1932

Abstract

Nodding syndrome is a rare, enigmatic form of pediatric epilepsy that has occurred in an epidemic fashion beginning in the early 2000s in geographically distinct regions of Africa. Despite extensive investigation, the etiology of nodding syndrome remains unclear, although much progress has been made in understanding the pathogenesis of the disease, as well as in treatment and prevention. Nodding syndrome is recognized as a defined disease entity, but it is likely one manifestation along a continuum of –associated neurological complications. This review examines the epidemiology of nodding syndrome and its association with environmental factors. It provides a critical analysis of the data that support or contradict the leading hypotheses of the etiologies underlying the pathogenesis of the syndrome. It also highlights the important progress made in treating and preventing this devastating neurological disease and prioritizes important areas for future research.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-pathmechdis-012419-032748
2020-01-24
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/pathol/15/1/annurev-pathmechdis-012419-032748.html?itemId=/content/journals/10.1146/annurev-pathmechdis-012419-032748&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Dowell SF, Sejvar JJ, Riek L, Vandemaele KA, Lamunu M et al. 2013. Nodding syndrome. Emerg. Infect. Dis. 19:1374–84
    [Google Scholar]
  2. 2. 
    Foltz JL, Makumbi I, Sejvar JJ, Malimbo M, Ndyomugyenyi R et al. 2013. An epidemiologic investigation of potential risk factors for nodding syndrome in Kitgum District, Uganda. PLOS ONE 8:e66419
    [Google Scholar]
  3. 3. 
    Sejvar JJ, Kakooza AM, Foltz JL, Makumbi I, Atai-Omoruto AD et al. 2013. Clinical, neurological, and electrophysiological features of nodding syndrome in Kitgum, Uganda: an observational case series. Lancet Neurol 12:166–74
    [Google Scholar]
  4. 4. 
    Tumwine JK, Vandemaele K, Chungong S, Richer M, Anker M et al. 2012. Clinical and epidemiologic characteristics of nodding syndrome in Mundri County, southern Sudan. Afr. Health Sci. 12:242–48
    [Google Scholar]
  5. 5. 
    Winkler AS, Friedrich K, Velicheti S, Dharsee J, Konig R et al. 2013. MRI findings in people with epilepsy and nodding syndrome in an area endemic for onchocerciasis: an observational study. Afr. Health Sci. 13:529–40
    [Google Scholar]
  6. 6. 
    Idro R, Ogwang R, Kayongo E, Gumisiriza N, Lanyero A et al. 2018. The natural history of nodding syndrome. Epileptic Disord 20:508–16
    [Google Scholar]
  7. 7. 
    Winkler AS, Friedrich K, Meindl M, Kidunda A, Nassri A et al. 2010. Clinical characteristics of people with head nodding in southern Tanzania. Trop. Dr. 40:173–75
    [Google Scholar]
  8. 8. 
    Winkler AS, Friedrich K, Konig R, Meindl M, Helbok R et al. 2008. The head nodding syndrome—clinical classification and possible causes. Epilepsia 49:2008–15
    [Google Scholar]
  9. 9. 
    Arinzechi EO, Ogunrin OA, Nwosu CM, Nwani PO, Enwereji KO et al. 2019. Seizure frequency and risk of cognitive impairment in people living with epilepsy in a sub-urban community in South Eastern Nigeria. J. Clin. Neurosci. 59:98–105
    [Google Scholar]
  10. 10. 
    Kimura N, Takahashi Y, Shigematsu H, Imai K, Ikeda H et al. 2019. Risk factors of cognitive impairment in pediatric epilepsy patients with focal cortical dysplasia. Brain Dev 41:77–84
    [Google Scholar]
  11. 11. 
    Sillanpaa M, Saarinen MM, Karrasch M, Schmidt D, Hermann BP 2019. Neurocognition in childhood epilepsy: impact on mortality and complete seizure remission 50 years later. Epilepsia 60:131–38
    [Google Scholar]
  12. 12. 
    Vrinda M, Arun S, Srikumar BN, Kutty BM, Shankaranarayana Rao BS 2019. Temporal lobe epilepsy–induced neurodegeneration and cognitive deficits: implications for aging. J. Chem. Neuroanat. 95:146–53
    [Google Scholar]
  13. 13. 
    Idro R, Opoka RO, Aanyu HT, Kakooza-Mwesige A, Piloya-Were T et al. 2013. Nodding syndrome in Ugandan children—clinical features, brain imaging and complications: a case series. BMJ Open 3:e002540
    [Google Scholar]
  14. 14. 
    Spencer PS, Kitara DL, Gazda SK, Winkler AS 2016. Nodding syndrome: 2015 International Conference Report and Gulu Accord. eNeurologicalSci 3:80–83
    [Google Scholar]
  15. 15. 
    Jilek-Aall L. 1965. Epilepsy in the Wapogoro Tribe in Tanganyika. Acta Psychiatr. Scand. 41:57–86
    [Google Scholar]
  16. 16. 
    Aceng JR. 2018. Statement on Nodding Syndrome in Northern Uganda Kampala, Uganda: Minist. Health
  17. 17. 
    MMWR (Morbid. Mortal. Wkly. Rep.) 2012. Nodding syndrome—South Sudan, 2011. MMWR 61:52–54
    [Google Scholar]
  18. 18. 
