1932

Abstract

White adipose tissue (WAT) and brown adipose tissue (BAT) are involved in whole-body energy homeostasis and metabolic regulation. Changes to mass and function of these tissues impact glucose homeostasis and whole-body energy balance during development of obesity, weight loss, and subsequent weight regain. Omega-3 polyunsaturated fatty acids (ω-3 PUFAs), which have known hypotriglyceridemic and cardioprotective effects, can also impact WAT and BAT function. In rodent models, these fatty acids alleviate obesity-associated WAT inflammation, improve energy metabolism, and increase thermogenic markers in BAT. Emerging evidence suggests that ω-3 PUFAs can also modulate gut microbiota impacting WAT function and adiposity. This review discusses molecular mechanisms, implications of these findings, translation to humans, and future work, especially with reference to the potential of these fatty acids in weight loss maintenance.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-nutr-122319-034142
2020-08-21
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/nutr/40/1/annurev-nutr-122319-034142.html?itemId=/content/journals/10.1146/annurev-nutr-122319-034142&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Albracht-Schulte K, Kalupahana NS, Ramalingam L, Wang S, Rahman SM et al. 2018. Omega-3 fatty acids in obesity and metabolic syndrome: a mechanistic update. J. Nutr. Biochem. 58:1–16
    [Google Scholar]
  2. 2. 
    Alexander DD, Miller PE, Van Elswyk ME, Kuratko CN, Bylsma LC 2017. A meta-analysis of randomized controlled trials and prospective cohort studies of eicosapentaenoic and docosahexaenoic long-chain omega-3 fatty acids and coronary heart disease risk. Mayo Clin. Proc. 92:15–29
    [Google Scholar]
  3. 3. 
    Backhed F, Ding H, Wang T, Hooper LV, Koh GY et al. 2004. The gut microbiota as an environmental factor that regulates fat storage. PNAS 101:15718–23
    [Google Scholar]
  4. 4. 
    Backhed F, Manchester JK, Semenkovich CF, Gordon JI 2007. Mechanisms underlying the resistance to diet-induced obesity in germ-free mice. PNAS 104:979–84
    [Google Scholar]
  5. 5. 
    Bahreini M, Ramezani AH, Shishehbor F, Mansoori A 2018. The effect of omega-3 on circulating adiponectin in adults with type 2 diabetes mellitus: a systematic review and meta-analysis of randomized controlled trials. Can. J. Diabetes 42:553–59
    [Google Scholar]
  6. 6. 
    Bakker GJ, Nieuwdorp M. 2017. Relationship between gut microbiota, energy metabolism, and obesity. The Microbiota in Gastrointestinal Pathophysiology MH Floch, Y Ringel, WA Walker 255–58 London: Academic Press
    [Google Scholar]
  7. 7. 
    Balfego M, Canivell S, Hanzu FA, Sala-Vila A, Martinez-Medina M et al. 2016. Effects of sardine-enriched diet on metabolic control, inflammation and gut microbiota in drug-naive patients with type 2 diabetes: a pilot randomized trial. Lipids Health Dis 15:78
    [Google Scholar]
  8. 8. 
    Bang HO, Dyerberg J, Hjoorne N 1976. The composition of food consumed by Greenland Eskimos. Acta Medica Scand 200:69–73
    [Google Scholar]
  9. 9. 
    Barquissau V, Ghandour RA, Ailhaud G, Klingenspor M, Langin D et al. 2017. Control of adipogenesis by oxylipins, GPCRs and PPARs. Biochimie 136:3–11
    [Google Scholar]
  10. 10. 
    Belzung F, Raclot T, Groscolas R 1993. Fish oil n-3 fatty acids selectively limit the hypertrophy of abdominal fat depots in growing rats fed high-fat diets. Am. J. Physiol. 264:R1111–18
    [Google Scholar]
  11. 11. 
    Bhatt DL, Steg PG, Miller M, Brinton EA, Jacobson TA et al. 2019. Cardiovascular risk reduction with icosapent ethyl for hypertriglyceridemia. N. Engl. J. Med. 380:11–22
    [Google Scholar]
  12. 12. 
    Bidu C, Escoula Q, Bellenger S, Spor A, Galan M et al. 2018. The transplantation of ω3 PUFA-altered gut microbiota of fat-1 mice to wild-type littermates prevents obesity and associated metabolic disorders. Diabetes 67:1512–23
    [Google Scholar]
  13. 13. 
    Bjursell M, Xu X, Admyre T, Bottcher G, Lundin S et al. 2014. The beneficial effects of n-3 polyunsaturated fatty acids on diet induced obesity and impaired glucose control do not require Gpr120. PLOS ONE 9:e114942
    [Google Scholar]
  14. 14. 
    Bowman L, Mafham M, Wallendszus K, Stevens W, Buck G et al. 2018. Effects of n-3 fatty acid supplements in diabetes mellitus. N. Engl. J. Med. 379:1540–50
    [Google Scholar]
  15. 15. 
    Brei C, Stecher L, Much D, Karla MT, Amann-Gassner U et al. 2016. Reduction of the n–6:n–3 long-chain PUFA ratio during pregnancy and lactation on offspring body composition: follow-up results from a randomized controlled trial up to 5 y of age. Amer. J. Clin. Nutr. 103:1472–81
    [Google Scholar]
  16. 16. 
