1932

Abstract

Frontotemporal dementia is a group of early onset dementia syndromes linked to underlying frontotemporal lobar degeneration (FTLD) pathology that can be classified based on the formation of abnormal protein aggregates involving tau and two RNA binding proteins, TDP-43 and FUS. Although elucidation of the mechanisms leading to FTLD pathology is in progress, recent advances in genetics and neuropathology indicate that a majority of FTLD cases with proteinopathy involving RNA binding proteins show highly congruent genotype–phenotype correlations. Specifically, recent studies have uncovered the unique properties of the low-complexity domains in RNA binding proteins that can facilitate liquid–liquid phase separation in the formation of membraneless organelles. Furthermore, there is compelling evidence that mutations in FTLD genes lead to dysfunction in diverse cellular pathways that converge on the endolysosomal pathway, autophagy, and neuroinflammation. Together, these results provide key mechanistic insights into the pathogenesis and potential therapeutic targets of FTLD.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-pathmechdis-012418-012955
2019-01-24
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/pathmechdis/14/1/annurev-pathmechdis-012418-012955.html?itemId=/content/journals/10.1146/annurev-pathmechdis-012418-012955&mimeType=html&fmt=ahah

Literature Cited

  1. 1.  Miller BL 2013. Frontotemporal Dementia New York: Oxford Univ. Press
  2. 2.  Ratnavalli E, Brayne C, Dawson K, Hodges JR 2002. The prevalence of frontotemporal dementia. Neurology 58:1615–21
    [Google Scholar]
  3. 3.  Pick A 1892. Uber die Beziehungen der senilen Hirnatrophie zur Aphasie. Prag. Med. Wochenschr. 17:165–67
    [Google Scholar]
  4. 4.  Pick A 1904. Zur Symptomatologie der linksseitigen Schläfenlappenatrophie. Monatsschrift Psychiatr. Neurol. 16:378–88
    [Google Scholar]
  5. 5.  Alzheimer A 1911. Über eigenartige Krankheitsfälle des späteren Alters. Z. Gesamte Neurol. Psychiatr. 4:356–85
    [Google Scholar]
  6. 6.  Rascovsky K, Hodges JR, Knopman D, Mendez MF, Kramer JH et al. 2011. Sensitivity of revised diagnostic criteria for the behavioural variant of frontotemporal dementia. Brain 134:2456–77
    [Google Scholar]
  7. 7.  Gorno-Tempini ML, Hillis AE, Weintraub S, Kertesz A, Mendez M et al. 2011. Classification of primary progressive aphasia and its variants. Neurology 76:1006–14
    [Google Scholar]
  8. 8.  Boeve BF, Lang AE, Litvan I 2003. Corticobasal degeneration and its relationship to progressive supranuclear palsy and frontotemporal dementia. Ann. Neurol. 54:Suppl. 5S15–19
    [Google Scholar]
  9. 9.  Litvan I, Mangone CA, McKee A, Verny M, Parsa A et al. 1996. Natural history of progressive supranuclear palsy (Steele–Richardson–Olszewski syndrome) and clinical predictors of survival: a clinicopathological study. J. Neurol. Neurosurg. Psychiatry 60:615–20
    [Google Scholar]
  10. 10.  Seeley WW 2017. Mapping neurodegenerative disease onset and progression. Cold Spring Harb. Perspect. Biol. 9:a023622
    [Google Scholar]
  11. 11.  Seeley WW, Crawford RK, Zhou J, Miller BL, Greicius MD 2009. Neurodegenerative diseases target large-scale human brain networks. Neuron 62:42–52
    [Google Scholar]
  12. 12.  Raj A, Kuceyeski A, Weiner M 2012. A network diffusion model of disease progression in dementia. Neuron 73:1204–15
    [Google Scholar]
  13. 13.  Zhou J, Gennatas ED, Kramer JH, Miller BL, Seeley WW 2012. Predicting regional neurodegeneration from the healthy brain functional connectome. Neuron 73:1216–27
    [Google Scholar]
  14. 14.  Miller ZA, Rankin KP, Graff-Radford NR, Takada LT, Sturm VE et al. 2013. TDP-43 frontotemporal lobar degeneration and autoimmune disease. J. Neurol. Neurosurg. Psychiatry 84:956–62
    [Google Scholar]
  15. 15.  Miller ZA, Sturm VE, Camsari GB, Karydas A, Yokoyama JS et al. 2016. Increased prevalence of autoimmune disease within C9 and FTD/MND cohorts: completing the picture. Neurol. Neuroimmunol. Neuroinflammation 3:e301
    [Google Scholar]
  16. 16.  Broce I, Karch CM, Wen N, Fan CC, Wang Y et al. 2018. Immune-related genetic enrichment in frontotemporal dementia: an analysis of genome-wide association studies. PLOS Med 15:e1002487