    Matuja WB, Kilonzo G, Mbena P, Mwango'mbola RL, Wong P et al. 2001. Risk factors for epilepsy in a rural area in Tanzania: a community-based case–control study. Neuroepidemiology 20:242–47
    [Google Scholar]
  19. 19. 
    Kaiser C, Asaba G, Rubaale T, Tukesiga E, Kipp W 2018. Onchocerciasis-associated epilepsy with head nodding seizures–nodding syndrome: a case series of 15 patients from Western Uganda, 1994. Am. J. Trop. Med. Hyg. 99:1211–18
    [Google Scholar]
  20. 20. 
    Siewe JFN, Ngarka L, Tatah G, Mengnjo MK, Nfor LN et al. 2019. Clinical presentations of onchocerciasis-associated epilepsy (OAE) in Cameroon. Epilepsy Behav 90:70–78
    [Google Scholar]
  21. 21. 
    Mukendi D, Tepage F, Akonda I, Siewe JNF, Rotsaert A et al. 2019. High prevalence of epilepsy in an onchocerciasis endemic health zone in the Democratic Republic of the Congo, despite 14 years of community-directed treatment with ivermectin: a mixed-method assessment. Int. J. Infect. Dis. 79:187–94
    [Google Scholar]
  22. 22. 
    Echodu R, Edema H, Malinga GM, Hendy A, Colebunders R et al. 2018. Is nodding syndrome in northern Uganda linked to consumption of mycotoxin contaminated food grains?. BMC Res. Notes 11:678
    [Google Scholar]
  23. 23. 
    Obol JH, Arony DA, Wanyama R, Moi KL, Bodo B et al. 2016. Reduced plasma concentrations of vitamin B6 and increased plasma concentrations of the neurotoxin 3-hydroxykynurenine are associated with nodding syndrome: a case control study in Gulu and Amuru districts, Northern Uganda. Pan. Afr. Med. J. 24:123
    [Google Scholar]
  24. 24. 
    WHO (World Health Organ.) 2012. International Scientific Meeting on Nodding Syndrome. Kampala, Uganda: 30 July–1 August 2012. Meeting Report Geneva: WHO
  25. 25. 
    Jilek-Aall L. 2004. Epilepsy and onchocerciasis: pioneering research of Mexican physicians vindicated. Investig. Salud 6:22–27
    [Google Scholar]
  26. 26. 
    Casis Sacre G. 1938. El sindrome epileptico y su relacion con onchocercosis. Bol. Salubr. Hig. 1:11–31
    [Google Scholar]
  27. 27. 
    Ovuga E, Kipp W, Mungherera M, Kasoro S 1992. Epilepsy and retarded growth in a hyperendemic focus of onchocerciasis in rural western Uganda. East Afr. Med. J. 69:554–56
    [Google Scholar]
  28. 28. 
    Kaiser C, Asaba G, Leichsenring M, Kabagambe G 1998. High incidence of epilepsy related to onchocerciasis in West Uganda. Epilepsy Res 30:247–51
    [Google Scholar]
  29. 29. 
    Kaiser C, Kipp W, Asaba G, Mugisa C, Kabagambe G et al. 1996. The prevalence of epilepsy follows the distribution of onchocerciasis in a west Ugandan focus. Bull. World Health Organ. 74:361–67
    [Google Scholar]
  30. 30. 
    Kaiser C, Asaba G, Kasoro S, Rubaale T, Kabagambe G, Mbabazi M 2007. Mortality from epilepsy in an onchocerciasis-endemic area in West Uganda. Trans. R. Soc. Trop. Med. Hyg. 101:48–55
    [Google Scholar]
  31. 31. 
    Boussinesq M, Pion SD, Demanga N, Kamgno J 2002. Relationship between onchocerciasis and epilepsy: a matched case–control study in the Mbam Valley, Republic of Cameroon. Trans. R. Soc. Trop. Med. Hyg. 96:537–41
    [Google Scholar]
  32. 32. 
    Ngugi AK, Bottomley C, Kleinschmidt I, Wagner RG, Kakooza-Mwesige A et al. 2013. Prevalence of active convulsive epilepsy in sub-Saharan Africa and associated risk factors: cross-sectional and case–control studies. Lancet Neurol 12:253–63
    [Google Scholar]
  33. 33. 
    Christensen SS, Eslick GD. 2015. Cerebral malaria as a risk factor for the development of epilepsy and other long-term neurological conditions: a meta-analysis. Trans. R. Soc. Trop. Med. Hyg. 109:233–38
    [Google Scholar]
  34. 34. 
    Pion SD, Kaiser C, Boutros-Toni F, Cournil A, Taylor MM et al. 2009. Epilepsy in onchocerciasis endemic areas: systematic review and meta-analysis of population-based surveys. PLOS Negl. Trop. Dis. 3:e461
    [Google Scholar]
  35. 35. 
    Kaiser C, Pion SD, Boussinesq M 2013. Case–control studies on the relationship between onchocerciasis and epilepsy: systematic review and meta-analysis. PLOS Negl. Trop. Dis. 7:e2147
    [Google Scholar]
  36. 36. 
    Chesnais CB, Nana-Djeunga HC, Njamnshi AK, Lenou-Nanga CG, Boulle C et al. 2018. The temporal relationship between onchocerciasis and epilepsy: a population-based cohort study. Lancet Infect. Dis. 18:1278–86
    [Google Scholar]
  37. 37. 
