 33:6834–45
    [Google Scholar]
  139. Robel S. 2017. Astroglial scarring and seizures: a cell biological perspective on epilepsy. Neuroscientist 23:2152–68
    [Google Scholar]
  140. Rosenegger DG, Tran CHT, Wamsteeker Cusulin JI, Gordon GR. 2015. Tonic local brain blood flow control by astrocytes independent of phasic neurovascular coupling. J. Neurosci. 35:3913463–74
    [Google Scholar]
  141. Rouach N, Koulakoff A, Abudara V, Willecke K, Giaume C. 2008. Astroglial metabolic networks sustain hippocampal synaptic transmission. Science 322:59071551–55
    [Google Scholar]
  142. Rusnakova V, Honsa P, Dzamba D, Ståhlberg A, Kubista M, Anderova M. 2013. Heterogeneity of astrocytes: from development to injury—single cell gene expression. PLOS ONE 8:8e69734
    [Google Scholar]
  143. Salinet ASM, Robinson TG, Panerai RB. 2015. Effects of cerebral ischemia on human neurovascular coupling, CO2 reactivity, and dynamic cerebral autoregulation. J. Appl. Physiol. 118:2170–77
    [Google Scholar]
  144. Savva GM, Stephan BCM, Alzheimer's Soc. Vasc. Dement. Syst. Rev. Group. 2010. Epidemiological studies of the effect of stroke on incident dementia: a systematic review. Stroke 41:1e41–46
    [Google Scholar]
  145. Schachtrup C, Ryu JK, Helmrick MJ, Vagena E, Galanakis DK et al. 2010. Fibrinogen triggers astrocyte scar formation by promoting the availability of active TGF-β after vascular damage. J. Neurosci. 30:175843–54
    [Google Scholar]
  146. Schreiner B, Romanelli E, Liberski P, Ingold-Heppner B, Sobottka-Brillout B et al. 2015. Astrocyte depletion impairs redox homeostasis and triggers neuronal loss in the adult CNS. Cell Rep. 12:91377–84
    [Google Scholar]
  147. Schulz K, Sydekum E, Krueppel R, Engelbrecht CJ, Schlegel F et al. 2012. Simultaneous BOLD fMRI and fiber-optic calcium recording in rat neocortex. Nat. Methods 9:6597–602
    [Google Scholar]
  148. Seifert G, Hüttmann K, Binder DK, Hartmann C, Wyczynski A et al. 2009. Analysis of astroglial K+ channel expression in the developing hippocampus reveals a predominant role of the Kir4.1 subunit. J. Neurosci. 29:237474–88
    [Google Scholar]
  149. Shandra O, Winemiller AR, Heithoff BP, Munoz-Ballester C, George KK et al. 2019. Repetitive diffuse mild traumatic brain injury causes an atypical astrocyte response and spontaneous recurrent seizures. J. Neurosci. 39:101944–63
    [Google Scholar]
  150. Shivers RR, Arthur FE, Bowman PD. 1988. Induction of gap junctions and brain endothelium-like tight junctions in cultured bovine endothelial cells: local control of cell specialization. J. Submicrosc. Cytol. Pathol. 20:11–14
    [Google Scholar]
  151. Siddharthan V, Kim YV, Liu S, Kim KS. 2007. Human astrocytes/astrocyte-conditioned medium and shear stress enhance the barrier properties of human brain microvascular endothelial cells. Brain Res. 1147:39–50
    [Google Scholar]
  152. Simard M, Arcuino G, Takano T, Liu QS, Nedergaard M. 2003. Signaling at the gliovascular interface. J. Neurosci. 23:279254–62
    [Google Scholar]
  153. Simon MJ, Wang MX, Murchison CF, Roese NE, Boespflug EL et al. 2018. Transcriptional network analysis of human astrocytic endfoot genes reveals region-specific associations with dementia status and tau pathology. Sci. Rep. 8:112389
    [Google Scholar]
