1932

Abstract

(), the causative agent of tuberculosis (TB), remains a leading cause of death due to infection in humans. To more effectively combat this pandemic, many aspects of TB control must be developed, including better point of care diagnostics, shorter and safer drug regimens, and a protective vaccine. To address all these areas of need, better understanding of the pathogen, host responses, and clinical manifestations of the disease is required. Recently, the application of cutting-edge technologies to the study of pathogenesis has resulted in significant advances in basic biology, vaccine development, and antibiotic discovery. This leaves us in an exciting era of research in which our understanding of this deadly infection is improving at a faster rate than ever, and renews hope in our fight to end TB. In this review, we reflect on what is known regarding pathogenesis, highlighting recent breakthroughs that will provide leverage for the next leaps forward in the field.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-pathol-042120-032916
2021-01-24
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/pathmechdis/16/1/annurev-pathol-042120-032916.html?itemId=/content/journals/10.1146/annurev-pathol-042120-032916&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    WHO (World Health Organ.) 2019. Global Tuberculosis Report 2019 Geneva: WHO https://www.who.int/tb/publications/global_report/en/
  2. 2. 
    Behr MA, Edelstein PH, Ramakrishnan L 2019. Is Mycobacterium tuberculosis infection life long. BMJ 367:l5770
    [Google Scholar]
  3. 3. 
    Coscolla M, Gagneux S. 2014. Consequences of genomic diversity in Mycobacterium tuberculosis.Semin. . Immunol 26:6431–44
    [Google Scholar]
  4. 4. 
    Jackson M. 2014. The mycobacterial cell envelope—lipids. Cold Spring Harb. Perspect. Med. 4:10a021105
    [Google Scholar]
  5. 5. 
    Hunter RL, Olsen MR, Jagannath C, Actor JK 2006. Multiple roles of cord factor in the pathogenesis of primary, secondary, and cavitary tuberculosis, including a revised description of the pathology of secondary disease. Ann. Clin. Lab. Sci. 36:4371–86
    [Google Scholar]
  6. 6. 
    Kalsum S, Braian C, Koeken VACM, Raffetseder J, Lindroth M et al. 2017. The cording phenotype of Mycobacterium tuberculosis induces the formation of extracellular traps in human macrophages. Front. Cell. Infect. Microbiol. 7:278
    [Google Scholar]
  7. 7. 
    Feltcher ME, Sullivan JT, Braunstein M 2010. Protein export systems of Mycobacterium tuberculosis: novel targets for drug development. Future Microbiol 5:101581–97
    [Google Scholar]
  8. 8. 
    Hsu T, Hingley-Wilson SM, Chen B, Chen M, Dai AZ et al. 2003. The primary mechanism of attenuation of bacillus Calmette–Guérin is a loss of secreted lytic function required for invasion of lung interstitial tissue. PNAS 100:2112420–25
    [Google Scholar]
  9. 9. 
    Abdallah AM, Gey van Pittius NC, DiGiuseppe Champion PA, Cox J, Luirink J et al. 2007. Type VII secretion—mycobacteria show the way. Nat. Rev. Microbiol. 5:11883–91
    [Google Scholar]
  10. 10. 
    Tufariello JM, Chapman JR, Kerantzas CA, Wong K-W, Vilchèze C et al. 2016. Separable roles for Mycobacterium tuberculosis ESX-3 effectors in iron acquisition and virulence. PNAS 113:3E348–57
    [Google Scholar]
  11. 11. 
    Wang Q, Boshoff HIM, Harrison JR, Ray PC, Green SR et al. 2020. PE/PPE proteins mediate nutrient transport across the outer membrane of Mycobacterium tuberculosis. . Science 367:64821147–51
    [Google Scholar]
  12. 12. 
    Dunlap MD, Howard N, Das S, Scott N, Ahmed M et al. 2018. A novel role for C-C motif chemokine receptor 2 during infection with hypervirulent Mycobacterium tuberculosis. . Mucosal Immunol 11:61727–42
    [Google Scholar]
  13. 13. 
    Cohen SB, Gern BH, Delahaye JL, Adams KN, Plumlee CR et al. 2018. Alveolar macrophages provide an early Mycobacterium tuberculosis niche and initiate dissemination. Cell Host Microbe 24:3439–46.e4
    [Google Scholar]
  14. 14. 
    Ahmad S. 2011. Pathogenesis, immunology, and diagnosis of latent Mycobacterium tuberculosis infection. Clin. Dev. Immunol. 2011:814943
    [Google Scholar]
  15. 15. 
    Srivastava S, Ernst JD. 2014. Cell-to-cell transfer of M. tuberculosis antigens optimizes CD4 T cell priming. Cell Host Microbe 15:6741–52
    [Google Scholar]
  16. 16. 
    Cantini F, Niccoli L, Goletti D 2014. Tuberculosis risk in patients treated with non-anti-tumor necrosis factor-α (TNF-α) targeted biologics and recently licensed TNF-α inhibitors: data from clinical trials and national registries. J. Rheumatol. 41:Suppl. 9156–64
    [Google Scholar]
  17. 17. 
    van de Vosse E, Hoeve MA, Ottenhoff THM 2004. Human genetics of intracellular infectious diseases: molecular and cellular immunity against mycobacteria and salmonellae. Lancet Infect. Dis. 4:12739–49
    [Google Scholar]
  18. 18. 
    Lin PL, Rodgers M, Smith L, Bigbee M, Myers A et al. 2009. Quantitative comparison of active and latent tuberculosis in the cynomolgus macaque model. Infect. Immun. 77:104631–42
    [Google Scholar]
  19. 19. 
    Lin PL, Ford CB, Coleman MT, Myers AJ, Gawande R et al. 2014. Sterilization of granulomas is common in active and latent tuberculosis despite within-host variability in bacterial killing. Nat. Med. 20:175–79
    [Google Scholar]
  20. 20. 
    McClean CM, Tobin DM. 2016. Macrophage form, function, and phenotype in mycobacterial infection: lessons from tuberculosis and other diseases. Pathog. Dis. 74:7ftw068
    [Google Scholar]
  21. 21. 
    Welsh KJ, Risin SA, Actor JK, Hunter RL 2011. Immunopathology of postprimary tuberculosis: increased T-regulatory cells and DEC-205-positive foamy macrophages in cavitary lesions. Clin. Dev. Immunol. 2011:307631
    [Google Scholar]
  22. 22. 
    Pagán AJ, Ramakrishnan L. 2015. Immunity and immunopathology in the tuberculous granuloma. Cold Spring Harb. Perspect. Med. 5:9a018499
    [Google Scholar]
  23. 23. 
    Hunter RL. 2016. Tuberculosis as a three-act play: a new paradigm for the pathogenesis of pulmonary tuberculosis. Tuberculosis 97:8–17
    [Google Scholar]
  24. 24. 
    Subbian S, Tsenova L, Kim MJ, Wainwright HC, Visser A et al. 2015. Lesion-specific immune response in granulomas of patients with pulmonary tuberculosis: a pilot study. PLOS ONE 10:7e0132249
    [Google Scholar]
  25. 25. 