    Konig R, Nassri A, Meindl M, Matuja W, Kidunda AR et al. 2010. The role of Onchocerca volvulus in the development of epilepsy in a rural area of Tanzania. Parasitology 137:1559–68
    [Google Scholar]
  38. 38. 
    Kaiser C, Rubaale T, Tukesiga E, Kipp W, Kabagambe G et al. 2011. Association between onchocerciasis and epilepsy in the Itwara hyperendemic focus, West Uganda: controlling for time and intensity of exposure. Am. J. Trop. Med. Hyg. 85:225–28
    [Google Scholar]
  39. 39. 
    Cantey PT, Sejvar J. 2019. Onchocerciasis associated epilepsy—a question of causality. Int. J. Infect. Dis. 79:185–86
    [Google Scholar]
  40. 40. 
    Pollanen MS, Onzivua S, Robertson J, McKeever PM, Olawa F et al. 2018. Nodding syndrome in Uganda is a tauopathy. Acta Neuropathol 136:691–97
    [Google Scholar]
  41. 41. 
    Winkler A, Friedrich K, Velicheti S, Dharsee J, Konig R et al. 2013. MRI findings in people with epilepsy and nodding syndrome in an area endemic for onchocerciasis: an observational study. Afr. Health Sci. 13:529–40
    [Google Scholar]
  42. 42. 
    Meyers WM, Neafie RC, Connor DH 1977. Onchocerciasis: invasion of deep organs by Onchocerca volvulus. Am. J. Trop. Med. Hyg 26:650–57
    [Google Scholar]
  43. 43. 
    Chen T, Moon K, deMello DE, Feiz-Erfan I, Theodore N, Bhardwaj RD 2015. Case report of an epidural cervical Onchocerca lupi infection in a 13-year-old boy. J. Neurosurg. Pediatr. 16:217–21
    [Google Scholar]
  44. 44. 
    Eberhard ML, Ostovar GA, Chundu K, Hobohm D, Feiz-Erfan I et al. 2013. Zoonotic Onchocerca lupi infection in a 22-month-old child in Arizona: first report in the United States and a review of the literature. Am. J. Trop. Med. Hyg. 88:601–5
    [Google Scholar]
  45. 45. 
    Brattig NW. 2004. Pathogenesis and host responses in human onchocerciasis: impact of Onchocerca filariae and Wolbachia endobacteria. Microbes Infect 6:113–28
    [Google Scholar]
  46. 46. 
    Spencer PS, Schmutzhard E, Winkler AS 2017. Nodding syndrome in the spotlight—placing recent findings in perspective. Trends Parasitol 33:490–92
    [Google Scholar]
  47. 47. 
    Johnson T, Nutman T, Dowell S, Nath A 2017. Closing the loop between nodding syndrome and Onchocerca infection. Trends Parasitol 33:490
    [Google Scholar]
  48. 48. 
    Vogel G. 2017. Parasitic worm may trigger mystery nodding syndrome. Science 355:678
    [Google Scholar]
  49. 49. 
    Duke BO, Vincelette J, Moore PJ 1976. Microfilariae in the cerebrospinal fluid, and neurological complications, during treatment of onchocerciasis with diethylcarbamazine. Tropenmedizin Parasitol 27:123–32
    [Google Scholar]
  50. 50. 
    Mazzotti L. 1959. Presencia de microfilarias de Onchocerca volvulus en el líquido cefalorraquídeo de enfermos tratados con Hetrazan [Presence of microfilariae of Onchocerca volvulus in the cerebrospinal fluid of patients treated with diethylcarbamazine]. Rev. Inst. Salubr. Enferm. Trop. 19:1–5
    [Google Scholar]
  51. 51. 
    Cantey PT, Roy SL, Boakye D, Mwingira U, Ottesen EA et al. 2018. Transitioning from river blindness control to elimination: steps toward stopping treatment. Int. Health 10:Suppl. 1i7–13
    [Google Scholar]
  52. 52. 
    Nash TE. 2014. Parasitic diseases that cause seizures. Epilepsy Curr 14:29–34
    [Google Scholar]
  53. 53. 
    DeGiorgio CM, Medina MT, Duron R, Zee C, Escueta SP 2004. Neurocysticercosis. Epilepsy Curr 4:107–11
    [Google Scholar]
  54. 54. 
    Graeff-Teixeira C, Silva AC, Yoshimura K 2009. Update on eosinophilic meningoencephalitis and its clinical relevance. Clin. Microbiol. Rev. 22:322–48
    [Google Scholar]
  55. 55. 
    Diaz JH. 2009. Recognizing and reducing the risks of helminthic eosinophilic meningitis in travelers: differential diagnosis, disease management, prevention, and control. J. Travel Med. 16:267–75
    [Google Scholar]
  56. 56. 
    Lowenstein DH. 2009. Epilepsy after head injury: an overview. Epilepsia 50:Suppl. 24–9
    [Google Scholar]
  57. 57. 
    Stringer JL, Marks LM, White AC Jr., Robinson P 2003. Epileptogenic activity of granulomas associated with murine cysticercosis. Exp. Neurol. 183:532–36
    [Google Scholar]
  58. 58. 
    Carpio A, Hauser WA. 2002. Prognosis for seizure recurrence in patients with newly diagnosed neurocysticercosis. Neurology 59:1730–34
    [Google Scholar]
  59. 59. 