  154. Sinclair C, Kirk J, Herron B, Fitzgerald U, McQuaid S 2007. Absence of aquaporin-4 expression in lesions of neuromyelitis optica but increased expression in multiple sclerosis lesions and normal-appearing white matter. Acta Neuropathol. 113:2187–94
    [Google Scholar]
  155. Sofroniew MV. 2020. Astrocyte reactivity: subtypes, states, and functions in CNS innate immunity. Trends Immunol. 41:9758–70
    [Google Scholar]
  156. Stackhouse TL, Mishra A. 2021. Neurovascular coupling in development and disease: focus on astrocytes. Front. Cell Dev. Biol. 9:702832
    [Google Scholar]
  157. Stella N, Tencé M, Glowinski J, Prémont J. 1994. Glutamate-evoked release of arachidonic acid from mouse brain astrocytes. J. Neurosci. 14:2568–75
    [Google Scholar]
  158. Stokum JA, Shim B, Huang W, Kane M, Smith JA et al. 2021. A large portion of the astrocyte proteome is dedicated to perivascular endfeet, including critical components of the electron transport chain. J. Cereb. Blood Flow Metab. 41:102546–60
    [Google Scholar]
  159. Streeter GL. 1918. The developmental alterations in the vascular system of the brain of the human embryo. Contrib. Embryol. 8:5–38
    [Google Scholar]
  160. Sweeney MD, Zhao Z, Montagne A, Nelson AR, Zlokovic BV. 2019. Blood-brain barrier: from physiology to disease and back. Physiol. Rev. 99:121–78
    [Google Scholar]
  161. Szarka N, Pabbidi MR, Amrein K, Czeiter E, Berta G et al. 2018. Traumatic brain injury impairs myogenic constriction of cerebral arteries: role of mitochondria-derived H2O2 and TRPV4-dependent activation of BKca channels. J. Neurotrauma 35:7930–39
    [Google Scholar]
  162. Takano T, Tian G-F, Peng W, Lou N, Libionka W et al. 2006. Astrocyte-mediated control of cerebral blood flow. Nat. Neurosci. 9:2260–67
    [Google Scholar]
  163. Tao-Cheng JH, Nagy Z, Brightman MW. 1987. Tight junctions of brain endothelium in vitro are enhanced by astroglia. J. Neurosci. 7:103293–99
    [Google Scholar]
  164. Tata M, Ruhrberg C, Fantin A. 2015. Vascularisation of the central nervous system. Mech. Dev. 138:Pt. 126–36
    [Google Scholar]
  165. Teijido O, Martínez A, Pusch M, Zorzano A, Soriano E et al. 2004. Localization and functional analyses of the MLC1 protein involved in megalencephalic leukoencephalopathy with subcortical cysts. Hum. Mol. Genet. 13:212581–94
    [Google Scholar]
  166. Tien A-C, Tsai H-H, Molofsky AV, McMahon M, Foo LC et al. 2012. Regulated temporal-spatial astrocyte precursor cell proliferation involves BRAF signalling in mammalian spinal cord. Development 139:142477–87
    [Google Scholar]
  167. Toth P, Szarka N, Farkas E, Ezer E, Czeiter E et al. 2016. Traumatic brain injury-induced autoregulatory dysfunction and spreading depression-related neurovascular uncoupling: pathomechanisms, perspectives, and therapeutic implications. Am. J. Physiol. Heart Circ. Physiol. 311:5H1118–31
    [Google Scholar]
  168. Tran EH, Hoekstra K, van Rooijen N, Dijkstra CD, Owens T. 1998. Immune invasion of the central nervous system parenchyma and experimental allergic encephalomyelitis, but not leukocyte extravasation from blood, are prevented in macrophage-depleted mice. J. Immunol. 161:73767–75
    [Google Scholar]
  169. Tsai H-H, Li H, Fuentealba LC, Molofsky AV, Taveira-Marques R et al. 2012. Regional astrocyte allocation regulates CNS synaptogenesis and repair. Science 337:6092358–62
    [Google Scholar]
