1932

Abstract

Current evidence suggests lutein and its isomers play important roles in ocular development in utero and throughout the life span, in vision performance in young and later adulthood, and in lowering risk for the development of common age-related eye diseases in older age. These xanthophyll (oxygen-containing) carotenoids are found in a wide variety of vegetables and fruits, and they are present in especially high concentrations in leafy green vegetables. Additionally, egg yolks and human milk appear to be bioavailable sources. The prevalence of lutein, zeaxanthin, and meso-zeaxanthin in supplements is increasing. Setting optimal and safe ranges of intake requires additional research, particularly in pregnant and lactating women. Accumulating evidence about variable interindividual response to dietary intake of these carotenoids, based on genetic or metabolic influences, suggests that there may be subgroups that benefit from higher levels of intake and/or alternate strategies to improve lutein and zeaxanthin status.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-nutr-071715-051110
2016-07-17
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/nutr/36/1/annurev-nutr-071715-051110.html?itemId=/content/journals/10.1146/annurev-nutr-071715-051110&mimeType=html&fmt=ahah

Literature Cited

  1. 1. Age-Related Eye Disease Study Investig. 2013. Lutein + zeaxanthin and omega-3 fatty acids for age-related macular degeneration: the Age-Related Eye Disease Study 2 (AREDS2) randomized clinical trial. JAMA 309:2005–15 [Google Scholar]
  2. Akuffo KO, Nolan JM, Howard AN, Moran R, Stack J. 2.  et al. 2015. Sustained supplementation and monitored response with differing carotenoid formulations in early age-related macular degeneration. Eye (Lond.) 29:902–12 [Google Scholar]
  3. Aleman TS, Cideciyan AV, Windsor EA, Schwartz SB, Swider M. 3.  et al. 2007. Macular pigment and lutein supplementation in ABCA4-associated retinal degenerations. Investig. Ophthalmol. Vis. Sci. 48:1319–29 [Google Scholar]
  4. Aleman TS, Duncan JL, Bieber ML, de Castro E, Marks DA. 4.  et al. 2001. Macular pigment and lutein supplementation in retinitis pigmentosa and Usher syndrome. Investig. Ophthalmol. Vis. Sci. 42:1873–81 [Google Scholar]
  5. Amengual J, Lobo GP, Golczak M, Li HN, Klimova T. 5.  et al. 2011. A mitochondrial enzyme degrades carotenoids and protects against oxidative stress. FASEB J. 25:948–59 [Google Scholar]
  6. Arnal E, Miranda M, Almansa I, Muriach M, Barcia JM. 6.  et al. 2009. Lutein prevents cataract development and progression in diabetic rats. Graefes Arch. Clin. Exp. Ophthalmol. 247:115–20 [Google Scholar]
  7. Babino D, Palczewski G, Widjaja-Adhi MA, Kiser PD, Golczak M, von Lintig J. 7.  2015. Characterization of the role of beta-carotene 9,10-dioxygenase in macular pigment metabolism. J. Biol. Chem. 290:24844–57 [Google Scholar]
  8. Bahrami H, Melia M, Dagnelie G. 8.  2006. Lutein supplementation in retinitis pigmentosa: PC-based vision assessment in a randomized double-masked placebo-controlled clinical trial [NCT00029289]. BMC Ophthalmol. 6:23 [Google Scholar]
  9. Bailey RL, Gahche JJ, Miller PE, Thomas PR, Dwyer JT. 9.  2013. Why US adults use dietary supplements. JAMA Intern. Med. 173:355–61 [Google Scholar]
  10. Barker FM 2nd, Snodderly DM, Johnson EJ, Schalch W, Koepcke W. 10.  et al. 2011. Nutritional manipulation of primate retinas, V: effects of lutein, zeaxanthin, and n-3 fatty acids on retinal sensitivity to blue-light-induced damage. Investig. Ophthalmol. Vis. Sci. 52:3934–42 [Google Scholar]
  11. Bartlett HE, Eperjesi F. 11.  2008. A randomised controlled trial investigating the effect of lutein and antioxidant dietary supplementation on visual function in healthy eyes. Clin. Nutr. 27:218–27 [Google Scholar]
  12. Beatty S, Chakravarthy U, Nolan JM, Muldrew KA, Woodside JV. 12.  et al. 2013. Secondary outcomes in a clinical trial of carotenoids with coantioxidants versus placebo in early age-related macular degeneration. Ophthalmology 120:600–6 [Google Scholar]
  13. Beatty S, Murray IJ, Henson DB, Carden D, Koh H, Boulton ME. 13.  2001. Macular pigment and risk for age-related macular degeneration in subjects from a Northern European population. Investig. Ophthalmol. Vis. Sci. 42:439–46 [Google Scholar]
  14. Beirne RO. 14.  2013. The macular pigment optical density spatial profile and increasing age. Graefes Arch. Clin. Exp. Ophthalmol. 252:383–88 [Google Scholar]
  15. Berendschot TT, Goldbohm RA, Klopping WA, Van de Kraats J, Van Norel J, Van Norren D. 15.  2000. Influence of lutein supplementation on macular pigment, assessed with two objective techniques. Investig. Ophthalmol. Vis. Sci. 41:3322–26 [Google Scholar]
  16. Berendschot TTJM, Tian Y, Murray I, Makridaki M. 16.  2013. Lutein supplementation leads to a decreased level of circulating complement factors. Investig. Ophthalmol. Vis. Sci. 54:4124 (Abstr.) [Google Scholar]
  17. Berendschot TT, Willemse-Assink JJ, Bastiaanse M, de Jong PT, van Norren D. 17.  2002. Macular pigment and melanin in age-related maculopathy in a general population. Investig. Ophthalmol. Vis. Sci. 43:1928–32 [Google Scholar]
  18. Bernstein P, Li B, Vachali P, Goruspudi A, Shyam R. 18.  et al. 2016. Lutein, zeaxanthin, and meso-zeaxanthin: the basic and clinical science underlying carotenoid-based nutritional interventions against ocular disease. Prog. Retin. Eye Res. 50:34–66 [Google Scholar]
  19. Bernstein PS, Khachik F, Carvalho LS, Muir GJ, Zhao DY, Katz NB. 19.  2001. Identification and quantitation of carotenoids and their metabolites in the tissues of the human eye. Exp. Eye Res. 72:215–23 [Google Scholar]