    Del Brutto OH, Salgado P, Lama J, Del Brutto VJ, Campos X et al. 2015. Calcified neurocysticercosis associates with hippocampal atrophy: a population-based study. Am. J. Trop. Med. Hyg. 92:64–68
    [Google Scholar]
  60. 60. 
    Robinson P, Garza A, Weinstock J, Serpa JA, Goodman JC et al. 2012. Substance P causes seizures in neurocysticercosis. PLOS Pathog 8:e1002489
    [Google Scholar]
  61. 61. 
    Garland AM, Grady EF, Payan DG, Vigna SR, Bunnett NW 1994. Agonist-induced internalization of the substance P (NK1) receptor expressed in epithelial cells. Biochem. J. 303:177–86
    [Google Scholar]
  62. 62. 
    Martinez AN, Philipp MT. 2016. Substance P and antagonists of the neurokinin-1 receptor in neuroinflammation associated with infectious and neurodegenerative diseases of the central nervous system. J. Neurol. Neuromedicine 1:29–36
    [Google Scholar]
  63. 63. 
    Zachrisson O, Lindefors N, Brene S 1998. A tachykinin NK1 receptor antagonist, CP-122,721-1, attenuates kainic acid–induced seizure activity. Mol. Brain Res. 60:291–95
    [Google Scholar]
  64. 64. 
    Raap M, Rüdrich U, Ständer S, Gehring M, Kapp A, Raap U 2015. Substance P activates human eosinophils. Exp. Dermatol. 24:557–59
    [Google Scholar]
  65. 65. 
    Pavlovic S, Daniltchenko M, Tobin DJ, Hagen E, Hunt SP et al. 2008. Further exploring the brain–skin connection: Stress worsens dermatitis via substance P–dependent neurogenic inflammation in mice. J. Investig. Dermatol. 128:434–46
    [Google Scholar]
  66. 66. 
    Newbold C, Craig A, Kyes S, Rowe A, Fernandez-Reyes D, Fagan T 1999. Cytoadherence, pathogenesis and the infected red cell surface in Plasmodium falciparum. Int. J. . Parasitol 29:927–37
    [Google Scholar]
  67. 67. 
    Dondorp AM, Pongponratn E, White NJ 2004. Reduced microcirculatory flow in severe falciparum malaria: pathophysiology and electron-microscopic pathology. Acta Trop 89:309–17
    [Google Scholar]
  68. 68. 
    Dietmann A, Wallner B, Konig R, Friedrich K, Pfausler B et al. 2014. Nodding syndrome in Tanzania may not be associated with circulating anti-NMDA and anti-VGKC receptor antibodies or decreased pyridoxal phosphate serum levels—a pilot study. Afr. Health Sci. 14:434–38
    [Google Scholar]
  69. 69. 
    Idro R, Opar B, Wamala J, Abbo C, Onzivua S et al. 2016. Is nodding syndrome an Onchocerca volvulus–induced neuroinflammatory disorder? Uganda's story of research in understanding the disease. Int. J. Infect. Dis. 45:112–17
    [Google Scholar]
  70. 70. 
    Dobbie M, Crawley J, Waruiru C, Marsh K, Surtees R 2000. Cerebrospinal fluid studies in children with cerebral malaria: an excitotoxic mechanism?. Am. J. Trop. Med. Hyg. 62:284–90
    [Google Scholar]
  71. 71. 
    Mendez OA, Koshy AA. 2017. Toxoplasma gondii: entry, association, and physiological influence on the central nervous system. PLOS Pathog 13:e1006351
    [Google Scholar]
  72. 72. 
    Carruthers VB, Suzuki Y. 2007. Effects of Toxoplasma gondii infection on the brain. Schizophr. Bull. 33:745–51
    [Google Scholar]
  73. 73. 
    Boros DL, Warren KS. 1970. Delayed hypersensitivity-type granuloma formation and dermal reaction induced and elicited by a soluble factor isolated from Schistosoma mansoni eggs. J. Exp. Med. 132:488–507
    [Google Scholar]
  74. 74. 
    Ross AG, Bartley PB, Sleigh AC, Olds GR, Li Y et al. 2002. Schistosomiasis. N. Engl. J. Med. 346:1212–20
    [Google Scholar]
  75. 75. 
    Nutman TB, Kumaraswami V. 2001. Regulation of the immune response in lymphatic filariasis: perspectives on acute and chronic infection with Wuchereria bancrofti in South India. Parasite Immunol 23:389–99
    [Google Scholar]
  76. 76. 
    Connor DH, Gibson DW, Neafie RC, Merighi B, Buck AA 1983. Sowda—onchocerciasis in north Yemen: a clinicopathologic study of 18 patients. Am. J. Trop. Med. Hyg. 32:123–37
    [Google Scholar]
  77. 77. 
    Katawa G, Layland LE, Debrah AY, von Horn C, Batsa L et al. 2015. Hyperreactive onchocerciasis is characterized by a combination of Th17–Th2 immune responses and reduced regulatory T cells. PLOS Negl. Trop. Dis. 9:e3414
    [Google Scholar]
  78. 78. 
    Etya'ale D. 2001. Vision 2020: update on onchocerciasis. Community Eye Health 14:19–21
    [Google Scholar]
  79. 79. 