  170. Villalba N, Sackheim AM, Nunez IA, Hill-Eubanks DC, Nelson MT et al. 2017. Traumatic brain injury causes endothelial dysfunction in the systemic microcirculation through arginase-1-dependent uncoupling of endothelial nitric oxide synthase. J. Neurotrauma 34:1192–203
    [Google Scholar]
  171. Wälchli T, Mateos JM, Weinman O, Babic D, Regli L et al. 2015. Quantitative assessment of angiogenesis, perfused blood vessels and endothelial tip cells in the postnatal mouse brain. Nat. Protoc. 10:153–74
    [Google Scholar]
  172. Wang M-L, Li W-B. 2016. Cognitive impairment after traumatic brain injury: the role of MRI and possible pathological basis. J. Neurol. Sci. 370:244–50
    [Google Scholar]
  173. Wang MX, Ray L, Tanaka KF, Iliff JJ, Heys J. 2021. Varying perivascular astroglial endfoot dimensions along the vascular tree maintain perivascular-interstitial flux through the cortical mantle. Glia 69:3715–28
    [Google Scholar]
  174. Wang Y-F, Parpura V. 2018. Astroglial modulation of hydromineral balance and cerebral edema. Front. Mol. Neurosci. 11:204
    [Google Scholar]
  175. Wardlaw JM, Smith C, Dichgans M. 2019. Small vessel disease: mechanisms and clinical implications. Lancet Neurol. 18:7684–96
    [Google Scholar]
  176. Williamson MR, Fuertes CJA, Dunn AK, Drew MR, Jones TA. 2021. Reactive astrocytes facilitate vascular repair and remodeling after stroke. Cell Rep. 35:4109048
    [Google Scholar]
  177. Wolburg-Buchholz K, Mack AF, Steiner E, Pfeiffer F, Engelhardt B, Wolburg H. 2009. Loss of astrocyte polarity marks blood-brain barrier impairment during experimental autoimmune encephalomyelitis. Acta Neuropathol. 118:2219–33
    [Google Scholar]
  178. Xie L, Kang H, Xu Q, Chen MJ, Liao Y et al. 2013. Sleep drives metabolite clearance from the adult brain. Science 342:6156373–77
    [Google Scholar]
  179. Xu Z, Xiao N, Chen Y, Huang H, Marshall C et al. 2015. Deletion of aquaporin-4 in APP/PS1 mice exacerbates brain Aβ accumulation and memory deficits. Mol. Neurodegener. 10:58
    [Google Scholar]
  180. Yi X, Lin J, Wang C, Zhou Q. 2017. CYP genetic variants, CYP metabolite levels, and neurologic deterioration in acute ischemic stroke in Chinese population. J. Stroke Cerebrovasc. Dis. 26:5969–78
    [Google Scholar]
  181. Zamanian JL, Xu L, Foo LC, Nouri N, Zhou L et al. 2012. Genomic analysis of reactive astrogliosis. J. Neurosci. 32:186391–410
    [Google Scholar]
  182. Zeppenfeld DM, Simon M, Haswell JD, D'Abreo D, Murchison C et al. 2017. Association of perivascular localization of aquaporin-4 with cognition and Alzheimer disease in aging brains. JAMA Neurol. 74:191–99
    [Google Scholar]
  183. Zhang Q, Liu C, Shi R, Zhou S, Shan H et al. 2022. Blocking C3d+/GFAP+ A1 astrocyte conversion with semaglutide attenuates blood-brain barrier disruption in mice after ischemic stroke. Aging Dis. 13:3943–59
    [Google Scholar]
  184. Zhou M, Li R, Venkat P, Qian Y, Chopp M et al. 2022. Post-stroke administration of L-4F promotes neurovascular and white matter remodeling in type-2 diabetic stroke mice. Front. Neurol. 13:863934
    [Google Scholar]
  185. Zonta M, Angulo MC, Gobbo S, Rosengarten B, Hossmann K-A et al. 2003. Neuron-to-astrocyte signaling is central to the dynamic control of brain microcirculation. Nat. Neurosci. 6:143–50
    [Google Scholar]
/content/journals/10.1146/annurev-neuro-091922-031205
Loading
/content/journals/10.1146/annurev-neuro-091922-031205
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error