  20. Bernstein PS, Sharifzadeh M, Liu A, Ermakov I, Nelson K. 20.  et al. 2013. Blue-light reflectance imaging of macular pigment in infants and children. Investig. Ophthalmol. Vis. Sci. 54:4034–40 [Google Scholar]
  21. Bernstein PS, Zhao DY, Wintch SW, Ermakov IV, McClane RW, Gellermann W. 21.  2002. Resonance Raman measurement of macular carotenoids in normal subjects and in age-related macular degeneration patients. Ophthalmology 109:1780–87 [Google Scholar]
  22. Bettler J, Zimmer JP, Neuringer M, DeRusso PA. 22.  2010. Serum lutein concentrations in healthy term infants fed human milk or infant formula with lutein. Eur. J. Nutr. 49:45–51 [Google Scholar]
  23. Bhatti MT. 23.  2006. Retinitis pigmentosa, pigmentary retinopathies, and neurologic diseases. Curr. Neurol. Neurosci. Rep. 6:403–13 [Google Scholar]
  24. Bian Q, Gao S, Zhou J, Qin J, Taylor A. 24.  et al. 2012. Lutein and zeaxanthin supplementation reduces photooxidative damage and modulates the expression of inflammation-related genes in retinal pigment epithelial cells. Free Radic. Biol. Med. 53:1298–307 [Google Scholar]
  25. Bian Q, Qin T, Ren Z, Wu D, Shang F. 25.  2012. Lutein or zeaxanthin supplementation suppresses inflammatory responses in retinal pigment epithelial cells and macrophages. Adv. Exp. Med. Biol. 723:43–50 [Google Scholar]
  26. Bone RA, Brener B, Gibert JC. 26.  2007. Macular pigment, photopigments, and melanin: distributions in young subjects determined by four-wavelength reflectometry. Vis. Res. 47:3259–68 [Google Scholar]
  27. Bone RA, Landrum JT. 27.  1984. Macular pigment in Henle fiber membranes: a model for Haidinger's brushes. Vis. Res. 24:103–8 [Google Scholar]
  28. Bone RA, Landrum JT, Cao Y, Howard AN, Alvarez-Calderon F. 28.  2007. Macular pigment response to a supplement containing meso-zeaxanthin, lutein and zeaxanthin. Nutr. Metab. (Lond.) 4:12 [Google Scholar]
  29. Bone RA, Landrum JT, Dixon Z, Chen Y, Llerena CM. 29.  2000. Lutein and zeaxanthin in the eyes, serum and diet of human subjects. Exp. Eye Res. 71:239–45 [Google Scholar]
  30. Bone RA, Landrum JT, Fernandez L, Tarsis SL. 30.  1988. Analysis of the macular pigment by HPLC: retinal distribution and age study. Investig. Ophthalmol. Vis. Sci. 29:843–49 [Google Scholar]
  31. Bone RA, Landrum JT, Friedes LM, Gomez CM, Kilburn MD. 31.  et al. 1997. Distribution of lutein and zeaxanthin stereoisomers in the human retina. Exp. Eye Res. 64:211–18 [Google Scholar]
  32. Bone RA, Landrum JT, Guerra LH, Ruiz CA. 32.  2003. Lutein and zeaxanthin dietary supplements raise macular pigment density and serum concentrations of these carotenoids in humans. J. Nutr. 133:992–98 [Google Scholar]
  33. Bone RA, Landrum JT, Hime GW, Cains A, Zamor J. 33.  1993. Stereochemistry of the human macular carotenoids. Investig. Ophthalmol. Vis. Sci. 34:2033–40 [Google Scholar]
  34. Bone RA, Landrum JT, Mayne ST, Gomez CM, Tibor SE, Twaroska EE. 34.  2001. Macular pigment in donor eyes with and without AMD: a case-control study. Investig. Ophthalmol. Vis. Sci. 42:235–40 [Google Scholar]
  35. Borel P. 35.  2012. Genetic variations involved in interindividual variability in carotenoid status. Mol. Nutr. Food Res. 56:228–40 [Google Scholar]
  36. Borel P, Desmarchelier C, Nowicki M, Bott R, Morange S, Lesavre N. 36.  2014. Interindividual variability of lutein bioavailability in healthy men: characterization, genetic variants involved, and relation with fasting plasma lutein concentration. Am. J. Clin. Nutr. 100:168–75 [Google Scholar]
  37. Bovier ER, Renzi LM, Hammond BR. 37.  2014. A double-blind, placebo-controlled study on the effects of lutein and zeaxanthin on neural processing speed and efficiency. PLOS ONE 9:e108178 [Google Scholar]
  38. Brown MJ, Ferruzzi MG, Nguyen ML, Cooper DA, Eldridge AL. 38.  et al. 2004. Carotenoid bioavailability is higher from salads ingested with full-fat than with fat-reduced salad dressings as measured with electrochemical detection. Am. J. Clin. Nutr. 80:396–403 [Google Scholar]
  39. Canfield LM, Clandinin MT, Davies DP, Fernandez MC, Jackson J. 39.  et al. 2003. Multinational study of major breast milk carotenoids of healthy mothers. Eur. J. Nutr. 42:133–41 [Google Scholar]
  40. 40. Cent. Dis. Control Prev 2012. Second national report on biochemical indicators of diet and nutrition in the U.S. population 2012. Atlanta, GA: Natl. Cent. Environ. Health. http://www.cdc.gov/nutritionreport
  41. Chew EY, Clemons TE, Sangiovanni JP, Danis RP, Ferris FL 3rd. 41.  et al. 2013. Secondary analyses of the effects of lutein/zeaxanthin on age-related macular degeneration progression: AREDS2 Report No. 3. JAMA Ophthalmol. 132:142–49 [Google Scholar]
  42. Chitchumroonchokchai C, Bomser JA, Glamm JE, Failla ML. 42.  2004. Xanthophylls and alpha-tocopherol decrease UVB-induced lipid peroxidation and stress signaling in human lens epithelial cells. J. Nutr. 134:3225–32 [Google Scholar]
  43. Chous AP, Richer SP, Gerson JD, Kowluru RA. 43.  2016. The Diabetes Visual Function Supplement Study (DiVFuSS). Br. J. Ophthalmol. 100:227–34 [Google Scholar]
  44. Chug-Ahuja JK, Holden JM, Forman MR, Mangels AR, Beecher GR, Lanza E. 44.  1993. The development and application of a carotenoid database for fruits, vegetables, and selected multicomponent foods. J. Am. Diet. Assoc. 93:318–23 [Google Scholar]
  45. Chung HY, Rasmussen HM, Johnson EJ. 45.  2004. Lutein bioavailability is higher from lutein-enriched eggs than from supplements and spinach in men. J. Nutr. 134:1887–93 [Google Scholar]
  46. Coleman AL, Stone KL, Kodjebacheva G, Yu F, Pedula KL. 46.  et al. 2008. Glaucoma risk and the consumption of fruits and vegetables among older women in the study of osteoporotic fractures. Am. J. Ophthalmol. 145:1081–89 [Google Scholar]