    Brestoff JR, Kim BS, Saenz SA, Stine RR, Monticelli LA et al. 2015. Group 2 innate lymphoid cells promote beiging of white adipose tissue and limit obesity. Nature 519:242–46
    [Google Scholar]
  17. 17. 
    Brown TJ, Brainard J, Song F, Wang X, Abdelhamid A, Hooper L 2019. Omega-3, omega-6, and total dietary polyunsaturated fat for prevention and treatment of type 2 diabetes mellitus: systematic review and meta-analysis of randomised controlled trials. BMJ 366:l4697
    [Google Scholar]
  18. 18. 
    Browning LM, Krebs JD, Moore CS, Mishra GD, O'Connell MA, Jebb SA 2007. The impact of long chain n-3 polyunsaturated fatty acid supplementation on inflammation, insulin sensitivity and CVD risk in a group of overweight women with an inflammatory phenotype. Diabetes Obes. Metab. 9:70–80
    [Google Scholar]
  19. 19. 
    Caesar R, Tremaroli V, Kovatcheva-Datchary P, Cani PD, Backhed F 2015. Crosstalk between gut microbiota and dietary lipids aggravates WAT inflammation through TLR signaling. Cell Metab 22:658–68
    [Google Scholar]
  20. 20. 
    Calder PC. 2012. Mechanisms of action of (n-3) fatty acids. J. Nutr. 142:592S–99S
    [Google Scholar]
  21. 21. 
    Calder PC. 2013. Omega-3 polyunsaturated fatty acids and inflammatory processes: Nutrition or pharmacology. Br. J. Clin. Pharmacol. 75:645–62
    [Google Scholar]
  22. 22. 
    Calonne J, Arsenijevic D, Scerri I, Miles-Chan JL, Montani JP, Dulloo AG 2019. Low 24-hour core body temperature as a thrifty metabolic trait driving catch-up fat during weight regain after caloric restriction. Am. J. Physiol. Endocrinol. Metab. 317:E699–709
    [Google Scholar]
  23. 23. 
    Cani PD, Amar J, Iglesias MA, Poggi M, Knauf C et al. 2007. Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes 56:1761–72
    [Google Scholar]
  24. 24. 
    Castaner O, Goday A, Park YM, Lee SH, Magkos F et al. 2018. The gut microbiome profile in obesity: a systematic review. Int. J. Endocrinol. 2018:4095789
    [Google Scholar]
  25. 25. 
    Chacinska M, Zabielski P, Ksiazek M, Szalaj P, Jarzabek K et al. 2019. The impact of OMEGA-3 fatty acids supplementation on insulin resistance and content of adipocytokines and biologically active lipids in adipose tissue of high-fat diet fed rats. Nutrients 11:835
    [Google Scholar]
  26. 26. 
    Chehimi M, Ward R, Pestel J, Robert M, Pesenti S et al. 2019. Omega-3 polyunsaturated fatty acids inhibit IL-17A secretion through decreased ICAM-1 expression in T cells co-cultured with adipose-derived stem cells harvested from adipose tissues of obese subjects. Mol. Nutr. Food Res. 63:e1801148
    [Google Scholar]
  27. 27. 
    Chowdhury R, Stevens S, Gorman D, Pan A, Warnakula S et al. 2012. Association between fish consumption, long chain omega 3 fatty acids, and risk of cerebrovascular disease: systematic review and meta-analysis. BMJ 345:e6698
    [Google Scholar]
  28. 28. 
    Chung KJ, Chatzigeorgiou A, Economopoulou M, Garcia-Martin R, Alexaki VI et al. 2017. A self-sustained loop of inflammation-driven inhibition of beige adipogenesis in obesity. Nat. Immunol. 18:654–64
    [Google Scholar]
  29. 29. 
    Claussnitzer M, Dankel SN, Kim KH, Quon G, Meuleman W et al. 2015. FTO obesity variant circuitry and adipocyte browning in humans. N. Engl. J. Med. 373:895–907
    [Google Scholar]
  30. 30. 
    Cossrow N, Falkner B. 2004. Race/ethnic issues in obesity and obesity-related comorbidities. J. Clin. Endocrinol. Metab. 89:2590–94
    [Google Scholar]
  31. 31. 
    Costantini L, Molinari R, Farinon B, Merendino N 2017. Impact of omega-3 fatty acids on the gut microbiota. Int. J. Mol. Sci. 18:2645
    [Google Scholar]
  32. 32. 
    Cotillard A, Kennedy SP, Kong LC, Prifti E, Pons N et al. 2013. Dietary intervention impact on gut microbial gene richness. Nature 500:585–88
    [Google Scholar]
  33. 33. 
    Cucchi D, Camacho-Munoz D, Certo M, Niven J, Smith J et al. 2019. Omega-3 polyunsaturated fatty acids impinge on CD4+ T cell motility and adipose tissue distribution via direct and lipid mediator-dependent effects. Cardiovasc. Res. 116:1006–20
    [Google Scholar]
  34. 34. 
    de la Cuesta-Zuluaga J, Mueller NT, Alvarez-Quintero R, Velasquez-Mejia EP, Sierra JA et al. 2019. Higher fecal short-chain fatty acid levels are associated with gut microbiome dysbiosis, obesity, hypertension and cardiometabolic disease risk factors. Nutrients 11:51
    [Google Scholar]
  35. 35. 
