1932

Abstract

After 10 years of physics at the Large Hadron Collider (LHC), the particle physics landscape has greatly evolved. Today, a staged Future Circular Collider (FCC), consisting of a luminosity-frontier highest-energy electron–positron collider (FCC-ee) followed by an energy-frontier hadron collider (FCC-hh), promises the most far-reaching physics program for the post-LHC era. FCC-ee will be a precision instrument used to study the , , Higgs, and top particles, and will offer unprecedented sensitivity to signs of new physics. Most of the FCC-ee infrastructure could be reused for FCC-hh, which will provide proton–proton collisions at a center-of-mass energy of 100 TeV and could directly produce new particles with masses of up to several tens of TeV. This collider will also measure the Higgs self-coupling and explore the dynamics of electroweak symmetry breaking. Thermal dark matter candidates will be either discovered or conclusively ruled out by FCC-hh. Heavy-ion and electron–proton collisions (FCC-eh) will further contribute to the breadth of the overall FCC program. The integrated FCC infrastructure will serve the particle physics community through the end of the twenty-first century. This review combines key contents from the first three volumes of the FCC .

Loading

Article metrics loading...

/content/journals/10.1146/annurev-nucl-101918-023748
2019-10-19
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/nucl/69/1/annurev-nucl-101918-023748.html?itemId=/content/journals/10.1146/annurev-nucl-101918-023748&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Mangano M et al. Future Circular Collider: Conceptual Design Report 1: Physics Opportunities. Report CERN-ACC-2018-0056, CERN, Geneva 2018.
  2. 2. 
    Benedikt M et al. Future Circular Collider: Conceptual Design Report 2: The Lepton Collider (FCC-ee). Report CERN-ACC-2018-0057, CERN, Geneva 2018.
  3. 3. 
    Benedikt M et al. Future Circular Collider: Conceptual Design Report 3: The Hadron Collider (FCC-hh). Report CERN-ACC-2018-0058, CERN, Geneva 2018.
  4. 4. 
    Cepeda M et al. Higgs Physics at the HL-LHC and HE-LHC Report CERN-LPCC-2018-04, CERN, Geneva 2018.
  5. 5. 
    Abe T et al. arXiv:1011.0352 [physics.ins-det] 2010.
  6. 6. 
    Oide K Phys. Rev. Accel. Beams 19:111005 2016.
  7. 7. 
    Richter B Nucl. Instrum. Methods A 136:47 1976.
  8. 8. 
    Raimondi P, Shatilov D, Zobov M arXiv:physics/0702033 2007.
  9. 9. 
    Raimondi P, Shatilov D, Zobov MProceedings of the 2007 IEEE Particle Accelerator Conference (PAC07), p. 1469 Piscataway, NJ: IEEE 2007.
  10. 10. 
    Boscolo M, Burkhardt H, Sullivan M Phys. Rev. Accel. Beams 20:011008 2017.
  11. 11. 
    Aiba M Nucl. Instrum. Methods A 880:98 2018.
  12. 12. 
    Behnke T et al. arXiv:1306.6327 [physics] 2013.
  13. 13. 
    Linear Collid. Board Conclusions on the 250 GeV ILC as a Higgs factory proposed by the Japanese HEP community Report, Linear Collid. Board/Int. Comm. Future Accel., Fermi Natl. Accel. Lab., Batavia, IL. http://icfa.fnal.gov/wp-content/uploads/LCB-Short-Conclusion-Nov2017.pdf 2017.
  14. 14. 
    Fujii K et al. arXiv:1710.07621 [hep-ex] 2017.
  15. 15. 
    Aicheler M et al. A multi-TeV linear collider based on CLIC technology Yellow rep. CERN-2012-007, CERN, Geneva 2012.
  16. 16. 
    Boland MJ et al. Updated baseline for a staged Compact Linear Collider arXiv:1608.07537 [physics] 2016.
  17. 17. 
    CEPC-SPPC Study Group CEPC-SPPC Preliminary Conceptual Design Report 2: Accelerator. Report IHEP-CEPC-DR-2015-01, Inst. High Energy Phys., Beijing 2015.
  18. 18. 
    CEPC-SPPS Study Group CEPC-SPPC Preliminary Conceptual Design Report 1: Physics and Detector. Report IHEP-CEPC-DR-2015-01, Inst. High Energy Phys., Beijing 2015.
  19. 19. 
    CEPC Study Group arXiv:1809.00285 [physics] 2018.
  20. 20. 
    Blondel A et al. arXiv:1208.0504 [physics] 2011.
  21. 21. 
    TLEP Des. Study Work. Group J. High Energy Phys. 01:164 2014.
  22. 22. 
    Gianfelice E Phys. Rev. Accel. Beams 19:101005 2016.
  23. 23. 
    Koratzinos M, Blondel A, Gianfelice-Wendt E, Zimmermann F arXiv:1506.00933 [physics] 2015.
  24. 24. 
    Tkaczuk J, Millet F, Duval J-M, Rousset B Phys. Rev. Accel. Beams 20:041001 2017.
  25. 25. 
    Karpov I, Calaga R, Shaposhnikova E Phys. Rev. Accel. Beams 21:071001 2018.
  26. 26. 
    Apollonio A et al. FCC-ee operation model, availability, and performance Paper presented at ICFA Advanced Beam Dynamics Workshop (eeFACT2018), 62nd, Hong Kong, Sept. 24–27 2018.
  27. 27. 
    Migliorati M, Belli E, Zobov M Phys. Rev. Accel. Beams 21:041001 2018.
  28. 28. 
    Belli E Phys. Rev. Accel. Beams 21:111002 2018.
  29. 29. 
    Baikov AY, Marrelli C, Syratchev I IEEE Trans. Electron Devices 62:3406 2015.
  30. 30. 
    Milanese A Phys. Rev. Accel. Beams 19:112401 2016.
  31. 31. 
    Schaumann M Phys. Rev. Accel. Beams 18:091002 2015.
  32. 32. 
    Mentink M Phys. Rev. Accel. Beams 19:111001 2016.
  33. 33. 
    Salmi T Phys. Rev. Accel. Beams 20:032401 2017.
  34. 34. 
    Benedikt M, Schulte D, Zimmermann F Phys. Rev. Accel. Beams 18:101002 2015.
  35. 35. 
    Niemi A Phys. Rev. Accel. Beams 19:121003 2016.
  36. 36. 
    Besana MI Phys. Rev. Accel. Beams 19:111004 2016.
  37. 37. 
    Tahir NA Phys. Rev. Accel. Beams 19:081002 2016.
  38. 38. 
    Bartmann W Phys. Rev. Accel. Beams 20:031001 2017.
  39. 39. 
    Barna D Phys. Rev. Accel. Beams 20:041002 2017.
/content/journals/10.1146/annurev-nucl-101918-023748
Loading
/content/journals/10.1146/annurev-nucl-101918-023748
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error