  47. Congdon N, O'Colmain B, Klaver CC, Klein R, Munoz B. 47.  et al. 2004. Causes and prevalence of visual impairment among adults in the United States. Arch. Ophthalmol. 122:477–85 [Google Scholar]
  48. Craft NE, Haitema TB, Garnett KM, Fitch KA, Dorey CK. 48.  2004. Carotenoid, tocopherol, and retinol concentrations in elderly human brain. J. Nutr. Health Aging 8:156–62 [Google Scholar]
  49. Dawczynski J, Jentsch S, Schweitzer D, Hammer M, Lang GE, Strobel J. 49.  2013. Long term effects of lutein, zeaxanthin and omega-3-LCPUFAs supplementation on optical density of macular pigment in AMD patients: the LUTEGA study. Graefes Arch. Clin. Exp. Ophthalmol. 251:2711–23 [Google Scholar]
  50. Dickinson A, Blatman J, El-Dash N, Franco JC. 50.  2014. Consumer usage and reasons for using dietary supplements: report of a series of surveys. J. Am. Coll. Nutr. 33:176–82 [Google Scholar]
  51. Dietzel M, Zeimer M, Heimes B, Claes B, Pauleikhoff D, Hense HW. 51.  2011. Determinants of macular pigment optical density and its relation to age-related maculopathy: results from the Muenster Aging and Retina Study (MARS). Investig. Ophthalmol. Vis. Sci. 52:3452–57 [Google Scholar]
  52. Duncan DD, Munoz B, West SK. 52.  2002. Assessment of ocular exposure to visible light for population studies. Dev. Ophthalmol. 35:76–92 [Google Scholar]
  53. Ekici F, Loh R, Waisbourd M, Sun Y, Martinez P. 53.  et al. 2015. Relationships between measures of the ability to perform vision-related activities, vision-related quality of life, and clinical findings in patients with glaucoma. JAMA Ophthalmol. 133:1377–85 [Google Scholar]
  54. Ferrucci L, Perry JR, Matteini A, Perola M, Tanaka T. 54.  et al. 2009. Common variation in the beta-carotene 15,15′-monooxygenase 1 gene affects circulating levels of carotenoids: a genome-wide association study. Am. J. Hum. Genet. 84:123–33 [Google Scholar]
  55. Friedman DS, O'Colmain BJ, Munoz B, Tomany SC, McCarty C. 55.  et al. 2004. Prevalence of age-related macular degeneration in the United States. Arch. Ophthalmol. 122:564–72 [Google Scholar]
  56. Gao S, Qin T, Liu Z, Caceres MA, Ronchi CF. 56.  et al. 2011. Lutein and zeaxanthin supplementation reduces H2O2-induced oxidative damage in human lens epithelial cells. Mol. Vis. 17:3180–90 [Google Scholar]
  57. Garcia-Medina JJ, Pinazo-Duran MD, Garcia-Medina M, Zanon-Moreno V, Pons-Vazquez S. 57.  2011. A 5-year follow-up of antioxidant supplementation in type 2 diabetic retinopathy. Eur. J. Ophthalmol. 21:637–43 [Google Scholar]
  58. Giaconi JA, Yu F, Stone KL, Pedula KL, Ensrud KE. 58.  et al. 2012. The association of consumption of fruits/vegetables with decreased risk of glaucoma among older African-American women in the study of osteoporotic fractures. Am. J. Ophthalmol. 154:635–44 [Google Scholar]
  59. Glaser TS, Doss LE, Shih G, Nigam D, Sperduto RD. 59.  et al. 2015. The association of dietary lutein plus zeaxanthin and B vitamins with cataracts in the Age-Related Eye Disease Study: AREDS Report No. 37. Ophthalmology 122:1471–79 [Google Scholar]
  60. Goltz SR, Ferruzzi MG. 60.  2013. Carotenoid bioavailability: influence of dietary lipid and fiber. Carotenoids and Human Health S Tanumihardjo 111–28 New York: Humana [Google Scholar]
  61. Gong X, Rubin LP. 61.  2015. Role of macular xanthophylls in prevention of common neovascular retinopathies: retinopathy of prematurity and diabetic retinopathy. Arch. Biochem. Biophys. 572:40–48 [Google Scholar]
  62. Grover AK, Samson SE. 62.  2014. Antioxidants and vision health: facts and fiction. Mol. Cell. Biochem. 388:173–83 [Google Scholar]
  63. Gruber M, Chappell R, Millen A, LaRowe T, Moeller SM. 63.  et al. 2004. Correlates of serum lutein +zeaxanthin: findings from the Third National Health and Nutrition Examination Survey. J. Nutr. 134:2387–94 [Google Scholar]
  64. Hammond BR Jr.. 64.  2008. Possible role for dietary lutein and zeaxanthin in visual development. Nutr. Rev. 66:695–702 [Google Scholar]
  65. Hammond BR Jr, Elliott J. 65.  2013. Multiple influences of xanthophylls within the visual system. See Ref. 98, pp 147–70
  66. Hammond BR Jr, Fletcher LM, Elliott JG. 66.  2013. Glare disability, photostress recovery, and chromatic contrast: relation to macular pigment and serum lutein and zeaxanthin. Investig. Ophthalmol. Vis. Sci. 54:476–81 [Google Scholar]
  67. Hammond BR Jr, Fletcher LM, Roos F, Wittwer J, Schalch W. 67.  2014. A double-blind, placebo-controlled study on the effects of lutein and zeaxanthin on photostress recovery, glare disability, and chromatic contrast. Investig. Ophthalmol. Vis. Sci. 55:8583–89 [Google Scholar]
  68. Hammond BR Jr, Johnson EJ, Russell RM, Krinsky NI, Yeum KJ. 68.  et al. 1997. Dietary modification of human macular pigment density. Investig. Ophthalmol. Vis. Sci. 38:1795–801 [Google Scholar]
  69. Hammond BR Jr, Wooten BR. 69.  2005. CFF thresholds: relation to macular pigment optical density. Ophthalmic Physiol. Opt. 25:315–19 [Google Scholar]
  70. Hammond BR Jr, Wooten BR, Snodderly DM. 70.  1997. Individual variations in the spatial profile of human macular pigment. J. Opt. Soc. Am. A Opt. Image Sci. Vis. 14:1187–96 [Google Scholar]
  71. Hammond CJ, Liew SM, Van Kuijk FJ, Beatty S, Nolan JM. 71.  et al. 2012. The heritability of macular response to supplemental lutein and zeaxanthin: a classical twin study. Investig. Ophthalmol. Vis. Sci. 53:4963–68 [Google Scholar]