    Del Gobbo LC, Imamura F, Aslibekyan S, Marklund M, Virtanen JK et al. 2016. ω-3 polyunsaturated fatty acid biomarkers and coronary heart disease: pooling project of 19 cohort studies. JAMA Intern. Med. 176:1155–66
    [Google Scholar]
  36. 36. 
    Domingo P, Gallego-Escuredo JM, Fernandez I, Villarroya J, Torres F et al. 2018. Effects of docosahexanoic acid supplementation on inflammatory and subcutaneous adipose tissue gene expression in HIV-infected patients on combination antiretroviral therapy (cART). A sub-study of a randomized, double-blind, placebo-controlled study. Cytokine 105:73–79
    [Google Scholar]
  37. 37. 
    Donahue SM, Rifas-Shiman SL, Gold DR, Jouni ZE, Gillman MW, Oken E 2011. Prenatal fatty acid status and child adiposity at age 3 y: results from a US pregnancy cohort. Am. J. Clin. Nutr. 93:780–88
    [Google Scholar]
  38. 38. 
    Fan R, Toney AM, Jang Y, Ro SH, Chung S 2018. Maternal n-3 PUFA supplementation promotes fetal brown adipose tissue development through epigenetic modifications in C57BL/6 mice. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 1863:1488–97
    [Google Scholar]
  39. 39. 
    Ferguson JF, Mulvey CK, Patel PN, Shah RY, Doveikis J et al. 2014. Omega-3 PUFA supplementation and the response to evoked endotoxemia in healthy volunteers. Mol. Nutr. Food Res. 58:601–13
    [Google Scholar]
  40. 40. 
    Ferguson JF, Roberts-Lee K, Borcea C, Smith HM, Midgette Y, Shah R 2019. Omega-3 polyunsaturated fatty acids attenuate inflammatory activation and alter differentiation in human adipocytes. J. Nutr. Biochem. 64:45–49
    [Google Scholar]
  41. 41. 
    Ferguson JF, Xue C, Hu Y, Li M, Reilly MP 2016. Adipose tissue RNASeq reveals novel gene–nutrient interactions following n-3 PUFA supplementation and evoked inflammation in humans. J. Nutr. Biochem. 30:126–32
    [Google Scholar]
  42. 42. 
    Flachs P, Horakova O, Brauner P, Rossmeisl M, Pecina P et al. 2005. Polyunsaturated fatty acids of marine origin upregulate mitochondrial biogenesis and induce β-oxidation in white fat. Diabetologia 48:2365–75
    [Google Scholar]
  43. 43. 
    Flachs P, Rossmeisl M, Kuda O, Kopecky J 2013. Stimulation of mitochondrial oxidative capacity in white fat independent of UCP1: a key to lean phenotype. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 1831:986–1003
    [Google Scholar]
  44. 44. 
    Flachs P, Ruhl R, Hensler M, Janovska P, Zouhar P et al. 2011. Synergistic induction of lipid catabolism and anti-inflammatory lipids in white fat of dietary obese mice in response to calorie restriction and n-3 fatty acids. Diabetologia 54:2626–38
    [Google Scholar]
  45. 45. 
    Fleckenstein-Elsen M, Dinnies D, Jelenik T, Roden M, Romacho T, Eckel J 2016. Eicosapentaenoic acid and arachidonic acid differentially regulate adipogenesis, acquisition of a brite phenotype and mitochondrial function in primary human adipocytes. Mol. Nutr. Food Res. 60:2065–75
    [Google Scholar]
  46. 46. 
    Fransen M, Lismont C, Walton P 2017. The peroxisome-mitochondria connection: How and why. Int. J. Mol. Sci. 18:1126
    [Google Scholar]
  47. 47. 
    Frost G, Sleeth ML, Sahuri-Arisoylu M, Lizarbe B, Cerdan S et al. 2014. The short-chain fatty acid acetate reduces appetite via a central homeostatic mechanism. Nat. Commun. 5:3611
    [Google Scholar]
  48. 48. 
    Furet JP, Kong LC, Tap J, Poitou C, Basdevant A et al. 2010. Differential adaptation of human gut microbiota to bariatric surgery-induced weight loss: links with metabolic and low-grade inflammation markers. Diabetes 59:3049–57
    [Google Scholar]
  49. 49. 
    Gammelmark A, Nielsen MS, Bork CS, Lundbye-Christensen S, Tjønneland A et al. 2016. Adipose tissue content of marine n-3 polyunsaturated fatty acids is inversely associated with myocardial infarction. J. Amer. Coll. Cardiol. 67:1006–12
    [Google Scholar]
  50. 50. 
    Garvey WT, Mechanick JI, Brett EM, Garber AJ, Hurley DL et al. 2016. American Association of Clinical Endocrinologists and American College of Endocrinology comprehensive clinical practice guidelines for medical care of patients with obesity. Endocr. Pract. 22:Suppl. 31–203
    [Google Scholar]
  51. 51. 
    Ghandour RA, Colson C, Giroud M, Maurer S, Rekima S et al. 2018. Impact of dietary ω3 polyunsaturated fatty acid supplementation on brown and brite adipocyte function. J. Lipid Res. 59:452–61
    [Google Scholar]
  52. 52. 
    Ghosh S, DeCoffe D, Brown K, Rajendiran E, Estaki M et al. 2013. Fish oil attenuates omega-6 polyunsaturated fatty acid-induced dysbiosis and infectious colitis but impairs LPS dephosphorylation activity causing sepsis. PLOS ONE 8:e55468
    [Google Scholar]
  53. 53. 