    [Google Scholar]
  17. 17.  Kao AW, McKay A, Singh PP, Brunet A, Huang EJ 2017. Progranulin, lysosomal regulation and neurodegenerative disease. Nat. Rev. Neurosci. 18:325–33
    [Google Scholar]
  18. 18.  Lall D, Baloh RH 2017. Microglia and C9orf72 in neuroinflammation and ALS and frontotemporal dementia. J. Clin. Investig. 127:3250–58
    [Google Scholar]
  19. 19.  Mackenzie IR, Neumann M, Baborie A, Sampathu DM, Du Plessis D et al. 2011. A harmonized classification system for FTLD-TDP pathology. Acta Neuropathol 122:111–13
    [Google Scholar]
  20. 20.  Forman MS, Farmer J, Johnson JK, Clark CM, Arnold SE et al. 2006. Frontotemporal dementia: clinicopathological correlations. Ann. Neurol. 59:952–62
    [Google Scholar]
  21. 21.  McKee AC, Cairns NJ, Dickson DW, Folkerth RD, Keene CD et al. 2016. The first NINDS/NIBIB consensus meeting to define neuropathological criteria for the diagnosis of chronic traumatic encephalopathy. Acta Neuropathol 131:75–86
    [Google Scholar]
  22. 22.  Rodriguez RD, Suemoto CK, Molina M, Nascimento CF, Leite RE et al. 2016. Argyrophilic grain disease: demographics, clinical, and neuropathological features from a large autopsy study. J. Neuropathol. Exp. Neurol. 75:628–35
    [Google Scholar]
  23. 23.  Ahmed Z, Bigio EH, Budka H, Dickson DW, Ferrer I et al. 2013. Globular glial tauopathies (GGT): consensus recommendations. Acta Neuropathol 126:537–44
    [Google Scholar]
  24. 24.  Arai T, Hasegawa M, Akiyama H, Ikeda K, Nonaka T et al. 2006. TDP-43 is a component of ubiquitin-positive tau-negative inclusions in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Biochem. Biophys. Res. Commun. 351:602–11
    [Google Scholar]
  25. 25.  Neumann M, Sampathu DM, Kwong LK, Truax AC, Micsenyi MC et al. 2006. Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Science 314:130–33
    [Google Scholar]
  26. 26.  Nag S, Yu L, Capuano AW, Wilson RS, Leurgans SE et al. 2015. Hippocampal sclerosis and TDP-43 pathology in aging and Alzheimer disease. Ann. Neurol. 77:942–52
    [Google Scholar]
  27. 27.  Nelson PT, Trojanowski JQ, Abner EL, Al-Janabi OM, Jicha GA et al. 2016. “New old pathologies”: AD, PART, and cerebral age-related TDP-43 with sclerosis (CARTS). J. Neuropathol. Exp. Neurol. 75:482–98
    [Google Scholar]
  28. 28.  Baker M, Mackenzie IR, Pickering-Brown SM, Gass J, Rademakers R et al. 2006. Mutations in progranulin cause tau-negative frontotemporal dementia linked to chromosome 17. Nature 442:916–19
    [Google Scholar]
  29. 29.  Cruts M, Gijselinck I, van der Zee J, Engelborghs S, Wils H et al. 2006. Null mutations in progranulin cause ubiquitin-positive frontotemporal dementia linked to chromosome 17q21. Nature 442:920–24
    [Google Scholar]
  30. 30.  DeJesus-Hernandez M, Mackenzie IR, Boeve BF, Boxer AL, Baker M et al. 2011. Expanded GGGGCC hexanucleotide repeat in noncoding region of C9ORF72 causes chromosome 9p-linked FTD and ALS. Neuron 72:245–56
    [Google Scholar]
  31. 31.  Renton AE, Majounie E, Waite A, Simon-Sanchez J, Rollinson S et al. 2011. A hexanucleotide repeat expansion in C9ORF72 is the cause of chromosome 9p21-linked ALS–FTD. Neuron 72:257–68
    [Google Scholar]
  32. 32.  Hirsch-Reinshagen V, Pottier C, Nicholson AM, Baker M, Hsiung GR et al. 2017. Clinical and neuropathological features of ALS/FTD with TIA1 mutations. Acta Neuropathol. Commun. 5:96
    [Google Scholar]
  33. 33.  Mackenzie IR, Nicholson AM, Sarkar M, Messing J, Purice MD et al. 2017. TIA1 mutations in amyotrophic lateral sclerosis and frontotemporal dementia promote phase separation and alter stress granule dynamics. Neuron 95:808–16.e9
    [Google Scholar]
  34. 34.  Van Mossevelde S, van der Zee J, Gijselinck I, Engelborghs S, Sieben A et al. 2016. Clinical features of TBK1 carriers compared with C9orf72, GRN and non-mutation carriers in a Belgian cohort. Brain 139:452–67
    [Google Scholar]
  35. 35.  Koriath CA, Bocchetta M, Brotherhood E, Woollacott IO, Norsworthy P et al. 2017. The clinical, neuroanatomical, and neuropathologic phenotype of TBK1-associated frontotemporal dementia: a longitudinal case report. Alzheimer's Dement 6:75–81
    [Google Scholar]