  72. Henriksen BS, Chan G, Hoffman RO, Sharifzadeh M, Ermakov IV. 72.  et al. 2013. Interrelationships between maternal carotenoid status and newborn infant macular pigment optical density and carotenoid status. Investig. Ophthalmol. Vis. Sci. 54:5568–78 [Google Scholar]
  73. Herron KL, McGrane MM, Waters D, Lofgren IE, Clark RM. 73.  et al. 2006. The ABCG5 polymorphism contributes to individual responses to dietary cholesterol and carotenoids in eggs. J. Nutr. 136:1161–65 [Google Scholar]
  74. Hessel S, Eichinger A, Isken A, Amengual J, Hunzelmann S. 74.  et al. 2007. CMO1 deficiency abolishes vitamin A production from beta-carotene and alters lipid metabolism in mice. J. Biol. Chem. 282:33553–61 [Google Scholar]
  75. Ho L, van Leeuwen R, Witteman JC, Van Duijn CM, Uitterlinden AG. 75.  et al. 2011. Reducing the genetic risk of age-related macular degeneration with dietary antioxidants, zinc, and omega-3 fatty acids: the Rotterdam Study. Arch. Ophthalmol. 129:758–66 [Google Scholar]
  76. Hollyfield JG. 76.  2010. Age-related macular degeneration: the molecular link between oxidative damage, tissue-specific inflammation and outer retinal disease: the Proctor Lecture. Investig. Ophthalmol. Vis. Sci. 51:1275–81 [Google Scholar]
  77. Hu BJ, Hu YN, Lin S, Ma WJ, Li XR. 77.  2011. Application of lutein and zeaxanthin in nonproliferative diabetic retinopathy. Int. J. Ophthalmol. 4:303–6 [Google Scholar]
  78. Huang YM, Dou HL, Huang FF, Xu XR, Zou ZY, Lin XM. 78.  2015. Effect of supplemental lutein and zeaxanthin on serum, macular pigmentation, and visual performance in patients with early age-related macular degeneration. BioMed. Res. Int. 2015:564738 [Google Scholar]
  79. Iakovleva M, Panova I, Fel'dman T, Zak P, Tatikolov A. 79.  et al. 2007. Detection of carotenoids in the vitreous body of the human eye during prenatal development. Ontogenez 38:380–85 [Google Scholar]
  80. Izumi-Nagai K, Nagai N, Ohgami K, Satofuka S, Ozawa Y. 80.  et al. 2007. Macular pigment lutein is antiinflammatory in preventing choroidal neovascularization. Arterioscler. Thromb. Vasc. Biol. 27:2555–62 [Google Scholar]
  81. Jacques PF, Chylack LT Jr, Hankinson SE, Khu PM, Rogers G. 81.  et al. 2001. Long-term nutrient intake and early age-related nuclear lens opacities. Arch. Ophthalmol. 119:1009–19 [Google Scholar]
  82. Jahn C, Wustemeyer H, Brinkmann C, Trautmann S, Moosner A, Wolf S. 82.  2005. Macular pigment density in age-related maculopathy. Graefe's Arch. Clin. Exp. Ophthalmol. 243:222–27 [Google Scholar]
  83. Johnson EJ. 83.  2014. Role of lutein and zeaxanthin in visual and cognitive function throughout the lifespan. Nutr. Rev. 72:605–12 [Google Scholar]
  84. Johnson EJ, Hammond BR, Yeum KJ, Qin J, Wang XD. 84.  et al. 2000. Relation among serum and tissue concentrations of lutein and zeaxanthin and macular pigment density. Am. J. Clin. Nutr. 71:1555–62 [Google Scholar]
  85. Kang JH, Pasquale LR, Willett W, Rosner B, Egan KM. 85.  et al. 2003. Antioxidant intake and primary open-angle glaucoma: a prospective study. Am. J. Epidemiol. 158:337–46 [Google Scholar]
  86. Kanis MJ, Berendschot TT, Van Norren D. 86.  2007. Influence of macular pigment and melanin on incident early AMD in a white population. Graefes Arch. Clin. Exp. Ophthalmol. 245:767–73 [Google Scholar]
  87. Kelly ER, Plat J, Haenen GR, Kijlstra A, Berendschot TT. 87.  2014. The effect of modified eggs and an egg-yolk based beverage on serum lutein and zeaxanthin concentrations and macular pigment optical density: results from a randomized trial. PLOS ONE 9:e92659 [Google Scholar]
  88. Koh HH, Murray IJ, Nolan D, Carden D, Feather J, Beatty S. 88.  2004. Plasma and macular responses to lutein supplement in subjects with and without age-related maculopathy: a pilot study. Exp. Eye Res. 79:21–27 [Google Scholar]
  89. Koo E, Neuringer M, SanGiovanni JP. 89.  2014. Macular xanthophylls, lipoprotein-related genes, and age-related macular degeneration. Am. J. Clin. Nutr. 100:Suppl. 1336–46S [Google Scholar]
  90. Kowluru RA, Menon B, Gierhart DL. 90.  2008. Beneficial effect of zeaxanthin on retinal metabolic abnormalities in diabetic rats. Investig. Ophthalmol. Vis. Sci. 49:1645–51 [Google Scholar]
  91. Krinsky NI, Johnson EJ. 91.  2005. Carotenoid actions and their relation to health and disease. Mol. Aspects Med. 26:459–516 [Google Scholar]
  92. Krinsky NI, Landrum JT, Bone RA. 92.  2003. Biologic mechanisms of the protective role of lutein and zeaxanthin in the eye. Annu. Rev. Nutr. 23:171–201 [Google Scholar]
  93. Kupfer C. 93.  1985. Bowman lecture. The conquest of cataract: a global challenge. Trans. Ophthalmol. Soc. UK 104:Part 11–10 [Google Scholar]
  94. Kvansakul J, Rodriguez-Carmona M, Edgar D, Barker F, Kopcke W. 94.  et al. 2006. Supplementation with the carotenoids lutein or zeaxanthin improves human visual performance. Ophthalmic Physiol. Opt. 26:362–71 [Google Scholar]
  95. Landrum JT, Bone RA. 95.  2004. Mechanistic evidence for eye diseases and carotenoids. Carotenoids in Health and Disease NI Krinsky, ST Mayne, H Sies 445–72 New York: Marcel Dekker [Google Scholar]
  96. Landrum JT, Bone RA, Joa H, Kilburn MD, Moore LL, Sprague KE. 96.  1997. A one year study of the macular pigment: the effect of 140 days of a lutein supplement. Exp. Eye Res. 65:57–62 [Google Scholar]
  97. Landrum JT, Bone RA, Neuringer M, Cao Y. 97.  2013. Macular pigment from discovery to function. See Ref. 98 1–22
  98. Landrum JT, Nolan JM. 98.  2013. Carotenoids and Retinal Disease Boca Raton, FL: CRC
  99. LaRowe TL, Mares JA, Snodderly DM, Klein ML, Wooten BR, Chappell R. 99.  2008. Macular pigment density and age-related maculopathy in the Carotenoids in Age-Related Eye Disease Study. An ancillary study of the Women's Health Initiative. Ophthalmology 115:876–83.e1 [Google Scholar]