    Gray B, Steyn F, Davies PS, Vitetta L 2013. Omega-3 fatty acids: a review of the effects on adiponectin and leptin and potential implications for obesity management. Eur. J. Clin. Nutr. 67:1234–42
    [Google Scholar]
  54. 54. 
    Greenway FL. 2015. Physiological adaptations to weight loss and factors favouring weight regain. Int. J. Obes. 2005 39:1188–96
    [Google Scholar]
  55. 55. 
    Hainault I, Carolotti M, Hajduch E, Guichard C, Lavau M 1993. Fish oil in a high lard diet prevents obesity, hyperlipemia, and adipocyte insulin resistance in rats. Ann. NY Acad. Sci. 683:98–101
    [Google Scholar]
  56. 56. 
    Hallgren P, Sjostrom L, Hedlund H, Lundell L, Olbe L 1989. Influence of age, fat cell weight, and obesity on O2 consumption of human adipose tissue. Am. J. Physiol. 256:E467–74
    [Google Scholar]
  57. 57. 
    Hames KC, Morgan-Bathke M, Harteneck DA, Zhou L, Port JD et al. 2017. Very-long-chain omega-3 fatty acid supplements and adipose tissue functions: a randomized controlled trial. Am. J. Clin. Nutr. 105:1552–58
    [Google Scholar]
  58. 58. 
    Hariri M, Ghiasvand R, Shiranian A, Askari G, Iraj B, Salehi-Abargouei A 2015. Does omega-3 fatty acids supplementation affect circulating leptin levels? A systematic review and meta-analysis on randomized controlled clinical trials. Clin. Endocrinol. 82:221–28
    [Google Scholar]
  59. 59. 
    Hasan AU, Ohmori K, Konishi K, Igarashi J, Hashimoto T et al. 2015. Eicosapentaenoic acid upregulates VEGF-A through both GPR120 and PPARγ mediated pathways in 3T3-L1 adipocytes. Mol. Cell. Endocrinol. 406:10–18
    [Google Scholar]
  60. 60. 
    Heemskerk MM, Giera M, Bouazzaoui FE, Lips MA, Pijl H et al. 2015. Increased PUFA content and 5-lipoxygenase pathway expression are associated with subcutaneous adipose tissue inflammation in obese women with type 2 diabetes. Nutrients 7:7676–90
    [Google Scholar]
  61. 61. 
    Heskey CE, Jaceldo-Siegl K, Sabate J, Fraser G, Rajaram S 2016. Adipose tissue α-linolenic acid is inversely associated with insulin resistance in adults. Amer. J. Clin. Nutr. 103:1105–10
    [Google Scholar]
  62. 62. 
    Horowitz JF, Klein S. 2000. Whole body and abdominal lipolytic sensitivity to epinephrine is suppressed in upper body obese women. Am. J. Physiol. Endocrinol. Metab. 278:E1144–52
    [Google Scholar]
  63. 63. 
    Huerta AE, Navas-Carretero S, Prieto-Hontoria PL, Martinez JA, Moreno-Aliaga MJ 2015. Effects of α-lipoic acid and eicosapentaenoic acid in overweight and obese women during weight loss. Obesity 23:313–21
    [Google Scholar]
  64. 64. 
    Huerta AE, Prieto-Hontoria PL, Sáinz N, Martínez JA, Moreno-Aliaga MJ 2016. Supplementation with α-lipoic acid alone or in combination with eicosapentaenoic acid modulates the inflammatory status of healthy overweight or obese women consuming an energy-restricted diet. J. Nutr. 146:889S–96S
    [Google Scholar]
  65. 65. 
    Inge TH, Courcoulas AP, Jenkins TM, Michalsky MP, Brandt ML et al. 2019. Five-year outcomes of gastric bypass in adolescents as compared with adults. N. Engl. J. Med. 380:2136–45
    [Google Scholar]
  66. 66. 
    Jakobsen MU, Madsen L, Skjoth F, Berentzen TL, Halkjaer J et al. 2017. Dietary intake and adipose tissue content of long-chain n-3 PUFAs and subsequent 5-y change in body weight and waist circumference. Amer. J. Clin. Nutr. 105:1148–57
    [Google Scholar]
  67. 67. 
    Jandhyala SM, Talukdar R, Subramanyam C, Vuyyuru H, Sasikala M, Nageshwar Reddy D 2015. Role of the normal gut microbiota. World J. Gastroenterol. 21:8787–803
    [Google Scholar]
  68. 68. 
    Kaliannan K, Wang B, Li XY, Kim KJ, Kang JX 2015. A host-microbiome interaction mediates the opposing effects of omega-6 and omega-3 fatty acids on metabolic endotoxemia. Sci. Rep. 5:11276
    [Google Scholar]
  69. 69. 
    Kalupahana NS, Claycombe K, Newman SJ, Stewart T, Siriwardhana N et al. 2010. Eicosapentaenoic acid prevents and reverses insulin resistance in high-fat diet-induced obese mice via modulation of adipose tissue inflammation. J. Nutr. 140:1915–22
    [Google Scholar]
  70. 70. 
    Kershaw EE, Flier JS. 2004. Adipose tissue as an endocrine organ. J. Clin. Endocrinol. Metab. 89:2548–56
    [Google Scholar]
  71. 71. 