    Martin CJ, Cadena AM, Leung VW, Lin PL, Maiello P et al. 2017. Digitally barcoding Mycobacterium tuberculosis reveals in vivo infection dynamics in the macaque model of tuberculosis. mBio 8:3e00312–17
    [Google Scholar]
  26. 26. 
    Price NM, Gilman RH, Uddin J, Recavarren S, Friedland JS 2003. Unopposed matrix metalloproteinase-9 expression in human tuberculous granuloma and the role of TNF-α-dependent monocyte networks. J. Immunol. 171:105579–86
    [Google Scholar]
  27. 27. 
    Cronan MR, Beerman RW, Rosenberg AF, Saelens JW, Johnson MG et al. 2016. Macrophage epithelial reprogramming underlies mycobacterial granuloma formation and promotes infection. Immunity 45:4861–76
    [Google Scholar]
  28. 28. 
    Russell DG, Cardona P-J, Kim M-J, Allain S, Altare F 2009. Foamy macrophages and the progression of the human tuberculosis granuloma. Nat. Immunol. 10:943
    [Google Scholar]
  29. 29. 
    Mahajan S, Dkhar HK, Chandra V, Dave S, Nanduri R et al. 2012. Mycobacterium tuberculosis modulates macrophage lipid-sensing nuclear receptors PPARγ and TR4 for survival. J. Immunol. 188:115593–603
    [Google Scholar]
  30. 30. 
    Singh V, Jamwal S, Jain R, Verma P, Gokhale R, Rao KVS 2012. Mycobacterium tuberculosis-driven targeted recalibration of macrophage lipid homeostasis promotes the foamy phenotype. Cell Host Microbe 12:5669–81
    [Google Scholar]
  31. 31. 
    Genoula M, Franco JLM, Dupont M, Kviatcovsky D, Milillo A et al. 2018. Formation of foamy macrophages by tuberculous pleural effusions is triggered by the interleukin-10/signal transducer and activator of transcription 3 axis through ACAT upregulation. Front. Immunol. 9:459
    [Google Scholar]
  32. 32. 
    Knight M, Braverman J, Asfaha K, Gronert K, Stanley S 2018. Lipid droplet formation in Mycobacterium tuberculosis infected macrophages requires IFN-γ/HIF-1α signaling and supports host defense. PLOS Pathog 14:1e1006874
    [Google Scholar]
  33. 33. 
    Jaisinghani N, Dawa S, Singh K, Nandy A, Menon D et al. 2018. Necrosis driven triglyceride synthesis primes macrophages for inflammation during Mycobacterium tuberculosis infection. Front. Immunol. 9:1490
    [Google Scholar]
  34. 34. 
    Gideon HP, Phuah JY, Myers AJ, Bryson BD, Rodgers MA et al. 2015. Variability in tuberculosis granuloma T cell responses exists, but a balance of pro- and anti-inflammatory cytokines is associated with sterilization. PLOS Pathog 11:1e1004603
    [Google Scholar]
  35. 35. 
    Wong EA, Evans S, Kraus CR, Engelman KD, Maiello P et al. 2020. IL-10 impairs local immune response in lung granulomas and lymph nodes during early Mycobacterium tuberculosis infection. J. Immunol. 204:3644–59
    [Google Scholar]
  36. 36. 
    Kauffman KD, Sallin MA, Sakai S, Kamenyeva O, Kabat J et al. 2018. Defective positioning in granulomas but not lung-homing limits CD4 T-cell interactions with Mycobacterium tuberculosis-infected macrophages in rhesus macaques. Mucosal Immunol 11:2462–73
    [Google Scholar]
  37. 37. 
    Gideon HP, Phuah J, Junecko BA, Mattila JT 2019. Neutrophils express pro- and anti-inflammatory cytokines in granulomas from Mycobacterium tuberculosis-infected cynomolgus macaques. Mucosal Immunol 12:61370–81
    [Google Scholar]
  38. 38. 
    Lenaerts A, Barry CE III, Dartois V 2015. Heterogeneity in tuberculosis pathology, microenvironments and therapeutic responses. Immunol. Rev. 264:1288–307
    [Google Scholar]
  39. 39. 
    Lin PL, Maiello P, Gideon HP, Coleman MT, Cadena AM et al. 2016. PET CT identifies reactivation risk in cynomolgus macaques with latent M. tuberculosis. . PLOS Pathog 12:7e1005739
    [Google Scholar]
  40. 40. 
    Malherbe ST, Shenai S, Ronacher K, Loxton AG, Dolganov G et al. 2016. Persisting positron emission tomography lesion activity and Mycobacterium tuberculosis mRNA after tuberculosis cure. Nat. Med. 22:101094–100
    [Google Scholar]
  41. 41. 
    Marakalala MJ, Raju RM, Sharma K, Zhang YJ, Eugenin EA et al. 2016. Inflammatory signaling in human tuberculosis granulomas is spatially organized. Nat. Med. 22:5531–38
    [Google Scholar]
  42. 42. 
    Mattila JT, Ojo OO, Kepka-Lenhart D, Marino S, Kim JH et al. 2013. Microenvironments in tuberculous granulomas are delineated by distinct populations of macrophage subsets and expression of nitric oxide synthase and arginase isoforms. J. Immunol. 191:2773–84
    [Google Scholar]
  43. 43. 
    Hudock TA, Foreman TW, Bandyopadhyay N, Gautam US, Veatch AV et al. 2017. Hypoxia sensing and persistence genes are expressed during the intragranulomatous survival of Mycobacterium tuberculosis. Am. J. Respir. Cell Mol. Biol 56:5637–47
    [Google Scholar]
  44. 44. 
    Aly S, Laskay T, Mages J, Malzan A, Lang R, Ehlers S 2007. Interferon-gamma-dependent mechanisms of mycobacteria-induced pulmonary immunopathology: the role of angiostasis and CXCR3-targeted chemokines for granuloma necrosis. J. Pathol. 212:3295–305
    [Google Scholar]
  45. 45. 
    Sarathy JP, Zuccotto F, Hsinpin H, Sandberg L, Via LE et al. 2016. Prediction of drug penetration in tuberculosis lesions. ACS Infect. Dis. 2:8552–63
    [Google Scholar]
  46. 46. 
    Strydom N, Gupta SV, Fox WS, Via LE, Bang H et al. 2019. Tuberculosis drugs’ distribution and emergence of resistance in patient's lung lesions: a mechanistic model and tool for regimen and dose optimization. PLOS Med 16:4e1002773
    [Google Scholar]
  47. 47. 
    Muñoz-Elías EJ, Timm J, Botha T, Chan WT, Gomez JE, McKinney JD 2005. Replication dynamics of Mycobacterium tuberculosis in chronically infected mice. Infect. Immun. 73:1546–51
    [Google Scholar]
  48. 48. 
    Gern B, Plumlee C, Gerner M, Urdahl K 2017. Investigating immune correlates of protection to tuberculosis using an ultra-low dose infection in a mouse model. Open Forum Infect. Dis. 4:Suppl. 1S47–48
    [Google Scholar]
  49. 49. 