  100. Le Marchand L, Hankin JH, Bach F, Kolonel LN, Wilkens LR. 100.  et al. 1995. An ecological study of diet and lung cancer in the South Pacific. Int. J. Cancer 63:18–23 [Google Scholar]
  101. Lee HS, Cho YH, Park J, Shin HR, Sung MK. 101.  2013. Dietary intake of phytonutrients in relation to fruit and vegetable consumption in Korea. J. Acad. Nutr. Diet. 113:1194–99 [Google Scholar]
  102. Li B, Vachali PP, Gorusupudi A, Shen Z, Sharifzadeh H. 102.  et al. 2014. Inactivity of human β,β-carotene-9′,10′-dioxygenase (BCO2) underlies retinal accumulation of the human macular carotenoid pigment. PNAS 111:10173–78 [Google Scholar]
  103. Li S, Lo A. 103.  2010. Lutein protects RGC-5 cells against hypoxia and oxidative stress. Int. J. Mol. Sci. 11:2109–17 [Google Scholar]
  104. Lietz G. 104.  2013. Host factors that affect carotenoid metabolism. Carotenoids and Human Health SA Tanumihardjo 129–40 New York: Springer [Google Scholar]
  105. Lietz G, Mulokozi G, Henry JC, Tomkins AM. 105.  2006. Xanthophyll and hydrocarbon carotenoid patterns differ in plasma and breast milk of women supplemented with red palm oil during pregnancy and lactation. J. Nutr. 136:1821–27 [Google Scholar]
  106. Lipkie TE, Banavara D, Shah B, Morrow AL, McMahon RJ. 106.  et al. 2014. Caco-2 accumulation of lutein is greater from human milk than from infant formula despite similar bioaccessibility. Mol. Nutr. Food Res. 58:2014–22 [Google Scholar]
  107. Lipkie TE, Morrow AL, Jouni ZE, McMahon RJ, Ferruzzi MG. 107.  2015. Longitudinal survey of carotenoids in human milk from urban cohorts in China, Mexico, and the USA. PLOS ONE 10:e0127729 [Google Scholar]
  108. Liu CL, Huang YS, Hosokawa M, Miyashita K, Hu ML. 108.  2009. Inhibition of proliferation of a hepatoma cell line by fucoxanthin in relation to cell cycle arrest and enhanced gap junctional intercellular communication. Chem. Biol. Interact. 182:165–72 [Google Scholar]
  109. Liu R, Wang T, Zhang B, Qin L, Wu C. 109.  et al. 2015. Lutein and zeaxanthin supplementation and association with visual function in age-related macular degeneration. Investig. Ophthalmol. Vis. Sci. 56:252–58 [Google Scholar]
  110. Liu XH, Yu RB, Liu R, Hao ZX, Han CC. 110.  et al. 2014. Association between lutein and zeaxanthin status and the risk of cataract: a meta-analysis. Nutrients 6:452–65 [Google Scholar]
  111. Liu Z, Meyers K, Johnson E, Snodderly D, Tinker L. 111.  et al. 2015. Exposure to lutein in infancy via breast milk and later life macular pigment optical density. Investig. Ophthal. Vis. Sci. 56:192 [Google Scholar]
  112. Lobo GP, Amengual J, Li HN, Golczak M, Bonet ML. 112.  et al. 2010. β,β-carotene decreases peroxisome proliferator receptor gamma activity and reduces lipid storage capacity of adipocytes in a β,β-carotene oxygenase 1-dependent manner. J. Biol. Chem. 285:27891–99 [Google Scholar]
  113. Loughman J, Nolan JM, Howard AN, Connolly E, Meagher K, Beatty S. 113.  2012. The impact of macular pigment augmentation on visual performance using different carotenoid formulations. Investig. Ophthalmol. Vis. Sci. 53:7871–80 [Google Scholar]
  114. Ma L, Hao ZX, Liu RR, Yu RB, Shi Q, Pan JP. 114.  2014. A dose-response meta-analysis of dietary lutein and zeaxanthin intake in relation to risk of age-related cataract. Graefes Arch. Clin. Exp. Ophthalmol. 252:63–70 [Google Scholar]
  115. Ma L, Lin XM, Zou ZY, Xu XR, Li Y, Xu R. 115.  2009. A 12-week lutein supplementation improves visual function in Chinese people with long-term computer display light exposure. Br J. Nutr. 102:186–90 [Google Scholar]
  116. Ma L, Yan SF, Huang YM, Lu XR, Qian F. 116.  et al. 2012. Effect of lutein and zeaxanthin on macular pigment and visual function in patients with early age-related macular degeneration. Ophthalmology 119:2290–97 [Google Scholar]
  117. Manzoni P, Stolfi I, Pedicino R, Vagnarelli F, Mosca F. 117.  et al. 2013. Human milk feeding prevents retinopathy of prematurity (ROP) in preterm VLBW neonates. Early Hum. Dev. 89:Suppl. 1S64–68 [Google Scholar]
  118. Mares-Perlman JA, Fisher AI, Klein R, Palta M, Block G. 118.  et al. 2001. Lutein and zeaxanthin in the diet and serum and their relation to age-related maculopathy in the third National Health and Nutrition Examination Survey. Am. J. Epidemiol. 153:424–32 [Google Scholar]
  119. Mares J. 119.  2015. Food antioxidants to prevent cataract. JAMA 313:1048–49 [Google Scholar]
  120. Mares J, Meyers K, Liu Z, Gehrs K, Iyengar S. 120.  et al. 2015. Joint phenotypic and genotypic predictors of macular pigment optical density. Investig. Ophthal. Vis. Sci. 56:1082 (Abstr.) [Google Scholar]
  121. Mares JA. 121.  2013. Relationships of lutein and zeaxanthin to age-related macular degeneration: epidemiological evidence. See Ref. 98 63–74
  122. Mares JA, LaRowe TL, Snodderly DM, Moeller SM, Gruber MJ. 122.  et al. 2006. Predictors of optical density of lutein and zeaxanthin in retinas of older women in the Carotenoids in Age-Related Eye Disease Study, an ancillary study of the Women's Health Initiative. Am. J. Clin. Nutr. 84:1107–22 [Google Scholar]
  123. Mares JA, Millen AE, Meyers K. 123.  2012. Diet and supplements and the prevention and treatment of eye diseases. Nutrition in the Prevention and Treatment of Disease AM Coulston, CJ Boushey, M Ferruzzi 341–72 San Diego, CA: Elsevier [Google Scholar]
  124. Mares JA, Voland RP, Sondel SA, Millen AE, Larowe T. 124.  et al. 2011. Healthy lifestyles related to subsequent prevalence of age-related macular degeneration. Arch. Ophthalmol. 129:470–80 [Google Scholar]