    Kim J, Okla M, Erickson A, Carr T, Natarajan SK, Chung S 2016. Eicosapentaenoic acid potentiates brown thermogenesis through FFAR4-dependent up-regulation of miR-30b and miR-378. J. Biol. Chem. 291:20551–62
    [Google Scholar]
  72. 72. 
    Kim M, Goto T, Yu R, Uchida K, Tominaga M et al. 2015. Fish oil intake induces UCP1 upregulation in brown and white adipose tissue via the sympathetic nervous system. Sci. Rep. 5:18013
    [Google Scholar]
  73. 73. 
    Kimura I, Ozawa K, Inoue D, Imamura T, Kimura K et al. 2013. The gut microbiota suppresses insulin-mediated fat accumulation via the short-chain fatty acid receptor GPR43. Nat. Commun. 4:1829
    [Google Scholar]
  74. 74. 
    Konishi M, Sugiyama S, Sato Y, Oshima S, Sugamura K et al. 2010. Pericardial fat inflammation correlates with coronary artery disease. Atherosclerosis 213:649–55
    [Google Scholar]
  75. 75. 
    Kuda O, Brezinova M, Rombaldova M, Slavikova B, Posta M et al. 2016. Docosahexaenoic acid–derived fatty acid esters of hydroxy fatty acids (FAHFAs) with anti-inflammatory properties. Diabetes 65:2580–90
    [Google Scholar]
  76. 76. 
    Kyle TK, Dhurandhar EJ, Allison DB 2016. Regarding obesity as a disease: evolving policies and their implications. Endocrinol. Metab. Clin. North Am. 45:511–20
    [Google Scholar]
  77. 77. 
    Laguna-Fernandez A, Checa A, Carracedo M, Artiach G, Petri MH et al. 2018. ERV1/ChemR23 signaling protects against atherosclerosis by modifying oxidized low-density lipoprotein uptake and phagocytosis in macrophages. Circulation 138:1693–705
    [Google Scholar]
  78. 78. 
    Laiglesia LM, Lorente-Cebrian S, Lopez-Yoldi M, Lanas R, Sainz N et al. 2018. Maresin 1 inhibits TNF-alpha-induced lipolysis and autophagy in 3T3-L1 adipocytes. J. Cell. Physiol. 233:2238–46
    [Google Scholar]
  79. 79. 
    Laiglesia LM, Lorente-Cebrian S, Prieto-Hontoria PL, Fernandez-Galilea M, Ribeiro SM et al. 2016. Eicosapentaenoic acid promotes mitochondrial biogenesis and beige-like features in subcutaneous adipocytes from overweight subjects. J. Nutr. Biochem. 37:76–82
    [Google Scholar]
  80. 80. 
    Lalia AZ, Lanza IR. 2016. Insulin-sensitizing effects of omega-3 fatty acids: Lost in translation. Nutrients 8:329
    [Google Scholar]
  81. 81. 
    Laparra A, Tricot S, Le Van M, Damouche A, Gorwood J et al. 2019. The frequencies of immunosuppressive cells in adipose tissue differ in human, non-human primate, and mouse models. Front. Immunol. 10:117
    [Google Scholar]
  82. 82. 
    Lean ME, Leslie WS, Barnes AC, Brosnahan N, Thom G et al. 2018. Primary care-led weight management for remission of type 2 diabetes (DiRECT): an open-label, cluster-randomised trial. Lancet 391:541–51
    [Google Scholar]
  83. 83. 
    Lee KR, Midgette Y, Shah R 2019. Fish oil derived omega 3 fatty acids suppress adipose NLRP3 inflammasome signaling in human obesity. J. Endocr. Soc. 3:504–15
    [Google Scholar]
  84. 84. 
    Leiria LO, Wang CH, Lynes MD, Yang K, Shamsi F et al. 2019. 12-Lipoxygenase regulates cold adaptation and glucose metabolism by producing the omega-3 lipid 12-HEPE from brown fat. Cell Metab 30:768–83.e7
    [Google Scholar]
  85. 85. 
    LeMieux MJ, Kalupahana NS, Scoggin S, Moustaid-Moussa N 2015. Eicosapentaenoic acid reduces adipocyte hypertrophy and inflammation in diet-induced obese mice in an adiposity-independent manner. J. Nutr. 145:411–17
    [Google Scholar]
  86. 86. 
    Ley RE, Turnbaugh PJ, Klein S, Gordon JI 2006. Microbial ecology: human gut microbes associated with obesity. Nature 444:1022–23
    [Google Scholar]
  87. 87. 
    Li M, van Esch BCAM, Henricks PAJ, Folkerts G, Garssen J 2018. The anti-inflammatory effects of short chain fatty acids on lipopolysaccharide- or tumor necrosis factor α-stimulated endothelial cells via activation of GPR41/43 and inhibition of HDACs. Front. Pharmacol. 9:533
    [Google Scholar]
  88. 88. 
    Lidell ME, Betz MJ, Dahlqvist Leinhard O, Heglind M, Elander L et al. 2013. Evidence for two types of brown adipose tissue in humans. Nat. Med. 19:631–34
    [Google Scholar]
  89. 89. 
    Lizcano F, Vargas D. 2016. Biology of beige adipocyte and possible therapy for type 2 diabetes and obesity. Int. J. Endocrinol. 2016:9542061
    [Google Scholar]
  90. 90. 