    Orme IM. 2003. The mouse as a useful model of tuberculosis. Tuberculosis 83:1–3112–15
    [Google Scholar]
  50. 50. 
    Irwin SM, Driver E, Lyon E, Schrupp C, Ryan G et al. 2015. Presence of multiple lesion types with vastly different microenvironments in C3HeB/FeJ mice following aerosol infection with Mycobacterium tuberculosis. Dis. Model. Mech 8:6591–602
    [Google Scholar]
  51. 51. 
    Pan H, Yan BS, Rojas M, Shebzukhov YV, Zhou H et al. 2005. Ipr1 gene mediates innate immunity to tuberculosis. Nature 434:7034767–72
    [Google Scholar]
  52. 52. 
    Ji DX, Yamashiro LH, Chen KJ, Mukaida N, Kramnik I et al. 2019. Type I interferon-driven susceptibility to Mycobacterium tuberculosis is mediated by IL-1Ra. Nat. Microbiol. 4:122128–35
    [Google Scholar]
  53. 53. 
    Chesler EJ, Miller DR, Branstetter LR, Galloway LD, Jackson BL et al. 2008. The Collaborative Cross at Oak Ridge National Laboratory: developing a powerful resource for systems genetics. Mamm. Genome 19:382–89
    [Google Scholar]
  54. 54. 
    Churchill GA, Gatti DM, Munger SC, Svenson KL 2012. The diversity outbred mouse population. Mamm. Genome 23:9–10713–18
    [Google Scholar]
  55. 55. 
    Ahmed M, Thirunavukkarasu S, Rosa BA, Thomas KA, Das S et al. 2020. Immune correlates of tuberculosis disease and risk translate across species. Sci. Transl. Med. 12:528eaay0233
    [Google Scholar]
  56. 56. 
    Smith CM, Proulx MK, Olive AJ, Laddy D, Mishra BB et al. 2016. Tuberculosis susceptibility and vaccine protection are independently controlled by host genotype. mBio 7:5e01516–16
    [Google Scholar]
  57. 57. 
    Smith CM, Proulx MK, Lai R, Kiritsy MC, Bell TA et al. 2019. Functionally overlapping variants control tuberculosis susceptibility in collaborative cross mice. mBio 10:6e02791–19
    [Google Scholar]
  58. 58. 
    Niazi MKK, Dhulekar N, Schmidt D, Major S, Cooper R et al. 2015. Lung necrosis and neutrophils reflect common pathways of susceptibility to Mycobacterium tuberculosis in genetically diverse, immune-competent mice. Dis. Model. Mech. 8:91141–53
    [Google Scholar]
  59. 59. 
    Subbian S, Tsenova L, Yang G, O'Brien P, Parsons S et al. 2011. Chronic pulmonary cavitary tuberculosis in rabbits: a failed host immune response. Open Biol 1:4110016
    [Google Scholar]
  60. 60. 
    Clark S, Hall Y, Williams A 2015. Animal models of tuberculosis: guinea pigs. Cold Spring Harb. Perspect. Med. 5:5a018572
    [Google Scholar]
  61. 61. 
    Hoff DR, Ryan GJ, Driver ER, Ssemakulu CC, de Groote MA et al. 2011. Location of intra- and extracellular M. tuberculosis populations in lungs of mice and guinea pigs during disease progression and after drug treatment. PLOS ONE 6:3e17550
    [Google Scholar]
  62. 62. 
    Ruhl CR, Pasko BL, Khan HS, Kindt LM, Stamm CE et al. 2020. Mycobacterium tuberculosis sulfolipid-1 activates nociceptive neurons and induces cough. Cell 181:2293–305.e11
    [Google Scholar]
  63. 63. 
    Via LE, Weiner DM, Schimel D, Lin PL, Dayao E et al. 2013. Differential virulence and disease progression following Mycobacterium tuberculosis complex infection of the common marmoset (Callithrix jacchus). Infect. Immun. 81:82909–19
    [Google Scholar]
  64. 64. 
    Peña JC, Ho WZ. 2015. Monkey models of tuberculosis: lessons learned. Infect. Immun. 83:3852–62
    [Google Scholar]
  65. 65. 
    Cronan MR, Tobin DM. 2014. Fit for consumption: zebrafish as a model for tuberculosis. Dis. Model. Mech. 7:7777–84
    [Google Scholar]
  66. 66. 
    Liu CH, Liu H, Ge B 2017. Innate immunity in tuberculosis: host defense versus pathogen evasion. Cell. Mol. Immunol. 14:12963–75
    [Google Scholar]
  67. 67. 
    Ernst JD. 1998. Macrophage receptors for Mycobacterium tuberculosis. Infect. . Immun 66:41277–81
    [Google Scholar]
  68. 68. 
    Arbués A, Malaga W, Constant P, Guilhot C, Prandi J, Astarie-Dequeker C 2016. Trisaccharides of phenolic glycolipids confer advantages to pathogenic mycobacteria through manipulation of host-cell pattern-recognition receptors. ACS Chem. Biol. 11:102865–75
    [Google Scholar]
  69. 69. 
    Blanc L, Gilleron M, Prandi J, Song O, Jang M-S et al. 2017. Mycobacterium tuberculosis inhibits human innate immune responses via the production of TLR2 antagonist glycolipids. PNAS 114:4211205–10
    [Google Scholar]
  70. 70. 
    Armstrong JA, Hart PD. 1975. Phagosome-lysosome interactions in cultured macrophages infected with virulent tubercle bacilli: reversal of the usual nonfusion pattern and observations on bacterial survival. J. Exp. Med. 142:11–16
    [Google Scholar]
  71. 71. 
    Rajaram MVS, Arnett E, Azad AK, Guirado E, Ni B et al. 2017. M. tuberculosis-initiated human mannose receptor signaling regulates macrophage recognition and vesicle trafficking by FcRγ-chain, Grb2, and SHP-1. Cell Rep 21:1126–40
    [Google Scholar]
  72. 72. 
    Astarie-Dequeker C, Le Guyader L, Malaga W, Seaphanh F-K, Chalut C et al. 2009. Phthiocerol dimycocerosates of M. tuberculosis participate in macrophage invasion by inducing changes in the organization of plasma membrane lipids. PLOS Pathog 5:2e1000289
    [Google Scholar]
  73. 73. 
    Augenstreich J, Haanappel E, Ferré G, Czaplicki G, Jolibois F et al. 2019. The conical shape of DIM lipids promotes Mycobacterium tuberculosis infection of macrophages. PNAS 116:5125649–58
    [Google Scholar]
  74. 74. 
    Pauwels A-M, Trost M, Beyaert R, Hoffmann E 2017. Patterns, receptors, and signals: regulation of phagosome maturation. Trends Immunol 38:6407–22
    [Google Scholar]
  75. 75. 
    Sun J, Wang X, Lau A, Liao T-YA, Bucci C, Hmama Z 2010. Mycobacterial nucleoside diphosphate kinase blocks phagosome maturation in murine raw 264.7 macrophages. PLOS ONE 5:1e8769
    [Google Scholar]
  76. 76. 