  125. McCorkle S, Raine L, Hammond B, Renzi-Hammond L, Hillman C, Khan N. 125.  2015. Reliability of heterochromatic flicker photometry in measuring macular pigment optical density among preadolescent children. Foods 4:594–604 [Google Scholar]
  126. Meyers KJ, Johnson EJ, Bernstein PS, Iyengar SK, Engelman CD. 126.  et al. 2013. Genetic determinants of macular pigments in women of the Carotenoids in Age-Related Eye Disease Study. Investig. Ophthalmol. Vis. Sci. 54:2333–45 [Google Scholar]
  127. Meyers KJ, Liu Z, Millen AE, Iyengar SK, Blodi BA. 127.  et al. 2015. Joint associations of diet, lifestyle, and genes with age-related macular degeneration. Ophthalmology 122:2286–94 [Google Scholar]
  128. Meyers KJ, Liu Z, Wallace R, Tinker L, Engelman C. 128.  et al. 2014. Correlates of metabolic syndrome are associated with low macular pigment despite moderate to high intakes of macular carotenoids. Investig. Ophthalmol. Vis. Sci. 55:6009 (Abstr.) [Google Scholar]
  129. Meyers KJ, Liu Z, Wang S, Klein M, Wallace RT. 129.  et al. 2015. Phenotypic and genotypic predictors of low retinal response to diets high in lutein. Investig. Ophthal. Vis. Sci. 56:1083 (Abstr.) [Google Scholar]
  130. Meyers KJ, Mares JA, Igo RP Jr, Truitt B, Liu Z. 130.  et al. 2014. Genetic evidence for role of carotenoids in age-related macular degeneration in the Carotenoids in Age-Related Eye Disease Study (CAREDS). Investig. Ophthalmol. Vis. Sci. 55:587–99 [Google Scholar]
  131. Moeller SM, Parekh N, Tinker L, Ritenbaugh C, Blodi B. 131.  et al. 2006. Associations between intermediate age-related macular degeneration and lutein and zeaxanthin in the Carotenoids in Age-Related Eye Disease Study (CAREDS): ancillary study of the Women's Health Initiative. Arch. Ophthalmol. 124:1151–62 [Google Scholar]
  132. Mukai M, Hayashi Y, Kitadate Y, Shigenobu S, Arita K, Kobayashi S. 132.  2007. MAMO, a maternal BTB/POZ-Zn-finger protein enriched in germline progenitors, is required for the production of functional eggs in Drosophila. Mech. Dev. 124:570–83 [Google Scholar]
  133. Murray IJ, Makridaki M, van der Veen RL, Carden D, Parry NR, Berendschot TT. 133.  2013. Lutein supplementation over a one-year period in early AMD might have a mild beneficial effect on visual acuity: the CLEAR study. Investig. Ophthalmol. Vis. Sci. 54:1781–88 [Google Scholar]
  134. Neuringer M, Sandstrom MM, Johnson EJ, Snodderly DM. 134.  2004. Nutritional manipulation of primate retinas, I: effects of lutein or zeaxanthin supplements on serum and macular pigment in xanthophyll-free rhesus monkeys. Investig. Ophthalmol. Vis. Sci. 45:3234–43 [Google Scholar]
  135. Nolan JM, Loughman J, Akkali MC, Stack J, Scanlon G. 135.  et al. 2011. The impact of macular pigment augmentation on visual performance in normal subjects: COMPASS. Vis. Res. 51:459–69 [Google Scholar]
  136. Nolan JM, Stack J, Mellerio J, Godhinio M, O'Donovan O. 136.  et al. 2006. Monthly consistency of macular pigment optical density and serum concentrations of lutein and zeaxanthin. Curr. Eye Res. 31:199–213 [Google Scholar]
  137. Obana A, Hiramitsu T, Gohto Y, Ohira A, Mizuno S. 137.  et al. 2008. Macular carotenoid levels of normal subjects and age-related maculopathy patients in a Japanese population. Ophthalmology 115:147–57 [Google Scholar]
  138. Obana A, Tanito M, Gohto Y, Okazaki S, Gellermann W, Bernstein PS. 138.  2015. Changes in macular pigment optical density and serum lutein concentration in Japanese subjects taking two different lutein supplements. PLOS ONE 10:e0139257 [Google Scholar]
  139. Olmedilla B, Granado F, Blanco I, Vaquero M. 139.  2003. Lutein, but not alpha-tocopherol, supplementation improves visual function in patients with age-related cataracts: a 2-y double-blind, placebo-controlled pilot study. Nutrition 19:21–24 [Google Scholar]
  140. Owsley C. 140.  2011. Aging and vision. Vis. Res. 51:1610–22 [Google Scholar]
  141. Owsley C. 141.  2016. Comparison of visual function in older eyes in the earliest stages of age-related macular degeneration to those in normal macular health. Curr. Eye Res. 41:266–72 [Google Scholar]
  142. Owsley C, Huisingh C, Jackson GR, Curcio CA, Szalai AJ. 142.  et al. 2014. Associations between abnormal rod-mediated dark adaptation and health and functioning in older adults with normal macular health. Investig. Ophthalmol. Vis. Sci. 55:4776–89 [Google Scholar]
  143. Palczewski G, Amengual J, Hoppel CL, von Lintig J. 143.  2014. Evidence for compartmentalization of mammalian carotenoid metabolism. FASEB J. 28:4457–69 [Google Scholar]
  144. Patryas L, Parry NR, Carden D, Aslam T, Murray IJ. 144.  2014. The association between dark adaptation and macular pigment optical density in healthy subjects. Graefes Arch. Clin. Exp. Ophthalmol. 252:657–63 [Google Scholar]
  145. Perrone S, Longini M, Marzocchi B, Picardi A, Bellieni CV. 145.  et al. 2010. Effects of lutein on oxidative stress in the term newborn: a pilot study. Neonatology 97:36–40 [Google Scholar]
  146. Picone S, Ritieni A, Fabiano A, Troise AD, Graziani G. 146.  et al. 2012. Arterial cord blood lutein levels in preterm and term healthy newborns are sex and gestational age dependent. Clin. Biochem. 45:1558–63 [Google Scholar]
  147. Piermarocchi S, Saviano S, Parisi V, Tedeschi M, Panozzo G. 147.  et al. 2012. Carotenoids in Age-Related Maculopathy Italian Study (CARMIS): two-year results of a randomized study. Eur. J. Ophthalmol. 22:216–25 [Google Scholar]
  148. Provis JM, Penfold PL, Cornish EE, Sandercoe TM, Madigan MC. 148.  2005. Anatomy and development of the macula: specialisation and the vulnerability to macular degeneration. Clin. Exp. Optom. 88:269–81 [Google Scholar]