    Hall LR, Pearlman E. 1999. Pathogenesis of onchocercal keratitis (river blindness). Clin. Microbiol. Rev. 12:445–53
    [Google Scholar]
  80. 80. 
    Braun G, McKechnie NM, Connor V, Gilbert CE, Engelbrecht F et al. 1991. Immunological crossreactivity between a cloned antigen of Onchocerca volvulus and a component of the retinal pigment epithelium. J. Exp. Med. 174:169–77
    [Google Scholar]
  81. 81. 
    Chan CC, Nussenblatt RB, Kim MK, Palestine AG, Awadzi K, Ottesen EA 1987. Immunopathology of ocular onchocerciasis: 2. Anti-retinal autoantibodies in serum and ocular fluids. Ophthalmology 94:439–43
    [Google Scholar]
  82. 82. 
    Gallin MY, Jacobi AB, Buttner DW, Schonberger O, Marti T, Erttmann KD 1995. Human autoantibody to defensin: disease association with hyperreactive onchocerciasis (sowda). J. Exp. Med. 182:41–47
    [Google Scholar]
  83. 83. 
    McKechnie NM, Braun G, Connor V, Klager S, Taylor DW et al. 1993. Immunologic cross-reactivity in the pathogenesis of ocular onchocerciasis. Investig. Ophthalmol. Vis. Sci. 34:2888–902
    [Google Scholar]
  84. 84. 
    McKechnie NM, Gurr W, Braun G 1997. Immunization with the cross-reactive antigens Ov39 from Onchocerca volvulus and hr44 from human retinal tissue induces ocular pathology and activates retinal microglia. J. Infect. Dis. 176:1334–43
    [Google Scholar]
  85. 85. 
    Johnson TP, Tyagi R, Lee PR, Lee MH, Johnson KR et al. 2017. Nodding syndrome may be an autoimmune reaction to the parasitic worm Onchocerca volvulus. . Sci. Transl. Med 9: eaaf6953
    [Google Scholar]
  86. 86. 
    Vincent A, Bien CG, Irani SR, Waters P 2011. Autoantibodies associated with diseases of the CNS: new developments and future challenges. Lancet Neurol 10:759–72
    [Google Scholar]
  87. 87. 
    Wright S, Geerts AT, Jol-van der Zijde CM, Jacobson L, Lang B et al. 2016. Neuronal antibodies in pediatric epilepsy: clinical features and long-term outcomes of a historical cohort not treated with immunotherapy. Epilepsia 57:823–31
    [Google Scholar]
  88. 88. 
    Fan Z, Feng X, Fan Z, Zhu X, Yin S 2018. Immunotherapy by targeting of VGKC complex for seizure control and prevention of cognitive impairment in a mouse model of epilepsy. Mol. Med. Rep. 18:169–78
    [Google Scholar]
  89. 89. 
    Richarme G, Mihoub M, Dairou J, Bui LC, Leger T, Lamouri A 2015. Parkinsonism-associated protein DJ-1/Park7 is a major protein deglycase that repairs methylglyoxal- and glyoxal-glycated cysteine, arginine, and lysine residues. J. Biol. Chem. 290:1885–97
    [Google Scholar]
  90. 90. 
    Junn E, Jang WH, Zhao X, Jeong BS, Mouradian MM 2009. Mitochondrial localization of DJ-1 leads to enhanced neuroprotection. J. Neurosci. Res. 87:123–29
    [Google Scholar]
  91. 91. 
    Clements CM, McNally RS, Conti BJ, Mak TW, Ting JP 2006. DJ-1, a cancer- and Parkinson's disease–associated protein, stabilizes the antioxidant transcriptional master regulator Nrf2. PNAS 103:15091–96
    [Google Scholar]
  92. 92. 
    Richarme G, Liu C, Mihoub M, Abdallah J, Leger T et al. 2017. Guanine glycation repair by DJ-1/Park7 and its bacterial homologs. Science 357:208–11
    [Google Scholar]
  93. 93. 
    Tang B, Xiong H, Sun P, Zhang Y, Wang D et al. 2006. Association of PINK1 and DJ-1 confers digenic inheritance of early-onset Parkinson's disease. Hum. Mol. Genet. 15:1816–25
    [Google Scholar]
  94. 94. 
    Son AY, Biagioni MC, Kaminski D, Gurevich A, Stone B, Di Rocco A 2016. Parkinson's disease and cryptogenic epilepsy. Case Rep. Neurol. Med. 2016:3745631
    [Google Scholar]
  95. 95. 
    Gruntz K, Bloechliger M, Becker C, Jick SS, Fuhr P et al. 2018. Parkinson disease and the risk of epileptic seizures. Ann. Neurol. 83:363–74
    [Google Scholar]
  96. 96. 
    Son AY, Cucca A, Agarwal S, Liu A, Di Rocco A, Biagioni MC 2017. Are we missing non-motor seizures in Parkinson's disease? Two case reports. J. Clin. Mov. Disord. 4:14
    [Google Scholar]
  97. 97. 
    Maizels RM, McSorley HJ. 2016. Regulation of the host immune system by helminth parasites. J. Allergy Clin. Immunol. 138:666–75
    [Google Scholar]
  98. 98. 