    Roberts EA, Chua J, Kyei GB, Deretic V 2006. Higher order Rab programming in phagolysosome biogenesis. J. Cell Biol. 174:7923–29
    [Google Scholar]
  77. 77. 
    Vergne I, Chua J, Deretic V 2003. Mycobacterium tuberculosis phagosome maturation arrest: selective targeting of PI3P-dependent membrane trafficking. Traffic 4:9600–6
    [Google Scholar]
  78. 78. 
    Vergne I, Chua J, Lee H-H, Lucas M, Belisle J, Deretic V 2005. Mechanism of phagolysosome biogenesis block by viable Mycobacterium tuberculosis. . PNAS 102:114033–38
    [Google Scholar]
  79. 79. 
    Pradhan G, Shrivastva R, Mukhopadhyay S 2018. Mycobacterial PknG targets the Rab7l1 signaling pathway to inhibit phagosome–lysosome fusion. J. Immunol. 201:51421–33
    [Google Scholar]
  80. 80. 
    Wong D, Bach H, Sun J, Hmama Z, Av-Gay Y 2011. Mycobacterium tuberculosis protein tyrosine phosphatase (PtpA) excludes host vacuolar-H+–ATPase to inhibit phagosome acidification. PNAS 108:4819371–76
    [Google Scholar]
  81. 81. 
    Grundner C, Cox JS, Alber T 2008. Protein tyrosine phosphatase PtpA is not required for Mycobacterium tuberculosis growth in mice. FEMS Microbiol. Lett. 287:2181–84
    [Google Scholar]
  82. 82. 
    Buter J, Cheng T-Y, Ghanem M, Grootemaat AE, Raman S et al. 2019. Mycobacterium tuberculosis releases an antacid that remodels phagosomes. Nat. Chem. Biol. 15:9889–99
    [Google Scholar]
  83. 83. 
    Vandal OH, Pierini LM, Schnappinger D, Nathan CF, Ehrt S 2008. A membrane protein preserves intrabacterial pH in intraphagosomal Mycobacterium tuberculosis. Nat. Med 14:8849–54
    [Google Scholar]
  84. 84. 
    Martinez J, Malireddi RKS, Lu Q, Cunha LD, Pelletier S et al. 2015. Molecular characterization of LC3-associated phagocytosis reveals distinct roles for Rubicon, NOX2 and autophagy proteins. Nat. Cell Biol. 17:7893–906
    [Google Scholar]
  85. 85. 
    Köster S, Upadhyay S, Chandra P, Papavinasasundaram K, Yang G et al. 2017. Mycobacterium tuberculosis is protected from NADPH oxidase and LC3-associated phagocytosis by the LCP protein CpsA. PNAS 114:41E8711–20
    [Google Scholar]
  86. 86. 
    Sun J, Singh V, Lau A, Stokes RW, Obregón-Henao A et al. 2013. Mycobacterium tuberculosis nucleoside diphosphate kinase inactivates small GTPases leading to evasion of innate immunity. PLOS Pathog 9:7e1003499
    [Google Scholar]
  87. 87. 
    Miller JL, Velmurugan K, Cowan MJ, Briken V 2010. The type I NADH dehydrogenase of Mycobacterium tuberculosis counters phagosomal NOX2 activity to inhibit TNF-α-mediated host cell apoptosis. PLOS Pathog 6:4e1000864
    [Google Scholar]
  88. 88. 
    Conrad WH, Osman MM, Shanahan JK, Chu F, Takaki KK et al. 2017. Mycobacterial ESX-1 secretion system mediates host cell lysis through bacterium contact-dependent gross membrane disruptions. PNAS 114:61371–76
    [Google Scholar]
  89. 89. 
    Augenstreich J, Arbues A, Simeone R, Haanappel E, Wegener A et al. 2017. ESX-1 and phthiocerol dimycocerosates of Mycobacterium tuberculosis act in concert to cause phagosomal rupture and host cell apoptosis. Cell. Microbiol. 19:7e12726
    [Google Scholar]
  90. 90. 
    Quigley J, Hughitt VK, Velikovsky CA, Mariuzza RA, El-Sayed NM, Briken V 2017. The cell wall lipid PDIM contributes to phagosomal escape and host cell exit of Mycobacterium tuberculosis. . mBio 8:2e00148–17
    [Google Scholar]
  91. 91. 
    Barczak AK, Avraham R, Singh S, Luo SS, Zhang WR et al. 2017. Systematic, multiparametric analysis of Mycobacterium tuberculosis intracellular infection offers insight into coordinated virulence. PLOS Pathog 13:5e1006363
    [Google Scholar]
  92. 92. 
    Mittal E, Skowyra ML, Uwase G, Tinaztepe E, Mehra A et al. 2018. Mycobacterium tuberculosis type VII secretion system effectors differentially impact the ESCRT endomembrane damage response. mBio 9:6e01765–18
    [Google Scholar]
  93. 93. 
    Collins AC, Cai H, Li T, Franco LH, Li XD et al. 2015. Cyclic GMP-AMP synthase is an innate immune DNA sensor for Mycobacterium tuberculosis. . Cell Host Microbe 17:6820–28
    [Google Scholar]
  94. 94. 
    Wassermann R, Gulen MF, Sala C, Perin SG, Lou Y et al. 2015. Mycobacterium tuberculosis differentially activates cGAS- and inflammasome-dependent intracellular immune responses through ESX-1. Cell Host Microbe 17:6799–810
    [Google Scholar]
  95. 95. 
    Watson RO, Bell SL, MacDuff DA, Kimmey JM, Diner EJ et al. 2015. The cytosolic sensor cGAS detects Mycobacterium tuberculosis DNA to induce type I interferons and activate autophagy. Cell Host Microbe 17:6811–19
    [Google Scholar]
  96. 96. 
    Watson RO, Manzanillo PS, Cox JS 2012. Extracellular M. tuberculosis DNA targets bacteria for autophagy by activating the host DNA-sensing pathway. Cell 150:4803–15
    [Google Scholar]
  97. 97. 
    Dey B, Dey RJ, Cheung LS, Pokkali S, Guo H et al. 2015. A bacterial cyclic dinucleotide activates the cytosolic surveillance pathway and mediates innate resistance to tuberculosis. Nat. Med. 21:4401–6
    [Google Scholar]
  98. 98. 
    Cheng Y, Schorey JS. 2018. Mycobacterium tuberculosis-induced IFN-β production requires cytosolic DNA and RNA sensing pathways. J. Exp. Med. 215:112919–35
    [Google Scholar]
  99. 99. 
    Pandey AK, Yang Y, Jiang Z, Fortune SM, Coulombe F et al. 2009. NOD2, RIP2 and IRF5 play a critical role in the type I interferon response to Mycobacterium tuberculosis. . PLOS Pathog 5:7e1000500
    [Google Scholar]
  100. 100. 
    Mishra BB, Moura-Alves P, Sonawane A, Hacohen N, Griffiths G et al. 2010. Mycobacterium tuberculosis protein ESAT-6 is a potent activator of the NLRP3/ASC inflammasome. Cell. Microbiol. 12:81046–63
    [Google Scholar]
  101. 101. 