  36. 36.  Pottier C, Bieniek KF, Finch N, van de Vorst M, Baker M et al. 2015. Whole-genome sequencing reveals important role for TBK1 and OPTN mutations in frontotemporal lobar degeneration without motor neuron disease. Acta Neuropathol 130:77–92
    [Google Scholar]
  37. 37.  Guinto JB, Ritson GP, Taylor JP, Forman MS 2007. Valosin-containing protein and the pathogenesis of frontotemporal dementia associated with inclusion body myopathy. Acta Neuropathol 114:55–61
    [Google Scholar]
  38. 38.  Kwiatkowski TJ Jr, Bosco DA, Leclerc AL, Tamrazian E, Vanderburg CR et al. 2009. Mutations in the FUS/TLS gene on chromosome 16 cause familial amyotrophic lateral sclerosis. Science 323:1205–8
    [Google Scholar]
  39. 39.  Vance C, Rogelj B, Hortobagyi T, De Vos KJ, Nishimura AL et al. 2009. Mutations in FUS, an RNA processing protein, cause familial amyotrophic lateral sclerosis type 6. Science 323:1208–11
    [Google Scholar]
  40. 40.  Mackenzie IRA, Neumann M 2017. Fused in sarcoma neuropathology in neurodegenerative disease. Cold Spring Harb. Perspect. Med. 7:a024299
    [Google Scholar]
  41. 41.  Shang Y, Huang EJ 2016. Mechanisms of FUS mutations in familial amyotrophic lateral sclerosis. Brain Res 1647:65–78
    [Google Scholar]
  42. 42.  Huang EJ, Zhang J, Geser F, Trojanowski JQ, Strober JB et al. 2010. Extensive FUS-immunoreactive pathology in juvenile amyotrophic lateral sclerosis with basophilic inclusions. Brain Pathol 20:1069–76
    [Google Scholar]
  43. 43.  Perry DC, Brown JA, Possin KL, Datta S, Trujillo A et al. 2017. Clinicopathological correlations in behavioural variant frontotemporal dementia. Brain 140:3329–45
    [Google Scholar]
  44. 44.  Pottier C, Ravenscroft TA, Sanchez-Contreras M, Rademakers R 2016. Genetics of FTLD: overview and what else we can expect from genetic studies. J. Neurochem. 138:Suppl. 132–53
    [Google Scholar]
  45. 45.  Polymenidou M, Lagier-Tourenne C, Hutt KR, Huelga SC, Moran J et al. 2011. Long pre-mRNA depletion and RNA missplicing contribute to neuronal vulnerability from loss of TDP-43. Nat. Neurosci. 14:459–68
    [Google Scholar]
  46. 46.  Tollervey JR, Curk T, Rogelj B, Briese M, Cereda M et al. 2011. Characterizing the RNA targets and position-dependent splicing regulation by TDP-43. Nat. Neurosci. 14:452–58
    [Google Scholar]
  47. 47.  Chou CC, Zhang Y, Umoh ME, Vaughan SW, Lorenzini I et al. 2018. TDP-43 pathology disrupts nuclear pore complexes and nucleocytoplasmic transport in ALS/FTD. Nat. Neurosci. 21:228–39
    [Google Scholar]
  48. 48.  Ling SC, Polymenidou M, Cleveland DW 2013. Converging mechanisms in ALS and FTD: disrupted RNA and protein homeostasis. Neuron 79:416–38
    [Google Scholar]
  49. 49.  Kato M, McKnight SL 2017. A solid-state conceptualization of information transfer from gene to message to protein. Annu. Rev. Biochem. 87:351–90
    [Google Scholar]
  50. 50.  Schneider JW, Gao Z, Li S, Farooqi M, Tang TS et al. 2008. Small-molecule activation of neuronal cell fate. Nat. Chem. Biol. 4:408–10
    [Google Scholar]
  51. 51.  Han TW, Kato M, Xie S, Wu LC, Mirzaei H et al. 2012. Cell-free formation of RNA granules: bound RNAs identify features and components of cellular assemblies. Cell 149:768–79
    [Google Scholar]
  52. 52.  Kato M, Han TW, Xie S, Shi K, Du X et al. 2012. Cell-free formation of RNA granules: Low complexity sequence domains form dynamic fibers within hydrogels. Cell 149:753–67
    [Google Scholar]
  53. 53.  Kwon I, Kato M, Xiang S, Wu L, Theodoropoulos P et al. 2013. Phosphorylation-regulated binding of RNA polymerase II to fibrous polymers of low-complexity domains. Cell 155:1049–60
    [Google Scholar]
  54. 54.  Schwartz JC, Ebmeier CC, Podell ER, Heimiller J, Taatjes DJ, Cech TR 2012. FUS binds the CTD of RNA polymerase II and regulates its phosphorylation at Ser2. Genes Dev 26:2690–95
    [Google Scholar]
  55. 55.  Schwartz JC, Wang X, Podell ER, Cech TR 2013. RNA seeds higher-order assembly of FUS protein. Cell Rep 5:918–25
    [Google Scholar]
  56. 56.  Li P, Banjade S, Cheng HC, Kim S, Chen B et al. 2012. Phase transitions in the assembly of multivalent signalling proteins. Nature 483:336–40
    [Google Scholar]