    Metenou S, Dembele B, Konate S, Dolo H, Coulibaly SY et al. 2010. At homeostasis filarial infections have expanded adaptive T regulatory but not classical Th2 cells. J. Immunol. 184:5375–82
    [Google Scholar]
  99. 99. 
    Babu S, Bhat SQ, Pavan Kumar N, Lipira AB, Kumar S et al. 2009. Filarial lymphedema is characterized by antigen-specific Th1 and Th17 proinflammatory responses and a lack of regulatory T cells. PLOS Negl. Trop. Dis. 3:e420
    [Google Scholar]
  100. 100. 
    Figueiredo CA, Barreto ML, Rodrigues LC, Cooper PJ, Silva NB et al. 2010. Chronic intestinal helminth infections are associated with immune hyporesponsiveness and induction of a regulatory network. Infect. Immun. 78:3160–67
    [Google Scholar]
  101. 101. 
    Satoguina J, Mempel M, Larbi J, Badusche M, Loliger C et al. 2002. Antigen-specific T regulatory-1 cells are associated with immunosuppression in a chronic helminth infection (onchocerciasis). Microbes Infect 4:1291–300
    [Google Scholar]
  102. 102. 
    Nmorsi OP, Nkot BP, Che J 2012. Relationship between pro-and anti-inflammatory cytokines profiles and some haematological parameters in some Cameroonians infected with Onchocerca volvulus. Asian Pac. J. Trop. Med 5:713–17
    [Google Scholar]
  103. 103. 
    Youn Y, Sung IK, Lee IG 2013. The role of cytokines in seizures: interleukin (IL)-1β, IL-1Ra, IL-8, and IL-10. Korean J. Pediatr. 56:271–74
    [Google Scholar]
  104. 104. 
    Devinsky O, Schein A, Najjar S 2013. Epilepsy associated with systemic autoimmune disorders. Epilepsy Curr 13:62–68
    [Google Scholar]
  105. 105. 
    Derecki NC, Cardani AN, Yang CH, Quinnies KM, Crihfield A et al. 2010. Regulation of learning and memory by meningeal immunity: a key role for IL-4. J. Exp. Med. 207:1067–80
    [Google Scholar]
  106. 106. 
    Brynskikh A, Warren T, Zhu J, Kipnis J 2008. Adaptive immunity affects learning behavior in mice. Brain Behav. Immun. 22:861–69
    [Google Scholar]
  107. 107. 
    Kipnis J, Cohen H, Cardon M, Ziv Y, Schwartz M 2004. T cell deficiency leads to cognitive dysfunction: implications for therapeutic vaccination for schizophrenia and other psychiatric conditions. PNAS 101:8180–85
    [Google Scholar]
  108. 108. 
    Keiser PB, Reynolds SM, Awadzi K, Ottesen EA, Taylor MJ, Nutman TB 2002. Bacterial endosymbionts of Onchocerca volvulus in the pathogenesis of posttreatment reactions. J. Infect. Dis. 185:805–11
    [Google Scholar]
  109. 109. 
    Francis H, Awadzi K, Ottesen EA 1985. The Mazzotti reaction following treatment of onchocerciasis with diethylcarbamazine: clinical severity as a function of infection intensity. Am. J. Trop. Med. Hyg. 34:529–36
    [Google Scholar]
  110. 110. 
    Xu D, Robinson AP, Ishii T, Duncan DS, Alden TD et al. 2018. Peripherally derived T regulatory and γδ T cells have opposing roles in the pathogenesis of intractable pediatric epilepsy. J. Exp. Med. 215:1169–86
    [Google Scholar]
  111. 111. 
    Tai XY, Koepp M, Duncan JS, Fox N, Thompson P et al. 2016. Hyperphosphorylated tau in patients with refractory epilepsy correlates with cognitive decline: a study of temporal lobe resections. Brain 139:2441–55
    [Google Scholar]
  112. 112. 
    Puvenna V, Engeler M, Banjara M, Brennan C, Schreiber P et al. 2016. Is phosphorylated tau unique to chronic traumatic encephalopathy? Phosphorylated tau in epileptic brain and chronic traumatic encephalopathy. Brain Res 1630:225–40
    [Google Scholar]
  113. 113. 
    Thom M, Liu JY, Thompson P, Phadke R, Narkiewicz M et al. 2011. Neurofibrillary tangle pathology and Braak staging in chronic epilepsy in relation to traumatic brain injury and hippocampal sclerosis: a post-mortem study. Brain 134:2969–81
    [Google Scholar]
  114. 114. 
    Barr WB. 2017. Do patients with temporal lobe epilepsy and cognitive decline have Alzheimer's disease or chronic traumatic encephalopathy (CTE)?. Epilepsy Curr 17:96–98
    [Google Scholar]
  115. 115. 
    Liu X, Ou S, Yin M, Xu T, Wang T et al. 2017. N-methyl-d-aspartate receptors mediate epilepsy-induced axonal impairment and tau phosphorylation via activating glycogen synthase kinase-3β and cyclin-dependent kinase 5. Discov. Med. 23:221–34
    [Google Scholar]
  116. 116. 
    Chen C, Holth JK, Bunton-Stasyshyn R, Anumonwo CK, Meisler MH et al. 2018. Mapt deletion fails to rescue premature lethality in two models of sodium channel epilepsy. Ann. Clin. Transl. Neurol. 5:982–87
    [Google Scholar]
  117. 117. 