    Lopez-Vicario C, Alcaraz-Quiles J, Garcia-Alonso V, Rius B, Hwang SH et al. 2015. Inhibition of soluble epoxide hydrolase modulates inflammation and autophagy in obese adipose tissue and liver: role for omega-3 epoxides. PNAS 112:536–41
    [Google Scholar]
  91. 91. 
    Lopez-Vicario C, Rius B, Alcaraz-Quiles J, Garcia-Alonso V, Lopategi A et al. 2016. Pro-resolving mediators produced from EPA and DHA: overview of the pathways involved and their mechanisms in metabolic syndrome and related liver diseases. Eur. J. Pharmacol. 785:133–43
    [Google Scholar]
  92. 92. 
    Lopez-Vicario C, Rius B, Alcaraz-Quiles J, Gonzalez-Periz A, Martinez-Puchol AI et al. 2017. Association of a variant in the gene encoding for ERV1/ChemR23 with reduced inflammation in visceral adipose tissue from morbidly obese individuals. Sci. Rep. 7:15724
    [Google Scholar]
  93. 93. 
    Lu Q, Li M, Zou Y, Cao T 2014. Induction of adipocyte hyperplasia in subcutaneous fat depot alleviated type 2 diabetes symptoms in obese mice. Obesity 22:1623–31
    [Google Scholar]
  94. 94. 
    Martinez-Fernandez L, Gonzalez-Muniesa P, Laiglesia LM, Sainz N, Prieto-Hontoria PL et al. 2017. Maresin 1 improves insulin sensitivity and attenuates adipose tissue inflammation in ob/ob and diet-induced obese mice. FASEB J 31:2135–45
    [Google Scholar]
  95. 95. 
    Martinez-Santibañez G, Lumeng CN. 2014. Macrophages and the regulation of adipose tissue remodeling. Annu. Rev. Nutr. 34:57–76
    [Google Scholar]
  96. 96. 
    Mendonça AM, Cayer LGJ, Pauls SD, Winter T, Leng S et al. 2018. Distinct effects of dietary ALA, EPA and DHA on rat adipose oxylipins vary by depot location and sex. Prostaglandins Leukot. Essent. Fat. Acids 129:13–24
    [Google Scholar]
  97. 97. 
    Menni C, Zierer J, Pallister T, Jackson MA, Long T et al. 2017. Omega-3 fatty acids correlate with gut microbiome diversity and production of N-carbamylglutamate in middle aged and elderly women. Sci. Rep. 7:11079
    [Google Scholar]
  98. 98. 
    Mohammadi E, Rafraf M, Farzadi L, Asghari-Jafarabadi M, Sabour S 2012. Effects of omega-3 fatty acids supplementation on serum adiponectin levels and some metabolic risk factors in women with polycystic ovary syndrome. Asia Pac. J. Clin. Nutr. 21:511–18
    [Google Scholar]
  99. 99. 
    Neschen S, Morino K, Rossbacher JC, Pongratz RL, Cline GW et al. 2006. Fish oil regulates adiponectin secretion by a peroxisome proliferator-activated receptor-γ-dependent mechanism in mice. Diabetes 55:924–28
    [Google Scholar]
  100. 100. 
    Noumi Y, Kawamura R, Tabara Y, Maruyama K, Takata Y et al. 2018. An inverse association between serum resistin levels and n-3 polyunsaturated fatty acids intake was strongest in the SNP-420 G/G genotype in the Japanese cohort: The Toon Genome Study. Clin. Endocrinol. 88:51–57
    [Google Scholar]
  101. 101. 
    Oh DY, Talukdar S, Bae EJ, Imamura T, Morinaga H et al. 2010. GPR120 is an omega-3 fatty acid receptor mediating potent anti-inflammatory and insulin-sensitizing effects. Cell 142:687–98
    [Google Scholar]
  102. 102. 
    Oliveira TE, Castro E, Belchior T, Andrade ML, Chaves-Filho AB et al. 2019. Fish oil protects wild type and uncoupling protein 1-deficient mice from obesity and glucose intolerance by increasing energy expenditure. Mol. Nutr. Food Res. 63:e1800813
    [Google Scholar]
  103. 103. 
    Oudart H, Groscolas R, Calgari C, Nibbelink M, Leray C et al. 1997. Brown fat thermogenesis in rats fed high-fat diets enriched with n-3 polyunsaturated fatty acids. Int. J. Obes. Relat. Metab. Disord. 21:955–62
    [Google Scholar]
  104. 104. 
    Paerregaard SI, Agerholm M, Serup AK, Ma T, Kiens B et al. 2016. FFAR4 (GPR120) signaling is not required for anti-inflammatory and insulin-sensitizing effects of omega-3 fatty acids. Mediat. Inflamm. 2016:1536047
    [Google Scholar]
  105. 105. 
    Pahlavani M, Kalupahana NS, Ramalingam L, Moustaid-Moussa N 2017. Regulation and functions of the renin-angiotensin system in white and brown adipose tissue. Compr. Physiol. 7:1137–50
    [Google Scholar]
  106. 106. 
    Pahlavani M, Ramalingam L, Miller EK, Scoggin S, Menikdiwela KR et al. 2019. Eicosapentaenoic acid reduces adiposity, glucose intolerance and increases oxygen consumption independently of uncoupling protein 1. Mol. Nutr. Food Res. 63:e1800821
    [Google Scholar]
  107. 107. 