  57. 57.  Molliex A, Temirov J, Lee J, Coughlin M, Kanagaraj AP et al. 2015. Phase separation by low complexity domains promotes stress granule assembly and drives pathological fibrillization. Cell 163:123–33
    [Google Scholar]
  58. 58.  Patel A, Lee HO, Jawerth L, Maharana S, Jahnel M et al. 2015. A liquid-to-solid phase transition of the ALS protein FUS accelerated by disease mutation. Cell 162:1066–77
    [Google Scholar]
  59. 59.  Burke KA, Janke AM, Rhine CL, Fawzi NL 2015. Residue-by-residue view of in vitro FUS granules that bind the C-terminal domain of RNA polymerase II. Mol. Cell 60:231–41
    [Google Scholar]
  60. 60.  Lin Y, Protter DS, Rosen MK, Parker R 2015. Formation and maturation of phase-separated liquid droplets by RNA-binding proteins. Mol. Cell 60:208–19
    [Google Scholar]
  61. 61.  Alberti S, Halfmann R, King O, Kapila A, Lindquist S 2009. A systematic survey identifies prions and illuminates sequence features of prionogenic proteins. Cell 137:146–58
    [Google Scholar]
  62. 62.  Murray DT, Kato M, Lin Y, Thurber KR, Hung I et al. 2017. Structure of FUS protein fibrils and its relevance to self-assembly and phase separation of low-complexity domains. Cell 171:615–27.e16
    [Google Scholar]
  63. 63.  Deng Q, Holler CJ, Taylor G, Hudson KF, Watkins W et al. 2014. FUS is phosphorylated by DNA-PK and accumulates in the cytoplasm after DNA damage. J. Neurosci. 34:7802–13
    [Google Scholar]
  64. 64.  Monahan Z, Ryan VH, Janke AM, Burke KA, Rhoads SN et al. 2017. Phosphorylation of the FUS low-complexity domain disrupts phase separation, aggregation, and toxicity. EMBO J 36:2951–67
    [Google Scholar]
  65. 65.  Feric M, Vaidya N, Harmon TS, Mitrea DM, Zhu L et al. 2016. Coexisting liquid phases underlie nucleolar subcompartments. Cell 165:1686–97
    [Google Scholar]
  66. 66.  Shin Y, Berry J, Pannucci N, Haataja MP, Toettcher JE, Brangwynne CP 2017. Spatiotemporal control of intracellular phase transitions using light-activated optoDroplets. Cell 168:159–71.e14
    [Google Scholar]
  67. 67.  Shin Y, Brangwynne CP 2017. Liquid phase condensation in cell physiology and disease. Science 357:eaaf4382
    [Google Scholar]
  68. 68.  Protter DS, Parker R 2016. Principles and properties of stress granules. Trends Cell Biol 26:668–79
    [Google Scholar]
  69. 69.  Kanai Y, Dohmae N, Hirokawa N 2004. Kinesin transports RNA: isolation and characterization of an RNA-transporting granule. Neuron 43:513–25
    [Google Scholar]
  70. 70.  Hoell JI, Larsson E, Runge S, Nusbaum JD, Duggimpudi S et al. 2011. RNA targets of wild-type and mutant FET family proteins. Nat. Struct. Mol. Biol. 18:1428–31
    [Google Scholar]
  71. 71.  Ishigaki S, Masuda A, Fujioka Y, Iguchi Y, Katsuno M et al. 2012. Position-dependent FUS–RNA interactions regulate alternative splicing events and transcriptions. Sci. Rep. 2:529
    [Google Scholar]
  72. 72.  Takahama K, Takada A, Tada S, Shimizu M, Sayama K et al. 2013. Regulation of telomere length by G-quadruplex telomere DNA- and TERRA-binding protein TLS/FUS. Chem. Biol. 20:341–50
    [Google Scholar]
  73. 73.  Murakami T, Qamar S, Lin JQ, Schierle GS, Rees E et al. 2015. ALS/FTD Mutation-induced phase transition of FUS liquid droplets and reversible hydrogels into irreversible hydrogels impairs RNP granule function. Neuron 88:678–90
    [Google Scholar]
  74. 74.  Kim HJ, Kim NC, Wang YD, Scarborough EA, Moore J et al. 2013. Mutations in prion-like domains in hnRNPA2B1 and hnRNPA1 cause multisystem proteinopathy and ALS. Nature 495:467–73
    [Google Scholar]
  75. 75.  Todd PK, Paulson HL 2010. RNA-mediated neurodegeneration in repeat expansion disorders. Ann. Neurol. 67:291–300
    [Google Scholar]
  76. 76.  Donnelly CJ, Zhang PW, Pham JT, Haeusler AR, Mistry NA et al. 2013. RNA toxicity from the ALS/FTD C9ORF72 expansion is mitigated by antisense intervention. Neuron 80:415–28
    [Google Scholar]
  77. 77.  Sareen D, O'Rourke JG, Meera P, Muhammad AK, Grant S et al. 2013. Targeting RNA foci in iPSC-derived motor neurons from ALS patients with a C9ORF72 repeat expansion. Sci. Transl. Med. 5:208ra149
    [Google Scholar]
  78. 78.  Almeida S, Gascon E, Tran H, Chou HJ, Gendron TF et al. 2013. Modeling key pathological features of frontotemporal dementia with C9ORF72 repeat expansion in iPSC-derived human neurons. Acta Neuropathol 126:385–99