    Gheyara AL, Ponnusamy R, Djukic B, Craft RJ, Ho K et al. 2014. Tau reduction prevents disease in a mouse model of Dravet syndrome. Ann. Neurol. 76:443–56
    [Google Scholar]
  118. 118. 
    Holth JK, Bomben VC, Reed JG, Inoue T, Younkin L et al. 2013. Tau loss attenuates neuronal network hyperexcitability in mouse and Drosophila genetic models of epilepsy. J. Neurosci. 33:1651–59
    [Google Scholar]
  119. 119. 
    Jones NC, Nguyen T, Corcoran NM, Velakoulis D, Chen T et al. 2012. Targeting hyperphosphorylated tau with sodium selenate suppresses seizures in rodent models. Neurobiol. Dis. 45:897–901
    [Google Scholar]
  120. 120. 
    Rankin CA, Sun Q, Gamblin TC 2007. Tau phosphorylation by GSK-3β promotes tangle-like filament morphology. Mol. Neurodegener. 2:12
    [Google Scholar]
  121. 121. 
    Shekhar S, Kumar R, Rai N, Kumar V, Singh K et al. 2016. Estimation of Tau and phosphorylated Tau181 in serum of Alzheimer's disease and mild cognitive impairment patients. PLOS ONE 11:e0159099
    [Google Scholar]
  122. 122. 
    Doo JW, Kim SC, Kim SJ 2018. Influence of valproate on language functions in children with epilepsy. Epilepsy Behav 78:68–72
    [Google Scholar]
  123. 123. 
    Yan N, Xin-Hua W, Lin-Mei Z, Yi-Ming C, Wen-Hui L et al. 2018. Prospective study of the efficacy of a ketogenic diet in 20 patients with Dravet syndrome. Seizure 60:144–48
    [Google Scholar]
  124. 124. 
    Adams J, Alipio-Jocson V, Inoyama K, Bartlett V, Sandhu S et al. 2017. Methylphenidate, cognition, and epilepsy: a 1-month open-label trial. Epilepsia 58:2124–32
    [Google Scholar]
  125. 125. 
    Idro R, Namusoke H, Abbo C, Mutamba BB, Kakooza-Mwesige A et al. 2014. Patients with nodding syndrome in Uganda improve with symptomatic treatment: a cross-sectional study. BMJ Open 4:e006476
    [Google Scholar]
  126. 126. 
    Zimmerman PA, Dadzie KY, De Sole G, Remme J, Alley ES, Unnasch TR 1992. Onchocerca volvulus DNA probe classification correlates with epidemiologic patterns of blindness. J. Infect. Dis. 165:964–68
    [Google Scholar]
  127. 127. 
    Armoo S, Doyle SR, Osei-Atweneboana MY, Grant WN 2017. Significant heterogeneity in Wolbachia copy number within and between populations of Onchocerca volvulus. . Parasites Vectors 10:188
    [Google Scholar]
  128. 128. 
    Luo G, Ambati A, Lin L, Bonvalet M, Partinen M, Ji X, Maecker HT, Mignot EJ 2018. Autoimmunity to hypocretin and molecular mimicry to flu in type 1 narcolepsy. PNAS 115:E12323–32
    [Google Scholar]
  129. 129. 
    Sanchez MP, Garcia-Cabrero AM, Sanchez-Elexpuru G, Burgos DF, Serratosa JM 2018. Tau-induced pathology in epilepsy and dementia: notions from patients and animal models. Int. J. Mol. Sci. 19:1092
    [Google Scholar]
  130. 130. 
    Gazda S, Kitara DL. 2018. Treatment and rehabilitation outcomes of children affected with nodding syndrome in Northern Uganda: a descriptive case series. Pan. Afr. Med. J. 29:228
    [Google Scholar]
  131. 131. 
    Idro R, Musubire KA, Byamah Mutamba B, Namusoke H, Muron J et al. 2013. Proposed guidelines for the management of nodding syndrome. Afr. Health Sci. 13:219–32
    [Google Scholar]
  132. 132. 
    Mbuba CK, Ngugi AK, Newton CR, Carter JA 2008. The epilepsy treatment gap in developing countries: a systematic review of the magnitude, causes, and intervention strategies. Epilepsia 49:1491–503
    [Google Scholar]
  133. 133. 
    Mwaka AD, Semakula JR, Abbo C, Idro R 2018. Nodding syndrome: recent insights into etiology, pathophysiology, and treatment. Res. Rep. Trop. Med. 9:89–93
    [Google Scholar]
  134. 134. 
    Laux L, Blackford R. 2013. The ketogenic diet in Dravet syndrome. J. Child Neurol. 28:1041–44
    [Google Scholar]
  135. 135. 
    Birbeck G, Chomba E, Atadzhanov M, Mbewe E, Haworth A 2007. The social and economic impact of epilepsy in Zambia: a cross-sectional study. Lancet Neurol 6:39–44
    [Google Scholar]
  136. 136. 
    Kipp W, Burnham G, Kamugisha J 1992. Improvement in seizures after ivermectin. Lancet 340:789–90
    [Google Scholar]
  137. 137. 
    Colebunders R, Mandro M, Mukendi D, Dolo H, Suykerbuyk P, Van Oijen M 2017. Ivermectin treatment in patients with onchocerciasis-associated epilepsy: protocol of a randomized clinical trial. JMIR Res. Protoc. 6:e137
    [Google Scholar]
  138. 138. 