    Saiga H, Kitada S, Shimada Y, Kamiyama N, Okuyama M et al. 2012. Critical role of AIM2 in Mycobacterium tuberculosis infection. Int. Immunol. 24:10637–44
    [Google Scholar]
  102. 102. 
    Budzik JM, Swaney DL, Jimenez-Morales D, Johnson JR, Garelis NE et al. 2020. Dynamic post-translational modification profiling of M. tuberculosis-infected primary macrophages. eLife 9:e51461
    [Google Scholar]
  103. 103. 
    Manzanillo PS, Ayres JS, Watson RO, Collins AC, Souza G et al. 2013. The ubiquitin ligase parkin mediates resistance to intracellular pathogens. Nature 501:7468512–16
    [Google Scholar]
  104. 104. 
    Franco LH, Nair VR, Scharn CR, Xavier RJ, Torrealba JR et al. 2017. The ubiquitin ligase Smurf1 functions in selective autophagy of Mycobacterium tuberculosis and anti-tuberculous host defense. Cell Host Microbe 21:159–72
    [Google Scholar]
  105. 105. 
    Chai Q, Wang X, Qiang L, Zhang Y, Ge P et al. 2019. A Mycobacterium tuberculosis surface protein recruits ubiquitin to trigger host xenophagy. Nat. Commun. 10:11973
    [Google Scholar]
  106. 106. 
    Shin D-M, Jeon B-Y, Lee H-M, Jin HS, Yuk J-M et al. 2010. Mycobacterium tuberculosis Eis regulates autophagy, inflammation, and cell death through redox-dependent signaling. PLOS Pathog 6:12e1001230
    [Google Scholar]
  107. 107. 
    Seto S, Tsujimura K, Koide Y 2012. Coronin-1a inhibits autophagosome formation around Mycobacterium tuberculosis-containing phagosomes and assists mycobacterial survival in macrophages. Cell. Microbiol. 14:5710–27
    [Google Scholar]
  108. 108. 
    Saini NK, Baena A, Ng TW, Venkataswamy MM, Kennedy SC et al. 2016. Suppression of autophagy and antigen presentation by Mycobacterium tuberculosis PE_PGRS47. Nat. Microbiol. 1:916133
    [Google Scholar]
  109. 109. 
    Shui W, Petzold CJ, Redding A, Liu J, Pitcher A et al. 2011. Organelle membrane proteomics reveals differential influence of mycobacterial lipoglycans on macrophage phagosome maturation and autophagosome accumulation. J. Proteome Res. 10:1339–48
    [Google Scholar]
  110. 110. 
    Ouimet M, Koster S, Sakowski E, Ramkhelawon B, van Solingen C et al. 2016. Mycobacterium tuberculosis induces the miR-33 locus to reprogram autophagy and host lipid metabolism. Nat. Immunol. 17:6677–86
    [Google Scholar]
  111. 111. 
    Kimmey JM, Huynh JP, Weiss LA, Park S, Kambal A et al. 2015. Unique role for ATG5 in neutrophil-mediated immunopathology during M. tuberculosis infection. Nature 528:7583565–69
    [Google Scholar]
  112. 112. 
    Castillo EF, Dekonenko A, Arko-Mensah J, Mandell MA, Dupont N et al. 2012. Autophagy protects against active tuberculosis by suppressing bacterial burden and inflammation. PNAS 109:46E3168–76
    [Google Scholar]
  113. 113. 
    Manca C, Tsenova L, Freeman S, Barczak AK, Tovey M et al. 2005. Hypervirulent M. tuberculosis W/Beijing strains upregulate type I IFNs and increase expression of negative regulators of the Jak-Stat pathway. J. Interf. Cytokine Res. 25:11694–701
    [Google Scholar]
  114. 114. 
    Berry MPR, Graham CM, McNab FW, Xu Z, Bloch SAA et al. 2010. An interferon-inducible neutrophil-driven blood transcriptional signature in human tuberculosis. Nature 466:7309973–77
    [Google Scholar]
  115. 115. 
    Dorhoi A, Yeremeev V, Nouailles G, Weiner J, Jörg S et al. 2014. Type I IFN signaling triggers immunopathology in tuberculosis-susceptible mice by modulating lung phagocyte dynamics. Eur. J. Immunol. 44:82380–93
    [Google Scholar]
  116. 116. 
    Kimmey JM, Campbell JA, Weiss LA, Monte KJ, Lenschow DJ, Stallings CL 2017. The impact of ISGylation during Mycobacterium tuberculosis infection in mice. Microbes Infect 19:4–5249–58
    [Google Scholar]
  117. 117. 
    Moreira-Teixeira L, Sousa J, McNab FW, Torrado E, Cardoso F et al. 2016. Type I IFN inhibits alternative macrophage activation during Mycobacterium tuberculosis infection and leads to enhanced protection in the absence of IFN-γ signaling. J. Immunol. 197:124714–26
    [Google Scholar]
  118. 118. 
    Cooper AM, Pearl JE, Brooks JV, Ehlers S, Orme IM 2000. Expression of the nitric oxide synthase 2 gene is not essential for early control of Mycobacterium tuberculosis in the murine lung. Infect. Immun. 68:126879–82
    [Google Scholar]
  119. 119. 
    Chaussabel D, Semnani RT, McDowell MA, Sacks D, Sher A, Nutman TB 2003. Unique gene expression profiles of human macrophages and dendritic cells to phylogenetically distinct parasites. Blood 102:2672–81
    [Google Scholar]
  120. 120. 
    Bogunovic D, Byun M, Durfee LA, Abhyankar A, Mansouri D et al. 2012. Mycobacterial disease and impaired IFN-γ immunity in humans with inherited ISG15 deficiency. Science 337:61021684–88
    [Google Scholar]
  121. 121. 
    Zhang X, Bogunovic D, Payelle-Brogard B, Francois-Newton V, Speer SD et al. 2015. Human intracellular ISG15 prevents interferon-α/β over-amplification and auto-inflammation. Nature 517:753289–93
    [Google Scholar]
  122. 122. 
    McNab FW, Ewbank J, Howes A, Moreira-Teixeira L, Martirosyan A et al. 2014. Type I IFN induces IL-10 production in an IL-27–independent manner and blocks responsiveness to IFN-γ for production of IL-12 and bacterial killing in Mycobacterium tuberculosis–infected macrophages. J. Immunol. 193:73600–12
    [Google Scholar]
  123. 123. 
    Clifford V, Tebruegge M, Zufferey C, Germano S, Forbes B et al. 2019. Cytokine biomarkers for the diagnosis of tuberculosis infection and disease in adults in a low prevalence setting. Tuberculosis 114:91–102
    [Google Scholar]
  124. 124. 
    Vinhaes CL, Oliveira-de-Souza D, Silveira-Mattos PS, Nogueira B, Shi R et al. 2019. Changes in inflammatory protein and lipid mediator profiles persist after antitubercular treatment of pulmonary and extrapulmonary tuberculosis: a prospective cohort study. Cytokine 123:154759
    [Google Scholar]
  125. 125. 