    [Google Scholar]
  79. 79.  O'Rourke JG, Bogdanik L, Muhammad A, Gendron TF, Kim KJ et al. 2015. C9orf72 BAC transgenic mice display typical pathologic features of ALS/FTD. Neuron 88:892–901
    [Google Scholar]
  80. 80.  Peters OM, Cabrera GT, Tran H, Gendron TF, McKeon JE et al. 2015. Human C9ORF72 hexanucleotide expansion reproduces RNA foci and dipeptide repeat proteins but not neurodegeneration in BAC transgenic mice. Neuron 88:902–9
    [Google Scholar]
  81. 81.  Liu Y, Pattamatta A, Zu T, Reid T, Bardhi O et al. 2016. C9orf72 BAC mouse model with motor deficits and neurodegenerative features of ALS/FTD. Neuron 90:521–34
    [Google Scholar]
  82. 82.  Jiang J, Zhu Q, Gendron TF, Saberi S, McAlonis-Downes M et al. 2016. Gain of toxicity from ALS/FTD-linked repeat expansions in C9ORF72 is alleviated by antisense oligonucleotides targeting GGGGCC-containing RNAs. Neuron 90:535–50
    [Google Scholar]
  83. 83.  Lagier-Tourenne C, Baughn M, Rigo F, Sun S, Liu P et al. 2013. Targeted degradation of sense and antisense C9orf72 RNA foci as therapy for ALS and frontotemporal degeneration. PNAS 110:E4530–39
    [Google Scholar]
  84. 84.  Reddy K, Zamiri B, Stanley SY, Macgregor RB Jr, Pearson CE 2013. The disease-associated r(GGGGCC)n repeat from the C9orf72 gene forms tract length–dependent uni- and multimolecular RNA G-quadruplex structures. J. Biol. Chem 2889860–66
    [Google Scholar]
  85. 85.  Haeusler AR, Donnelly CJ, Periz G, Simko EA, Shaw PG et al. 2014. C9orf72 nucleotide repeat structures initiate molecular cascades of disease. Nature 507:195–200
    [Google Scholar]
  86. 86.  Freibaum BD, Lu Y, Lopez-Gonzalez R, Kim NC, Almeida S et al. 2015. GGGGCC repeat expansion in C9orf72 compromises nucleocytoplasmic transport. Nature 525:129–33
    [Google Scholar]
  87. 87.  Zhang K, Donnelly CJ, Haeusler AR, Grima JC, Machamer JB et al. 2015. The C9orf72 repeat expansion disrupts nucleocytoplasmic transport. Nature 525:56–61
    [Google Scholar]
  88. 88.  Ash PE, Bieniek KF, Gendron TF, Caulfield T, Lin WL et al. 2013. Unconventional translation of C9ORF72 GGGGCC expansion generates insoluble polypeptides specific to c9FTD/ALS. Neuron 77:639–46
    [Google Scholar]
  89. 89.  Mori K, Weng SM, Arzberger T, May S, Rentzsch K et al. 2013. The C9orf72 GGGGCC repeat is translated into aggregating dipeptide-repeat proteins in FTLD/ALS. Science 339:1335–38
    [Google Scholar]
  90. 90.  Mizielinska S, Gronke S, Niccoli T, Ridler CE, Clayton EL et al. 2014. C9orf72 repeat expansions cause neurodegeneration in Drosophila through arginine-rich proteins. Science 345:1192–94
    [Google Scholar]
  91. 91.  Chew J, Gendron TF, Prudencio M, Sasaguri H, Zhang YJ et al. 2015. Neurodegeneration. C9ORF72 repeat expansions in mice cause TDP-43 pathology, neuronal loss, and behavioral deficits. Science 348:1151–54
    [Google Scholar]
  92. 92.  Vatsavayai SC, Yoon SJ, Gardner RC, Gendron TF, Vargas JN et al. 2016. Timing and significance of pathological features in C9orf72 expansion–associated frontotemporal dementia. Brain 139:3202–16
    [Google Scholar]
  93. 93.  Kwon I, Xiang S, Kato M, Wu L, Theodoropoulos P et al. 2014. Poly-dipeptides encoded by the C9orf72 repeats bind nucleoli, impede RNA biogenesis, and kill cells. Science 345:1139–45
    [Google Scholar]
  94. 94.  Lee KH, Zhang P, Kim HJ, Mitrea DM, Sarkar M et al. 2016. C9orf72 dipeptide repeats impair the assembly, dynamics, and function of membrane-less organelles. Cell 167:774–88.e17
    [Google Scholar]
  95. 95.  Lin Y, Mori E, Kato M, Xiang S, Wu L et al. 2016. Toxic PR poly-dipeptides encoded by the C9orf72 repeat expansion target LC domain polymers. Cell 167:789–802.e12
    [Google Scholar]
  96. 96.  Gijselinck I, Van Mossevelde S, van der Zee J, Sieben A, Engelborghs S et al. 2016. The C9orf72 repeat size correlates with onset age of disease, DNA methylation and transcriptional downregulation of the promoter. Mol. Psychiatry 21:1112–24
    [Google Scholar]
  97. 97.  Xi Z, Rainero I, Rubino E, Pinessi L, Bruni AC et al. 2014. Hypermethylation of the CpG-island near the C9orf72 G4C2–repeat expansion in FTLD patients. Hum. Mol. Genet. 23:5630–37