    Ndahura MM, Coleblunders R. 2019. Ivermectin treatment in persons with onchocerciasis-associated epilepsy: a randomized 4 month proof of concept clinical trial Abstract presented at the 4th African Epilepsy Congress, Entebbe Uganda:
  139. 139. 
    Anguzu R, Akun PR, Ogwang R, Shour AR, Sekibira R et al. 2018. Setting up a clinical trial for a novel disease: a case study of the Doxycycline for the Treatment of Nodding Syndrome Trial—challenges, enablers and lessons learned. Glob. Health Action 11:1431362
    [Google Scholar]
  140. 140. 
    Chandler RE. 2018. Serious neurological adverse events after ivermectin—Do they occur beyond the indication of onchocerciasis?. Am. J. Trop. Med. Hyg. 98:382–88
    [Google Scholar]
  141. 141. 
    Crichlow EC, Mishra PR, Crawford RD 1986. Anticonvulsant effects of ivermectin in genetically-epileptic chickens. Neuropharmacology 25:1085–88
    [Google Scholar]
  142. 142. 
    Tekle AH, Elhassan E, Isiyaku S, Amazigo UV, Bush S et al. 2012. Impact of long-term treatment of onchocerciasis with ivermectin in Kaduna State, Nigeria: first evidence of the potential for elimination in the operational area of the African Programme for Onchocerciasis Control. Parasites Vectors 5:28
    [Google Scholar]
  143. 143. 
    Cupp EW, Bernardo MJ, Kiszewski AE, Collins RC, Taylor HR et al. 1986. The effects of ivermectin on transmission of Onchocerca volvulus. . Science 231:740–42
    [Google Scholar]
  144. 144. 
    Jacob BG, Loum D, Lakwo TL, Katholi CR, Habomugisha P et al. 2018. Community-directed vector control to supplement mass drug distribution for onchocerciasis elimination in the Madi mid-North focus of Northern Uganda. PLOS Negl. Trop. Dis. 12:e0006702
    [Google Scholar]
  145. 145. 
    Lakwo T, Garms R, Wamani J, Tukahebwa EM, Byamukama E et al. 2017. Interruption of the transmission of Onchocerca volvulus in the Kashoya-Kitomi focus, western Uganda by long-term ivermectin treatment and elimination of the vector Simulium neavei by larviciding. Acta Trop 167:128–36
    [Google Scholar]
  146. 146. 
    Siewe JNF, Ukaga CN, Nwazor EO, Nwoke MO, Nwokeji MC et al. 2019. Low prevalence of epilepsy and onchocerciasis after more than 20 years of ivermectin treatment in the Imo River Basin in Nigeria. Infect. Dis. Poverty 8:8
    [Google Scholar]
  147. 147. 
    Siewe Fodjo JN, Tatah G, Tabah EN, Ngarka L, Nfor LN et al. 2018. Epidemiology of onchocerciasis-associated epilepsy in the Mbam and Sanaga river valleys of Cameroon: impact of more than 13 years of ivermectin. Infect. Dis. Poverty 7:114
    [Google Scholar]
  148. 148. 
    Mmbando BP, Suykerbuyk P, Mnacho M, Kakorozya A, Matuja W et al. 2018. High prevalence of epilepsy in two rural onchocerciasis endemic villages in the Mahenge area, Tanzania, after 20 years of community directed treatment with ivermectin. Infect. Dis. Poverty 7:64
    [Google Scholar]
  149. 149. 
    Burneo JG, Cavazos JE. 2014. Neurocysticercosis and epilepsy. Epilepsy Curr 14:23–28
    [Google Scholar]
  150. 150. 
    Del Brutto OH, Santibanez R, Noboa CA, Aguirre R, Diaz E, Alarcon TA 1992. Epilepsy due to neurocysticercosis: analysis of 203 patients. Neurology 42:389–92
    [Google Scholar]
  151. 151. 
    Shikani HJ, Freeman BD, Lisanti MP, Weiss LM, Tanowitz HB, Desruisseaux MS 2012. Cerebral malaria: We have come a long way. Am. J. Pathol. 181:1484–92
    [Google Scholar]
  152. 152. 
    Crawley J, Smith S, Kirkham F, Muthinji P, Waruiru C, Marsh K 1996. Seizures and status epilepticus in childhood cerebral malaria. QJM 89:591–97
    [Google Scholar]
  153. 153. 
    Ngoungou EB, Bhalla D, Nzoghe A, Darde ML, Preux PM 2015. Toxoplasmosis and epilepsy—systematic review and meta analysis. PLOS Negl. Trop. Dis. 9:e0003525
    [Google Scholar]
  154. 154. 
    Scully RE 2001. Case 21-2001—a 31-year-old man with an apparent seizure and a mass in the right parietal lobe. N. Engl. J. Med. 345:126–31
    [Google Scholar]
  155. 155. 
    Colebunders R, Nelson Siewe FJ, Hotterbeekx A 2018. Onchocerciasis-associated epilepsy, an additional reason for strengthening onchocerciasis elimination programs. Trends Parasitol 34:208–16
    [Google Scholar]
/content/journals/10.1146/annurev-pathmechdis-012419-032748
Loading
/content/journals/10.1146/annurev-pathmechdis-012419-032748
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error