    Moreira-Teixeira L, Redford PS, Stavropoulos E, Ghilardi N, Maynard CL et al. 2017. T cell-derived IL-10 impairs host resistance to Mycobacterium tuberculosis infection. J. Immunol. 199:2613–23
    [Google Scholar]
  126. 126. 
    Huynh JP, Lin CC, Kimmey JM, Jarjour NN, Schwarzkopf EA et al. 2018. Bhlhe40 is an essential repressor of IL-10 during Mycobacterium tuberculosis infection. J. Exp. Med. 215:71823–38
    [Google Scholar]
  127. 127. 
    Mayer-Barber KD, Andrade BB, Barber DL, Hieny S, Feng CG et al. 2011. Innate and adaptive interferons suppress IL-1α and IL-1β production by distinct pulmonary myeloid subsets during Mycobacterium tuberculosis infection. Immunity 35:1023–34
    [Google Scholar]
  128. 128. 
    Netea MG, van de Veerdonk FL, van der Meer JWM, Dinarello CA, Joosten LAB 2015. Inflammasome-independent regulation of IL-1-family cytokines. Annu. Rev. Immunol. 33:4977
    [Google Scholar]
  129. 129. 
    Bohrer AC, Tocheny C, Assmann M, Ganusov VV, Mayer-Barber KD 2018. IL-1R1 mediates host resistance to Mycobacterium tuberculosis by trans-protection of infected cells. J. Immunol. 201:61645–50
    [Google Scholar]
  130. 130. 
    Mayer-Barber KD, Andrade BB, Oland SD, Amaral EP, Barber DL et al. 2014. Host-directed therapy of tuberculosis based on interleukin-1 and type I interferon crosstalk. Nature 511:750799–103
    [Google Scholar]
  131. 131. 
    Chen M, Divangahi M, Gan H, Shin DSJ, Hong S et al. 2008. Lipid mediators in innate immunity against tuberculosis: opposing roles of PGE2 and LXA4 in the induction of macrophage death. J. Exp. Med. 205:122791–801
    [Google Scholar]
  132. 132. 
    Bafica A, Scanga CA, Serhan C, Machado F, White S et al. 2005. Host control of Mycobacterium tuberculosis is regulated by 5-lipoxygenase-dependent lipoxin production. J. Clin. Investig. 115:61601–6
    [Google Scholar]
  133. 133. 
    Mishra BB, Lovewell RR, Olive AJ, Zhang G, Wang W et al. 2017. Nitric oxide prevents a pathogen-permissive granulocytic inflammation during tuberculosis. Nat. Microbiol. 2:17072
    [Google Scholar]
  134. 134. 
    Blomgran R, Desvignes L, Briken V, Ernst JD 2012. Mycobacterium tuberculosis inhibits neutrophil apoptosis, leading to delayed activation of naive CD4 T cells. Cell Host Microbe 11:181–90
    [Google Scholar]
  135. 135. 
    Martin CJ, Booty MG, Rosebrock TR, Nunes-Alves C, Desjardins DM et al. 2012. Efferocytosis is an innate antibacterial mechanism. Cell Host Microbe 12:3289–300
    [Google Scholar]
  136. 136. 
    Lerner TR, Borel S, Greenwood DJ, Repnik U, Russell MRG et al. 2017. Mycobacterium tuberculosis replicates within necrotic human macrophages. J. Cell Biol. 216:3583–94
    [Google Scholar]
  137. 137. 
    Dallenga T, Repnik U, Corleis B, Eich J, Reimer R et al. 2017. M. tuberculosis-induced necrosis of infected neutrophils promotes bacterial growth following phagocytosis by macrophages. Cell Host Microbe 22:4519–30.e3
    [Google Scholar]
  138. 138. 
    Hinchey J, Lee S, Jeon BY, Basaraba RJ, Venkataswamy MM et al. 2007. Enhanced priming of adaptive immunity by a proapoptotic mutant of Mycobacterium tuberculosis.J. Clin. . Investig 117:82279–88
    [Google Scholar]
  139. 139. 
    Kim KH, An DR, Song J, Yoon JY, Kim HS et al. 2012. Mycobacterium tuberculosis Eis protein initiates suppression of host immune responses by acetylation of DUSP16/MKP-7. PNAS 109:207729–34
    [Google Scholar]
  140. 140. 
    Schaaf K, Smith SR, Duverger A, Wagner F, Wolschendorf F et al. 2017. Mycobacterium tuberculosis exploits the PPM1A signaling pathway to block host macrophage apoptosis. Sci. Rep. 7:42101
    [Google Scholar]
  141. 141. 
    Amaral EP, Costa DL, Namasivayam S, Riteau N, Kamenyeva O et al. 2019. A major role for ferroptosis in Mycobacterium tuberculosis-induced cell death and tissue necrosis. J. Exp. Med. 216:3556–70
    [Google Scholar]
  142. 142. 
    Wong K-W, Jacobs WR Jr 2011. Critical role for NLRP3 in necrotic death triggered by Mycobacterium tuberculosis. Cell. Microbiol 13:91371–84
    [Google Scholar]
  143. 143. 
    Welin A, Eklund D, Stendahl O, Lerm M 2011. Human macrophages infected with a high burden of ESAT-6-expressing M. tuberculosis undergo caspase-1- and cathepsin B-independent necrosis. PLOS ONE 6:5e20302
    [Google Scholar]
  144. 144. 
    Pajuelo D, Gonzalez-Juarbe N, Tak U, Sun J, Orihuela CJ, Niederweis M 2018. NAD+ depletion triggers macrophage necroptosis, a cell death pathway exploited by Mycobacterium tuberculosis. . Cell Rep 24:2429–40
    [Google Scholar]
  145. 145. 
    Zhao X, Khan N, Gan H, Tzelepis F, Nishimura T et al. 2017. Bcl-xL mediates RIPK3-dependent necrosis in M. tuberculosis-infected macrophages. Mucosal Immunol 10:61553–68
    [Google Scholar]
  146. 146. 
    Gleeson LE, Sheedy FJ, Palsson-McDermott EM, Triglia D, O'Leary SM et al. 2016. Mycobacterium tuberculosis induces aerobic glycolysis in human alveolar macrophages that is required for control of intracellular bacillary replication. J. Immunol. 196:62444–49
    [Google Scholar]
  147. 147. 
    Braverman J, Sogi KM, Benjamin D, Nomura DK, Stanley SA 2016. HIF-1α is an essential mediator of IFN-γ-dependent immunity to Mycobacterium tuberculosis. J. . Immunol 197:41287–97
    [Google Scholar]
  148. 148. 
    El Kasmi KC, Qualls JE, Pesce JT, Smith AM, Thompson RW et al. 2008. Toll-like receptor-induced arginase 1 in macrophages thwarts effective immunity against intracellular pathogens. Nat. Immunol. 9:121399–406
    [Google Scholar]
  149. 149. 
    Huang L, Nazarova EV, Tan S, Liu Y, Russell DG 2018. Growth of Mycobacterium tuberculosis in vivo segregates with host macrophage metabolism and ontogeny. J. Exp. Med. 215:41135–52
    [Google Scholar]
  150. 150. 