    [Google Scholar]
  98. 98.  Xi Z, Zhang M, Bruni AC, Maletta RG, Colao R et al. 2015. The C9orf72 repeat expansion itself is methylated in ALS and FTLD patients. Acta Neuropathol 129:715–27
    [Google Scholar]
  99. 99.  Levine TP, Daniels RD, Gatta AT, Wong LH, Hayes MJ 2013. The product of C9orf72, a gene strongly implicated in neurodegeneration, is structurally related to DENN Rab-GEFs. Bioinformatics 29:499–503
    [Google Scholar]
  100. 100.  Amick J, Roczniak-Ferguson A, Ferguson SM 2016. C9orf72 binds SMCR8, localizes to lysosomes, and regulates mTORC1 signaling. Mol. Biol. Cell 27:3040–51
    [Google Scholar]
  101. 101.  Sellier C, Campanari ML, Julie Corbier C, Gaucherot A, Kolb-Cheynel I et al. 2016. Loss of C9ORF72 impairs autophagy and synergizes with polyQ Ataxin-2 to induce motor neuron dysfunction and cell death. EMBO J 35:1276–97
    [Google Scholar]
  102. 102.  Yang M, Liang C, Swaminathan K, Herrlinger S, Lai F et al. 2016. A C9ORF72/SMCR8-containing complex regulates ULK1 and plays a dual role in autophagy. Sci. Adv. 2:e1601167
    [Google Scholar]
  103. 103.  Sullivan PM, Zhou X, Robins AM, Paushter DH, Kim D et al. 2016. The ALS/FTLD associated protein C9orf72 associates with SMCR8 and WDR41 to regulate the autophagy–lysosome pathway. Acta Neuropathol. Commun. 4:51
    [Google Scholar]
  104. 104.  Burberry A, Suzuki N, Wang JY, Moccia R, Mordes DA et al. 2016. Loss-of-function mutations in the C9ORF72 mouse ortholog cause fatal autoimmune disease. Sci. Transl. Med. 8:347ra93
    [Google Scholar]
  105. 105.  O'Rourke JG, Bogdanik L, Yanez A, Lall D, Wolf AJ et al. 2016. C9orf72 is required for proper macrophage and microglial function in mice. Science 351:1324–29
    [Google Scholar]
  106. 106.  Ciura S, Lattante S, Le Ber I, Latouche M, Tostivint H et al. 2013. Loss of function of C9orf72 causes motor deficits in a zebrafish model of amyotrophic lateral sclerosis. Ann. Neurol. 74:180–87
    [Google Scholar]
  107. 107.  Mackenzie IR 2007. The neuropathology and clinical phenotype of FTD with progranulin mutations. Acta Neuropathol 114:49–54
    [Google Scholar]
  108. 108.  Hu F, Padukkavidana T, Vaegter CB, Brady OA, Zheng Y et al. 2010. Sortilin-mediated endocytosis determines levels of the frontotemporal dementia protein, progranulin. Neuron 68:654–67
    [Google Scholar]
  109. 109.  Capell A, Liebscher S, Fellerer K, Brouwers N, Willem M et al. 2011. Rescue of progranulin deficiency associated with frontotemporal lobar degeneration by alkalizing reagents and inhibition of vacuolar ATPase. J. Neurosci. 31:1885–94
    [Google Scholar]
  110. 110.  Salazar DA, Butler VJ, Argouarch AR, Hsu TY, Mason A et al. 2015. The progranulin cleavage products, granulins, exacerbate TDP-43 toxicity and increase TDP-43 levels. J. Neurosci. 35:9315–28
    [Google Scholar]
  111. 111.  Zhou X, Sun L, Bastos de Oliveira F, Qi X, Brown WJ et al. 2015. Prosaposin facilitates sortilin-independent lysosomal trafficking of progranulin. J. Cell Biol. 210:991–1002
    [Google Scholar]
  112. 112.  Nicholson AM, Finch NA, Almeida M, Perkerson RB, van Blitterswijk M et al. 2016. Prosaposin is a regulator of progranulin levels and oligomerization. Nat. Commun. 7:11992
    [Google Scholar]
  113. 113.  Kishimoto Y, Hiraiwa M, O'Brien JS 1992. Saposins: structure, function, distribution, and molecular genetics. J. Lipid Res. 33:1255–67
    [Google Scholar]
  114. 114.  Tayama M, O'Brien JS, Kishimoto Y 1992. Distribution of saposins (sphingolipid activator proteins) in tissues of lysosomal storage disease patients. J. Mol. Neurosci. 3:171–75
    [Google Scholar]
  115. 115.  Meyer RC, Giddens MM, Coleman BM, Hall RA 2014. The protective role of prosaposin and its receptors in the nervous system. Brain Res 1585:1–12
    [Google Scholar]
  116. 116.  Cotman SL, Karaa A, Staropoli JF, Sims KB 2013. Neuronal ceroid lipofuscinosis: impact of recent genetic advances and expansion of the clinicopathologic spectrum. Curr. Neurol. Neurosci. Rep. 13:366
    [Google Scholar]