    Pahlavani M, Razafimanjato F, Ramalingam L, Kalupahana NS, Moussa H et al. 2017. Eicosapentaenoic acid regulates brown adipose tissue metabolism in high-fat-fed mice and in clonal brown adipocytes. J. Nutr. Biochem. 39:101–9
    [Google Scholar]
  108. 108. 
    Pahlavani M, Wijayatunga NN, Kalupahana NS, Ramalingam L, Gunaratne PH et al. 2018. Transcriptomic and microRNA analyses of gene networks regulated by eicosapentaenoic acid in brown adipose tissue of diet-induced obese mice. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 1863:1523–31
    [Google Scholar]
  109. 109. 
    Parker HM, Cohn JS, O'Connor HT, Garg ML, Caterson ID et al. 2019. Effect of fish oil supplementation on hepatic and visceral fat in overweight men: a randomized controlled trial. Nutrients 11:475
    [Google Scholar]
  110. 110. 
    Patterson E, Wall R, Fitzgerald GF, Ross RP, Stanton C 2012. Health implications of high dietary omega-6 polyunsaturated fatty acids. J. Nutr. Metab. 2012:539426
    [Google Scholar]
  111. 111. 
    Petersen C, Round JL. 2014. Defining dysbiosis and its influence on host immunity and disease. Cell. Microbiol. 16:1024–33
    [Google Scholar]
  112. 112. 
    Pisani DF, Ghandour RA, Beranger GE, Le Faouder P, Chambard JC et al. 2014. The omega 6-fatty acid, arachidonic acid, regulates the conversion of white to brite adipocyte through a prostaglandin/calcium mediated pathway. Mol. Metab. 3:834–47
    [Google Scholar]
  113. 113. 
    Polus A, Kiec-Wilk B, Razny U, Gielicz A, Schmitz G, Dembinska-Kiec A 2015. Influence of dietary fatty acids on differentiation of human stromal vascular fraction preadipocytes. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 1851:1146–55
    [Google Scholar]
  114. 114. 
    Quesada-Lopez T, Cereijo R, Turatsinze JV, Planavila A, Cairo M et al. 2016. The lipid sensor GPR120 promotes brown fat activation and FGF21 release from adipocytes. Nat. Commun. 7:13479
    [Google Scholar]
  115. 115. 
    Ramalingam L, Menikdiwela KR, Clevenger S, Eboh T, Allen L et al. 2018. Maternal and postnatal supplementation of fish oil improves metabolic health of mouse male offspring. Obesity 26:1740–48
    [Google Scholar]
  116. 116. 
    Ravussin E, Galgani JE. 2011. The implication of brown adipose tissue for humans. Annu. Rev. Nutr. 31:33–47
    [Google Scholar]
  117. 117. 
    Reilly SM, Saltiel AR. 2017. Adapting to obesity with adipose tissue inflammation. Nat. Rev. Endocrinol. 13:633–43
    [Google Scholar]
  118. 118. 
    Rizos EC, Ntzani EE, Bika E, Kostapanos MS, Elisaf MS 2012. Association between omega-3 fatty acid supplementation and risk of major cardiovascular disease events: a systematic review and meta-analysis. JAMA 308:1024–33
    [Google Scholar]
  119. 119. 
    Rossmeisl M, Pavlisova J, Janovska P, Kuda O, Bardova K et al. 2018. Differential modulation of white adipose tissue endocannabinoid levels by n-3 fatty acids in obese mice and type 2 diabetic patients. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 1863:712–25
    [Google Scholar]
  120. 120. 
    Rudolph MC, Jackman MR, Presby DM, Houck JA, Webb PG et al. 2018. Low neonatal plasma n-6/n-3 PUFA ratios regulate offspring adipogenic potential and condition adult obesity resistance. Diabetes 67:651–61
    [Google Scholar]
  121. 121. 
    Rudolph MC, Young BE, Lemas DJ, Palmer CE, Hernandez TL et al. 2017. Early infant adipose deposition is positively associated with the n-6 to n-3 fatty acid ratio in human milk independent of maternal BMI. Int. J. Obes. 41:510–17
    [Google Scholar]
  122. 122. 
    Sakamoto T, Takahashi N, Sawaragi Y, Naknukool S, Yu R et al. 2013. Inflammation induced by RAW macrophages suppresses UCP1 mRNA induction via ERK activation in 10T1/2 adipocytes. Am. J. Physiol. Cell Physiol. 304:C729–38
    [Google Scholar]
  123. 123. 
    Samuel BS, Shaito A, Motoike T, Rey FE, Backhed F et al. 2008. Effects of the gut microbiota on host adiposity are modulated by the short-chain fatty-acid binding G protein-coupled receptor, Gpr41. PNAS 105:16767–72
    [Google Scholar]
  124. 124. 
    Scarpace PJ, Matheny M. 1998. Leptin induction of UCP1 gene expression is dependent on sympathetic innervation. Am. J. Physiol. 275:E259–64
    [Google Scholar]
  125. 125. 
    Scorletti E, Byrne CD. 2013. Omega-3 fatty acids, hepatic lipid metabolism, and nonalcoholic fatty liver disease. Annu. Rev. Nutr. 33:231–48
    [Google Scholar]
  126. 126. 