  149. Quigley HA. 149.  1996. Number of people with glaucoma worldwide. Br. J. Ophthalmol. 80:389–93 [Google Scholar]
  150. Ramdas WD, Wolfs RC, Kiefte-de Jong JC, Hofman A, de Jong PT. 150.  et al. 2012. Nutrient intake and risk of open-angle glaucoma: the Rotterdam Study. Eur. J. Epidemiol. 27:385–93 [Google Scholar]
  151. Rapp LM, Maple SS, Choi JH. 151.  2000. Lutein and zeaxanthin concentrations in rod outer segment membranes from perifoveal and peripheral human retina. Investig. Ophthalmol. Vis. Sci. 41:1200–9 [Google Scholar]
  152. Renzi LM, Hammond BR Jr. 152.  2010. The effect of macular pigment on heterochromatic luminance contrast. Exp. Eye Res. 91:896–900 [Google Scholar]
  153. Renzi LM, Hammond BR Jr. 153.  2010. The relation between the macular carotenoids, lutein and zeaxanthin, and temporal vision. Ophthalmic Physiol. Opt. 30:351–57 [Google Scholar]
  154. Resnikoff S, Pascolini D, Etya'aale D, Kocur I, Pararajasegaram R. 154.  et al. 2004. Global data on visual impairment in the year 2002. Bull. World Health Organ. 82:844–51 [Google Scholar]
  155. Richer S, Stiles W, Statkute L, Pulido J, Frankowski J. 155.  et al. 2004. Double-masked, placebo-controlled, randomized trial of lutein and antioxidant supplementation in the intervention of atrophic age-related macular degeneration: the Veterans LAST study (Lutein Antioxidant Supplementation Trial). Optometry 75:216–30 [Google Scholar]
  156. Richer SP, Stiles W, Graham-Hoffman K, Levin M, Ruskin D. 156.  et al. 2011. Randomized, double-blind, placebo-controlled study of zeaxanthin and visual function in patients with atrophic age-related macular degeneration: the Zeaxanthin and Visual Function study (ZVF) FDA IND #78, 973. Optometry 82:667–80.e6 [Google Scholar]
  157. Rubin GS, Roche KB, Prasada-Rao P, Fried LP. 157.  1994. Visual impairment and disability in older adults. Optom. Vis. Sci. 71:750–60 [Google Scholar]
  158. Rubin LP, Chan GM, Barrett-Reis BM, Fulton AB, Hansen RM. 158.  et al. 2012. Effect of carotenoid supplementation on plasma carotenoids, inflammation and visual development in preterm infants. J. Perinatol. 32:418–24 [Google Scholar]
  159. Sabour-Pickett S, Beatty S, Connolly E, Loughman J, Stack J. 159.  et al. 2014. Supplementation with three different macular carotenoid formulations in patients with early age-related macular degeneration. Retina 34:1757–66 [Google Scholar]
  160. Sandberg MA, Johnson EJ, Berson EL. 160.  2010. The relationship of macular pigment optical density to serum lutein in retinitis pigmentosa. Investig. Ophthalmol. Vis. Sci. 51:1086–91 [Google Scholar]
  161. SanGiovanni JP, Neuringer M. 161.  2012. The putative role of lutein and zeaxanthin as protective agents against age-related macular degeneration: promise of molecular genetics for guiding mechanistic and translational research in the field. Am. J. Clin. Nutr. 96:1223–33s [Google Scholar]
  162. Sasaki M, Ozawa Y, Kurihara T, Noda K, Imamura Y. 162.  et al. 2009. Neuroprotective effect of an antioxidant, lutein, during retinal inflammation. Investig. Ophthalmol. Vis. Sci. 50:1433–39 [Google Scholar]
  163. Scanlon G, Connell P, Ratzlaff M, Foerg B, McCartney D. 163.  et al. 2015. Macular pigment optical density is lower in type 2 diabetes, compared with type 1 diabetes and normal controls. Retina 35:1808–16 [Google Scholar]
  164. Schalch W, Cohn W, Barker FM, Kopcke W, Mellerio J. 164.  et al. 2007. Xanthophyll accumulation in the human retina during supplementation with lutein or zeaxanthin—the LUXEA (LUtein Xanthophyll Eye Accumulation) study. Arch. Biochem. Biophys. 458:128–35 [Google Scholar]
  165. Seddon JM, Ajani UA, Sperduto RD, Hiller R, Blair N. 165.  et al. 1994. Dietary carotenoids, vitamins A, C, and E, and advanced age-related macular degeneration. JAMA 272:1413–20 [Google Scholar]
  166. Shmarakov IO, Yuen JJ, Blaner WS. 166.  2013. Carotenoid metabolism and enzymology. Carotenoids and Human Health SA Tanumihardjo 29–56 New York: Humana [Google Scholar]
  167. Sies H, Stahl W. 167.  1997. Carotenoids and intercellular communication via gap junctions. Int. J. Vitam. Nutr. Res. 67:364–67 [Google Scholar]
  168. Singh RS, Kim JE. 168.  2012. Ocular hypertension following intravitreal anti-vascular endothelial growth factor agents. Drugs Aging 29:949–56 [Google Scholar]
  169. Smiddy WE. 169.  2007. Relative cost of a line of vision in age-related macular degeneration. Ophthalmology 114:847–54 [Google Scholar]
  170. Snodderly DM. 170.  1995. Evidence for protection against age-related macular degeneration by carotenoids and antioxidant vitamins. Am. J. Clin. Nutr. 62:1448–61S [Google Scholar]
  171. Snodderly DM, Auran JD, Delori FC. 171.  1984. The macular pigment. II. Spatial distribution in primate retinas. Investig. Ophthalmol. Vis. Sci. 25:674–85 [Google Scholar]
  172. Snodderly DM, Brown PK, Delori FC, Auran JD. 172.  1984. The macular pigment. I. Absorbance spectra, localization, and discrimination from other yellow pigments in primate retinas. Investig. Ophthalmol. Vis. Sci. 25:660–73 [Google Scholar]
  173. Stringham JM, Garcia PV, Smith PA, Hiers PL, McLin LN. 173.  et al. 2015. Macular pigment and visual performance in low-light conditions. Investig. Ophthalmol. Vis. Sci. 56:2459–68 [Google Scholar]
  174. Stringham JM, Garcia PV, Smith PA, McLin LN, Foutch BK. 174.  2011. Macular pigment and visual performance in glare: benefits for photostress recovery, disability glare, and visual discomfort. Investig. Ophthalmol. Vis. Sci. 52:7406–15 [Google Scholar]
  175. Stringham JM, Snodderly DM. 175.  2013. Enhancing performance while avoiding damage: a contribution of macular pigment. Investig. Ophthalmol. Vis. Sci. 54:6298–306 [Google Scholar]