  117. 117.  Almeida MR, Macario MC, Ramos L, Baldeiras I, Ribeiro MH, Santana I 2016. Portuguese family with the co-occurrence of frontotemporal lobar degeneration and neuronal ceroid lipofuscinosis phenotypes due to progranulin gene mutation. Neurobiol. Aging 41:200.e1–5
    [Google Scholar]
  118. 118.  Smith KR, Damiano J, Franceschetti S, Carpenter S, Canafoglia L et al. 2012. Strikingly different clinicopathological phenotypes determined by progranulin-mutation dosage. Am. J. Hum. Genet. 90:1102–7
    [Google Scholar]
  119. 119.  Gotzl JK, Mori K, Damme M, Fellerer K, Tahirovic S et al. 2014. Common pathobiochemical hallmarks of progranulin-associated frontotemporal lobar degeneration and neuronal ceroid lipofuscinosis. Acta Neuropathol 127:845–60
    [Google Scholar]
  120. 120.  Ward ME, Chen R, Huang HY, Ludwig C, Telpoukhovskaia M et al. 2017. Individuals with progranulin haploinsufficiency exhibit features of neuronal ceroid lipofuscinosis. Sci. Transl. Med. 9:eaah5642
    [Google Scholar]
  121. 121.  Ahmed Z, Sheng H, Xu YF, Lin WL, Innes AE et al. 2010. Accelerated lipofuscinosis and ubiquitination in granulin knockout mice suggest a role for progranulin in successful aging. Am. J. Pathol. 177:311–24
    [Google Scholar]
  122. 122.  Martens LH, Zhang J, Barmada SJ, Zhou P, Kamiya S et al. 2012. Progranulin deficiency promotes neuroinflammation and neuron loss following toxin-induced injury. J. Clin. Investig. 122:3955–59
    [Google Scholar]
  123. 123.  Yin F, Banerjee R, Thomas B, Zhou P, Qian L et al. 2010. Exaggerated inflammation, impaired host defense, and neuropathology in progranulin-deficient mice. J. Exp. Med. 207:117–28
    [Google Scholar]
  124. 124.  Yin F, Dumont M, Banerjee R, Ma Y, Li H et al. 2010. Behavioral deficits and progressive neuropathology in progranulin-deficient mice: a mouse model of frontotemporal dementia. FASEB J 24:4639–47
    [Google Scholar]
  125. 125.  Klein ZA, Takahashi H, Ma M, Stagi M, Zhou M et al. 2017. Loss of TMEM106B ameliorates lysosomal and frontotemporal dementia-related phenotypes in progranulin-deficient mice. Neuron 95:281–96.e6
    [Google Scholar]
  126. 126.  Filiano AJ, Martens LH, Young AH, Warmus BA, Zhou P et al. 2013. Dissociation of frontotemporal dementia–related deficits and neuroinflammation in progranulin haploinsufficient mice. J. Neurosci. 33:5352–61
    [Google Scholar]
  127. 127.  Evers BM, Rodriguez-Navas C, Tesla RJ, Prange-Kiel J, Wasser CR et al. 2017. Lipidomic and transcriptomic basis of lysosomal dysfunction in progranulin deficiency. Cell Rep 20:2565–74
    [Google Scholar]
  128. 128.  Nixon RA 2013. The role of autophagy in neurodegenerative disease. Nat. Med. 19:983–97
    [Google Scholar]
  129. 129.  Aharon-Peretz J, Badarny S, Rosenbaum H, Gershoni-Baruch R 2005. Mutations in the glucocerebrosidase gene and Parkinson disease: phenotype–genotype correlation. Neurology 65:1460–61
    [Google Scholar]
  130. 130.  Mitsui J, Mizuta I, Toyoda A, Ashida R, Takahashi Y et al. 2009. Mutations for Gaucher disease confer high susceptibility to Parkinson disease. Arch. Neurol. 66:571–76
    [Google Scholar]
  131. 131.  Ramirez A, Heimbach A, Grundemann J, Stiller B, Hampshire D et al. 2006. Hereditary parkinsonism with dementia is caused by mutations in ATP13A2, encoding a lysosomal type 5 P-type ATPase. Nat. Genet. 38:1184–91
    [Google Scholar]
  132. 132.  Schuur M, Ikram MA, van Swieten JC, Isaacs A, Vergeer-Drop JM et al. 2011. Cathepsin D gene and the risk of Alzheimer's disease: a population-based study and meta-analysis. Neurobiol. Aging 32:1607–14
    [Google Scholar]
  133. 133.  Nguyen AD, Nguyen TA, Zhang J, Devireddy S, Zhou P et al. 2018. Murine knockin model for progranulin-deficient frontotemporal dementia with nonsense-mediated mRNA decay. PNAS 115:E2849–58
    [Google Scholar]
  134. 134.  Rabouille C 2017. Pathways of unconventional protein secretion. Trends Cell Biol 27:230–40
    [Google Scholar]
  135. 135.  Laplante M, Sabatini DM 2012. mTOR signaling in growth control and disease. Cell 149:274–93
    [Google Scholar]
  136. 136.  Sardiello M, Palmieri M, di Ronza A, Medina DL, Valenza M et al. 2009. A gene network regulating lysosomal biogenesis and function. Science 325:473–77
    [Google Scholar]
  137. 137.  Settembre C, Di Malta C, Polito VA, Garcia Arencibia M, Vetrini F et al. 2011. TFEB links autophagy to lysosomal biogenesis. Science 332:1429–33