    Pisu D, Huang L, Grenier JK, Russell DG 2020. Dual RNA-seq of Mtb-infected macrophages in vivo reveals ontologically distinct host-pathogen interactions. Cell Rep 30:2335–50.e4
    [Google Scholar]
  151. 151. 
    Nair S, Huynh JP, Lampropoulou V, Loginicheva E, Esaulova E et al. 2018. Irg1 expression in myeloid cells prevents immunopathology during M. tuberculosis infection. J. Exp. Med. 215:41035–45
    [Google Scholar]
  152. 152. 
    Gautam US, Foreman TW, Bucsan AN, Veatch AV, Alvarez X et al. 2018. In vivo inhibition of tryptophan catabolism reorganizes the tuberculoma and augments immune-mediated control of Mycobacterium tuberculosis. . PNAS 115:1E62–71
    [Google Scholar]
  153. 153. 
    Nandi B, Behar SM. 2011. Regulation of neutrophils by interferon-γ limits lung inflammation during tuberculosis infection. J. Exp. Med. 208:112251–62
    [Google Scholar]
  154. 154. 
    Braverman J, Stanley SA. 2017. Nitric oxide modulates macrophage responses to Mycobacterium tuberculosis infection through activation of HIF-1α and repression of NF-κB. J. Immunol. 199:51805–16
    [Google Scholar]
  155. 155. 
    Mishra BB, Rathinam VAK, Martens GW, Martinot AJ, Kornfeld H et al. 2013. Nitric oxide controls the immunopathology of tuberculosis by inhibiting NLRP3 inflammasome-dependent processing of IL-1β. Nat. Immunol. 14:152–60
    [Google Scholar]
  156. 156. 
    Davis AS, Vergne I, Master SS, Kyei GB, Chua J, Deretic V 2007. Mechanism of inducible nitric oxide synthase exclusion from mycobacterial phagosomes. PLOS Pathog 3:12e186
    [Google Scholar]
  157. 157. 
    Dorhoi A, Iannaccone M, Farinacci M, Faé KC, Schreiber J et al. 2013. MicroRNA-223 controls susceptibility to tuberculosis by regulating lung neutrophil recruitment. J. Clin. Investig. 123:114836–48
    [Google Scholar]
  158. 158. 
    Chinta KC, Rahman MA, Saini V, Glasgow JN, Reddy VP et al. 2018. Microanatomic distribution of myeloid heme oxygenase-1 protects against free radical-mediated immunopathology in human tuberculosis. Cell Rep 25:71938–52.e5
    [Google Scholar]
  159. 159. 
    Eum SY, Kong JH, Hong MS, Lee YJ, Kim JH et al. 2010. Neutrophils are the predominant infected phagocytic cells in the airways of patients with active pulmonary TB. Chest 137:1122–28
    [Google Scholar]
  160. 160. 
    La Manna MP, Orlando V, Paraboschi EM, Tamburini B, Di Carlo P et al. 2019. Mycobacterium tuberculosis drives expansion of low-density neutrophils equipped with regulatory activities. Front. Immunol. 10:2761
    [Google Scholar]
  161. 161. 
    Scanga CA, Mohan VP, Yu K, Joseph H, Tanaka K et al. 2000. Depletion of Cd4+ T cells causes reactivation of murine persistent tuberculosis despite continued expression of interferon γ and nitric oxide synthase 2. J. Exp. Med. 192:3347–58
    [Google Scholar]
  162. 162. 
    Ahmed A, Rakshit S, Vyakarnam A 2016. HIV-TB co-infection: mechanisms that drive reactivation of Mycobacterium tuberculosis in HIV infection. Oral Dis 22:53–60
    [Google Scholar]
  163. 163. 
    Serbina NV, Lazarevic V, Flynn JL 2001. CD4+ T cells are required for the development of cytotoxic CD8+ T cells during Mycobacterium tuberculosis infection. J. Immunol. 167:126991–7000
    [Google Scholar]
  164. 164. 
    Green AM, DiFazio R, Flynn JL 2013. IFN-γ from CD4 T cells is essential for host survival and enhances CD8 T cell function during Mycobacterium tuberculosis infection. J. Immunol. 190:1270–77
    [Google Scholar]
  165. 165. 
    Jayaraman P, Sada-Ovalle I, Beladi S, Anderson AC, Dardalhon V et al. 2010. Tim3 binding to galectin-9 stimulates antimicrobial immunity. J. Exp. Med. 207:112343–54
    [Google Scholar]
  166. 166. 
    Gallegos AM, van Heijst JWJ, Samstein M, Su X, Pamer EG, Glickman MS 2011. A gamma interferon independent mechanism of CD4 T cell mediated control of M. tuberculosis infection in vivo. PLOS Pathog 7:5e1002052
    [Google Scholar]
  167. 167. 
    Sakai S, Kauffman KD, Sallin MA, Sharpe AH, Young HA et al. 2016. CD4 T cell-derived IFN-γ plays a minimal role in control of pulmonary Mycobacterium tuberculosis infection and must be actively repressed by PD-1 to prevent lethal disease. PLOS Pathog 12:5e1005667
    [Google Scholar]
  168. 168. 
    Elias D, Wolday D, Akuffo H, Petros B, Bronner U, Britton S 2001. Effect of deworming on human T cell responses to mycobacterial antigens in helminth-exposed individuals before and after bacille Calmette-Guérin (BCG) vaccination. Clin. Exp. Immunol. 123:2219–25
    [Google Scholar]
  169. 169. 
    Ashenafi S, Aderaye G, Bekele A, Zewdie M, Aseffa G et al. 2014. Progression of clinical tuberculosis is associated with a Th2 immune response signature in combination with elevated levels of SOCS3. Clin. Immunol. 151:284–99
    [Google Scholar]
  170. 170. 
    Nikitina IY, Panteleev AV, Kosmiadi GA, Serdyuk YV, Nenasheva TA et al. 2018. Th1, Th17, and Th1Th17 lymphocytes during tuberculosis: Th1 lymphocytes predominate and appear as low-differentiated CXCR3+CCR6+ cells in the blood and highly differentiated CXCR3+/−CCR6 cells in the lungs. J. Immunol. 200:62090–103
    [Google Scholar]
  171. 171. 
    Gopal R, Monin L, Slight S, Uche U, Blanchard E et al. 2014. Unexpected role for IL-17 in protective immunity against hypervirulent Mycobacterium tuberculosis HN878 infection. PLOS Pathog 10:5e1004099
    [Google Scholar]
  172. 172. 
    Woodworth JS, Wu Y, Behar SM 2008. Mycobacterium tuberculosis-specific CD8+ T cells require perforin to kill target cells and provide protection in vivo. J. Immunol. 181:128595–603
    [Google Scholar]
  173. 173. 
    Behar SM, Dascher CC, Grusby MJ, Wang C, Brenner MB et al. 1999. Susceptibility of mice deficient in CD1D or TAP1 to infection with Mycobacterium tuberculosis. J. Exp. Med 189:121973–80
    [Google Scholar]
  174. 174. 
    van Pinxteren LAH, Cassidy JP, Smedegaard BHC, Agger EM, Andersen P 2000. Control of latent Mycobacterium tuberculosis infection is dependent on CD8 T cells. Eur. J. Immunol. 30:123689–98
    [Google Scholar]
  175. 175. 