    Serhan CN. 2007. Resolution phase of inflammation: novel endogenous anti-inflammatory and proresolving lipid mediators and pathways. Annu. Rev. Immunol. 25:101–37
    [Google Scholar]
  127. 127. 
    Shen J, Tanida M, Niijima A, Nagai K 2007. In vivo effects of leptin on autonomic nerve activity and lipolysis in rats. Neurosci. Lett. 416:193–97
    [Google Scholar]
  128. 128. 
    Skulas-Ray AC, Wilson PWF, Harris WS, Brinton EA, Kris-Etherton PM et al. 2019. Omega-3 fatty acids for the management of hypertriglyceridemia: a science advisory from the American Heart Association. Circulation 140:e673–91
    [Google Scholar]
  129. 129. 
    Spencer M, Finlin BS, Unal R, Zhu B, Morris AJ et al. 2013. Omega-3 fatty acids reduce adipose tissue macrophages in human subjects with insulin resistance. Diabetes 62:1709–17
    [Google Scholar]
  130. 130. 
    Spiegelman BM, Flier JS. 2001. Obesity and the regulation of energy balance. Cell 104:531–43
    [Google Scholar]
  131. 131. 
    Takahashi Y, Ide T. 2000. Dietary n-3 fatty acids affect mRNA level of brown adipose tissue uncoupling protein 1, and white adipose tissue leptin and glucose transporter 4 in the rat. Br. J. Nutr. 84:175–84
    [Google Scholar]
  132. 132. 
    Taylor R, Al-Mrabeh A, Sattar N 2019. Understanding the mechanisms of reversal of type 2 diabetes. Lancet Diabetes Endocrinol 7:726–36
    [Google Scholar]
  133. 133. 
    Titos E, Rius B, Gonzalez-Periz A, Lopez-Vicario C, Moran-Salvador E et al. 2011. Resolvin D1 and its precursor docosahexaenoic acid promote resolution of adipose tissue inflammation by eliciting macrophage polarization toward an M2-like phenotype. J. Immunol. 187:5408–18
    [Google Scholar]
  134. 134. 
    Titos E, Rius B, Lopez-Vicario C, Alcaraz-Quiles J, Garcia-Alonso V et al. 2016. Signaling and immunoresolving actions of resolvin D1 in inflamed human visceral adipose tissue. J. Immunol. 197:3360–70
    [Google Scholar]
  135. 135. 
    Trayhurn P. 2014. Hypoxia and adipocyte physiology: implications for adipose tissue dysfunction in obesity. Annu. Rev. Nutr. 34:207–36
    [Google Scholar]
  136. 136. 
    van Baak MA, Mariman ECM 2019. Mechanisms of weight regain after weight loss—the role of adipose tissue. Nat. Rev. Endocrinol. 15:274–87
    [Google Scholar]
  137. 137. 
    Verboven K, Wouters K, Gaens K, Hansen D, Bijnen M et al. 2018. Abdominal subcutaneous and visceral adipocyte size, lipolysis and inflammation relate to insulin resistance in male obese humans. Sci. Rep. 8:4677
    [Google Scholar]
  138. 138. 
    Vidakovic AJ, Gishti O, Voortman T, Felix JF, Williams MA et al. 2016. Maternal plasma PUFA concentrations during pregnancy and childhood adiposity: the Generation R Study. Am. J. Clin. Nutr. 103:1017–25
    [Google Scholar]
  139. 139. 
    Vrieze A, Van Nood E, Holleman F, Salojarvi J, Kootte RS et al. 2012. Transfer of intestinal microbiota from lean donors increases insulin sensitivity in individuals with metabolic syndrome. Gastroenterology 143:913–16.e7
    [Google Scholar]
  140. 140. 
    Watson H, Mitra S, Croden FC, Taylor M, Wood HM et al. 2018. A randomised trial of the effect of omega-3 polyunsaturated fatty acid supplements on the human intestinal microbiota. Gut 67:1974–83
    [Google Scholar]
  141. 141. 
    Wijetunge S, Ratnayake R, Kotakadeniya H, Rosairo S, Albracht-Schulte K et al. 2019. Association between serum and adipose tissue resistin with dysglycemia in South Asian women. Nutr. Diabetes 9:5
    [Google Scholar]
  142. 142. 
    Winer S, Chan Y, Paltser G, Truong D, Tsui H et al. 2009. Normalization of obesity-associated insulin resistance through immunotherapy. Nat. Med. 15:921–29
    [Google Scholar]
  143. 143. 
    Wright SD, Ramos RA, Tobias PS, Ulevitch RJ, Mathison JC 1990. CD14, a receptor for complexes of lipopolysaccharide (LPS) and LPS binding protein. Science 249:1431–33
    [Google Scholar]
  144. 144. 
    Yan Y, Jiang W, Spinetti T, Tardivel A, Castillo R et al. 2013. Omega-3 fatty acids prevent inflammation and metabolic disorder through inhibition of NLRP3 inflammasome activation. Immunity 38:1154–63
    [Google Scholar]
  145. 145. 
    Younge N, Yang Q, Seed PC 2017. Enteral high fat-polyunsaturated fatty acid blend alters the pathogen composition of the intestinal microbiome in premature infants with an enterostomy. J. Pediatr. 181:93–101.e6
    [Google Scholar]
/content/journals/10.1146/annurev-nutr-122319-034142
Loading
/content/journals/10.1146/annurev-nutr-122319-034142
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error