    [Google Scholar]
  138. 138.  Kao AW, Eisenhut RJ, Martens LH, Nakamura A, Huang A et al. 2011. A neurodegenerative disease mutation that accelerates the clearance of apoptotic cells. PNAS 108:4441–46
    [Google Scholar]
  139. 139.  Lui H, Zhang J, Makinson SR, Cahill MK, Kelley KW et al. 2016. Progranulin deficiency promotes circuit-specific synaptic pruning by microglia via complement activation. Cell 165:921–35
    [Google Scholar]
  140. 140.  Chang MC, Srinivasan K, Friedman BA, Suto E, Modrusan Z et al. 2017. Progranulin deficiency causes impairment of autophagy and TDP-43 accumulation. J. Exp. Med. 214:2611–28
    [Google Scholar]
  141. 141.  Takahashi H, Klein ZA, Bhagat SM, Kaufman AC, Kostylev MA et al. 2017. Opposing effects of progranulin deficiency on amyloid and tau pathologies via microglial TYROBP network. Acta Neuropathol 133:785–807
    [Google Scholar]
  142. 142.  Stephan AH, Barres BA, Stevens B 2012. The complement system: an unexpected role in synaptic pruning during development and disease. Annu. Rev. Neurosci. 35:369–89
    [Google Scholar]
  143. 143.  Stevens B, Allen NJ, Vazquez LE, Howell GR, Christopherson KS et al. 2007. The classical complement cascade mediates CNS synapse elimination. Cell 131:1164–78
    [Google Scholar]
  144. 144.  Cadwell K, Debnath J 2018. Beyond self-eating: the control of nonautophagic functions and signaling pathways by autophagy-related proteins. J. Cell Biol. 217:813–22
    [Google Scholar]
  145. 145.  Shaid S, Brandts CH, Serve H, Dikic I 2013. Ubiquitination and selective autophagy. Cell Death Differ 20:21–30
    [Google Scholar]
  146. 146.  Tresse E, Salomons FA, Vesa J, Bott LC, Kimonis V et al. 2010. VCP/p97 is essential for maturation of ubiquitin-containing autophagosomes and this function is impaired by mutations that cause IBMPFD. Autophagy 6:217–27
    [Google Scholar]
  147. 147.  Maruyama H, Morino H, Ito H, Izumi Y, Kato H et al. 2010. Mutations of optineurin in amyotrophic lateral sclerosis. Nature 465:223–26
    [Google Scholar]
  148. 148.  Shen WC, Li HY, Chen GC, Chern Y, Tu PH 2015. Mutations in the ubiquitin-binding domain of OPTN/optineurin interfere with autophagy-mediated degradation of misfolded proteins by a dominant-negative mechanism. Autophagy 11:685–700
    [Google Scholar]
  149. 149.  Cassel JA, Reitz AB 2013. Ubiquilin-2 (UBQLN2) binds with high affinity to the C-terminal region of TDP-43 and modulates TDP-43 levels in H4 cells: characterization of inhibition by nucleic acids and 4-aminoquinolines. Biochim. Biophys. Acta 1834:964–71
    [Google Scholar]
  150. 150.  Osaka M, Ito D, Suzuki N 2016. Disturbance of proteasomal and autophagic protein degradation pathways by amyotrophic lateral sclerosis–linked mutations in ubiquilin 2. Biochem. Biophys. Res. Commun. 472:324–31
    [Google Scholar]
  151. 151.  Wu Q, Liu M, Huang C, Liu X, Huang B et al. 2015. Pathogenic Ubqln2 gains toxic properties to induce neuron death. Acta Neuropathol 129:417–28
    [Google Scholar]
  152. 152.  Rubino E, Rainero I, Chio A, Rogaeva E, Galimberti D et al. 2012. SQSTM1 mutations in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Neurology 79:1556–62
    [Google Scholar]
  153. 153.  Buchan JR, Kolaitis RM, Taylor JP, Parker R 2013. Eukaryotic stress granules are cleared by autophagy and Cdc48/VCP function. Cell 153:1461–74
    [Google Scholar]
  154. 154.  Seguin SJ, Morelli FF, Vinet J, Amore D, De Biasi S et al. 2014. Inhibition of autophagy, lysosome and VCP function impairs stress granule assembly. Cell Death Differ 21:1838–51
    [Google Scholar]
  155. 155.  Deng HX, Chen W, Hong ST, Boycott KM, Gorrie GH et al. 2011. Mutations in UBQLN2 cause dominant X-linked juvenile and adult-onset ALS and ALS/dementia. Nature 477:211–15
    [Google Scholar]
  156. 156.  Zhang X, Lin Y, Eschmann NA, Zhou H, Rauch JN et al. 2017. RNA stores tau reversibly in complex coacervates. PLOS Biol 15:e2002183
    [Google Scholar]
/content/journals/10.1146/annurev-pathmechdis-012418-012955
Loading
/content/journals/10.1146/annurev-pathmechdis-012418-012955
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error