  176. Tang L, Zhang Y, Jiang Y, Willard L, Ortiz E. 176.  et al. 2011. Dietary wolfberry ameliorates retinal structure abnormalities in db/db mice at the early stage of diabetes. Exp. Biol. Med. (Maywood) 236:1051–63 [Google Scholar]
  177. Tezel G. 177.  2006. Oxidative stress in glaucomatous neurodegeneration: mechanisms and consequences. Prog. Retin. Eye Res. 25:490–513 [Google Scholar]
  178. Tian Y, Kijlstra A, Webers CA, Berendschot TT. 178.  2015. Lutein and factor D: two intriguing players in the field of age-related macular degeneration. Arch. Biochem. Biophys. 572:49–53 [Google Scholar]
  179. Trieschmann M, Beatty S, Nolan JM, Hense HW, Heimes B. 179.  et al. 2007. Changes in macular pigment optical density and serum concentrations of its constituent carotenoids following supplemental lutein and zeaxanthin: the LUNA study. Exp. Eye Res. 84:718–28 [Google Scholar]
  180. 180. U.S. Dep. Agric., Agric. Res. Serv. 2014. What We Eat in America, NHANES 2011–2012 Washington, DC: USDA ARS. http://www.ars.usda.gov/Services/docs.htm?docid=13793
  181. van der Made SM, Kelly ER, Berendschot TT, Kijlstra A, Lutjohann D, Plat J. 181.  2014. Consuming a buttermilk drink containing lutein-enriched egg yolk daily for 1 year increased plasma lutein but did not affect serum lipid or lipoprotein concentrations in adults with early signs of age-related macular degeneration. J. Nutr. 144:1370–77 [Google Scholar]
  182. Vishwanathan R, Goodrow-Kotyla EF, Wooten BR, Wilson TA, Nicolosi RJ. 182.  2009. Consumption of 2 and 4 egg yolks/d for 5 wk increases macular pigment concentrations in older adults with low macular pigment taking cholesterol-lowering statins. Am. J. Clin. Nutr. 90:1272–79 [Google Scholar]
  183. Vishwanathan R, Johnson EJ. 183.  2014. Lutein and zeaxanthin and eye disease. Carotenoids in Human Health SA Tanumihardjo 215–35 New York: Springer Sci. [Google Scholar]
  184. Vishwanathan R, Neuringer M, Snodderly DM, Schalch W, Johnson EJ. 184.  2013. Macular lutein and zeaxanthin are related to brain lutein and zeaxanthin in primates. Nutr. Neurosci. 16:21–29 [Google Scholar]
  185. Vishwanathan R, Schalch W, Johnson EJ. 185.  2016. Macular pigment carotenoids in the retina and occipital cortex are related in humans. Nutr. Neurosci. 19:95–101 [Google Scholar]
  186. Wang JJ, Buitendijk GH, Rochtchina E, Lee KE, Klein BE. 186.  et al. 2014. Genetic susceptibility, dietary antioxidants, and long-term incidence of age-related macular degeneration in two populations. Ophthalmology 121:667–75 [Google Scholar]
  187. Weigert G, Kaya S, Pemp B, Sacu S, Lasta M. 187.  et al. 2011. Effects of lutein supplementation on macular pigment optical density and visual acuity in patients with age-related macular degeneration. Investig. Ophthalmol. Vis. Sci. 52:8174–78 [Google Scholar]
  188. Widjaja-Adhi MA, Lobo GP, Golczak M, Von Lintig J. 188.  2015. A genetic dissection of intestinal fat-soluble vitamin and carotenoid absorption. Hum. Mol. Genet. 24:3206–19 [Google Scholar]
  189. Widomska J, Subczynski WK. 189.  2014. Why has nature chosen lutein and zeaxanthin to protect the retina?. J. Clin. Exp. Ophthalmol. 5:326 [Google Scholar]
  190. Wooten B, Hammond B. 190.  2002. Macular pigment: influences on visual acuity and visibility. Prog. Retin. Eye Res. 21:225–40 [Google Scholar]
  191. Wu J, Cho E, Willett WC, Sastry SM, Schaumberg DA. 191.  2015. Intakes of lutein, zeaxanthin, and other carotenoids and age-related macular degeneration during 2 decades of prospective follow-up. JAMA Ophthalmol. 133:1415–24 [Google Scholar]
  192. Yao Y, Qiu QH, Wu XW, Cai ZY, Xu S, Liang XQ. 192.  2013. Lutein supplementation improves visual performance in Chinese drivers: 1-year randomized, double-blind, placebo-controlled study. Nutrition 29:958–64 [Google Scholar]
  193. Yeum KJ, Shang FM, Schalch WM, Russell RM, Taylor A. 193.  1999. Fat-soluble nutrient concentrations in different layers of human cataractous lens. Curr. Eye Res. 19:502–5 [Google Scholar]
  194. Yonova-Doing E, Hysi PG, Venturini C, Williams KM, Nag A. 194.  et al. 2013. Candidate gene study of macular response to supplemental lutein and zeaxanthin. Exp. Eye Res. 115:172–77 [Google Scholar]
  195. Yu H, Wark L, Ji H, Willard L, Jaing Y. 195.  et al. 2013. Dietary wolfberry upregulates carotenoid metabolic genes and enhances mitochondrial biogenesis in the retina of db/db diabetic mice. Mol. Nutr. Food Res. 57:1158–69 [Google Scholar]
  196. Yuodelis C, Hendrickson A. 196.  1986. A qualitative and quantitative analysis of the human fovea during development. Vis. Res. 26:847–55 [Google Scholar]
  197. Zaripheh S, Erdman JW Jr. 197.  2002. Factors that influence the bioavailability of xanthophylls. J. Nutr. 132:531–34S [Google Scholar]
  198. Zhang C, Wang Z, Zhao J, Li Q, Huang C. 198.  et al. 2015. Neuroprotective effect of lutein on nmda-induced retinal ganglion cell injury in rat retina. Cell Mol. Neurobiol. doi: 10.1007/s10571-015-0231-5
  199. Zhao D, Cho J, Kim MH, Friedman D, Guallar E. 199.  2014. Diabetes, glucose metabolism, and glaucoma: the 2005–2008 National Health and Nutrition Examination Survey. PLOS ONE 9:e112460 [Google Scholar]
  200. Zheng Y, He M, Congdon N. 200.  2012. The worldwide epidemic of diabetic retinopathy. Indian J. Ophthalmol. 60:428–31 [Google Scholar]
  201. Zimmer JP, Hammond BR Jr. 201.  2007. Possible influences of lutein and zeaxanthin on the developing retina. Clin. Ophthalmol. 1:25–35 [Google Scholar]
/content/journals/10.1146/annurev-nutr-071715-051110
Loading
/content/journals/10.1146/annurev-nutr-071715-051110
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error