    Nunes-Alves C, Booty MG, Carpenter SM, Rothchild AC, Martin CJ et al. 2015. Human and murine clonal CD8+ T cell expansions arise during tuberculosis because of TCR selection. PLOS Pathog 11:5e1004849
    [Google Scholar]
  176. 176. 
    Kursar M, Koch M, Mittrücker H-W, Nouailles G, Bonhagen K et al. 2007. Regulatory T cells prevent efficient clearance of Mycobacterium tuberculosis. J. . Immunol 178:52661–65
    [Google Scholar]
  177. 177. 
    Shafiani S, Tucker-Heard G, Kariyone A, Takatsu K, Urdahl KB 2010. Pathogen-specific regulatory T cells delay the arrival of effector T cells in the lung during early tuberculosis. J. Exp. Med. 207:71409–20
    [Google Scholar]
  178. 178. 
    Marin ND, París SC, Vélez VM, Rojas CA, Rojas M, García LF 2010. Regulatory T cell frequency and modulation of IFN-gamma and IL-17 in active and latent tuberculosis. Tuberculosis 90:4252–61
    [Google Scholar]
  179. 179. 
    Day CL, Abrahams DA, Bunjun R, Stone L, de Kock M et al. 2018. PD-1 expression on Mycobacterium tuberculosis-specific CD4 T cells is associated with bacterial load in human tuberculosis. Front. Immunol. 9:1995
    [Google Scholar]
  180. 180. 
    Barber DL, Mayer-Barber KD, Feng CG, Sharpe AH, Sher A 2011. CD4 T cells promote rather than control tuberculosis in the absence of PD-1-mediated inhibition. J. Immunol. 186:31598–607
    [Google Scholar]
  181. 181. 
    Anastasopoulou A, Ziogas DC, Samarkos M, Kirkwood JM, Gogas H 2019. Reactivation of tuberculosis in cancer patients following administration of immune checkpoint inhibitors: current evidence and clinical practice recommendations. J. Immunother. Cancer 7:1239
    [Google Scholar]
  182. 182. 
    Tzelepis F, Blagih J, Khan N, Gillard J, Mendonca L et al. 2018. Mitochondrial cyclophilin D regulates T cell metabolic responses and disease tolerance to tuberculosis. Sci. Immunol. 3:23eaar4135
    [Google Scholar]
  183. 183. 
    Chancellor A, White A, Tocheva AS, Fenn JR, Dennis M et al. 2017. Quantitative and qualitative iNKT repertoire associations with disease susceptibility and outcome in macaque tuberculosis infection. Tuberculosis 105:86–95
    [Google Scholar]
  184. 184. 
    Sada-Ovalle I, Chiba A, Gonzales A, Brenner MB, Behar SM 2008. Innate invariant NKT cells recognize Mycobacterium tuberculosis-infected macrophages, produce interferon-γ, and kill intracellular bacteria. PLOS Pathog 4:12e1000239
    [Google Scholar]
  185. 185. 
    Rothchild AC, Jayaraman P, Nunes-Alves C, Behar SM 2014. iNKT cell production of GM-CSF controls Mycobacterium tuberculosis. . PLOS Pathog 10:1e1003805
    [Google Scholar]
  186. 186. 
    Sugawara I, Yamada H, Mizuno S, Li CY, Nakayama T, Taniguchi M 2002. Mycobacterial infection in natural killer T cell knockout mice. Tuberculosis 82:297–104
    [Google Scholar]
  187. 187. 
    Gold MC, Cerri S, Smyk-Pearson S, Cansler ME, Vogt TM et al. 2010. Human mucosal associated invariant T cells detect bacterially infected cells. PLOS Biol 8:6e1000407
    [Google Scholar]
  188. 188. 
    Wong EB, Gold MC, Meermeier EW, Xulu BZ, Khuzwayo S et al. 2019. TRAV1-2+ CD8+ T-cells including oligoconal expansions of MAIT cells are enriched in the airways in human tuberculosis. Commun. Biol. 2:1203
    [Google Scholar]
  189. 189. 
    Chen ZW. 2016. Protective immune responses of major Vγ2Vδ2 T-cell subset in M. tuberculosis infection. Curr. Opin. Immunol. 42:105–12
    [Google Scholar]
  190. 190. 
    Shen H, Wang Y, Chen CY, Frencher J, Huang D et al. 2015. Th17-related cytokines contribute to recall-like expansion/effector function of HMBPP-specific Vγ2Vδ2 T cells after Mycobacterium tuberculosis infection or vaccination. Eur. J. Immunol. 45:2442–51
    [Google Scholar]
  191. 191. 
    Qaqish A, Huang D, Chen CY, Zhang Z, Wang R et al. 2017. Adoptive transfer of phosphoantigen-specific γδ T cell subset attenuates Mycobacterium tuberculosis infection in nonhuman primates. J. Immunol. 198:124753–63
    [Google Scholar]
  192. 192. 
    Junqueira-Kipnis AP, Kipnis A, Jamieson A, Juarrero MG, Diefenbach A et al. 2003. NK cells respond to pulmonary infection with Mycobacterium tuberculosis, but play a minimal role in protection. J. Immunol. 171:116039–45
    [Google Scholar]
  193. 193. 
    Yoneda T, Ellner JJ. 1998. CD4+ T cell and natural killer cell-dependent killing of Mycobacterium tuberculosis by human monocytes. Am. J. Respir. Crit. Care Med. 158:2395–403
    [Google Scholar]
  194. 194. 
    Brill KJ, Li Q, Larkin R, Canaday DH, Kaplan DR et al. 2001. Human natural killer cells mediate killing of intracellular Mycobacterium tuberculosis H37Rv via granule-independent mechanisms. Infect. Immun. 69:31755–65
    [Google Scholar]
  195. 195. 
    Zhang R, Zheng X, Li B, Wei H, Tian Z 2006. Human NK cells positively regulate γδ T cells in response to Mycobacterium tuberculosis. J. . Immunol 176:42610–16
    [Google Scholar]
  196. 196. 
    Ardain A, Domingo-Gonzalez R, Das S, Kazer SW, Howard NC et al. 2019. Group 3 innate lymphoid cells mediate early protective immunity against tuberculosis. Nature 570:528–32
    [Google Scholar]
  197. 197. 
    Ulrichs T, Kosmiadi GA, Trusov V, Jörg S, Pradl L et al. 2004. Human tuberculous granulomas induce peripheral lymphoid follicle-like structures to orchestrate local host defence in the lung. J. Pathol. 204:2217–28
    [Google Scholar]
  198. 198. 
    Slight SR, Rangel-Moreno J, Gopal R, Lin Y, Junecko BAF et al. 2013. CXCR5+ T helper cells mediate protective immunity against tuberculosis. J. Clin. Investig. 123:2712–26
    [Google Scholar]
  199. 199. 
    Phuah J, Wong EA, Gideon HP, Maiello P, Coleman MT et al. 2016. Effects of B cell depletion on early Mycobacterium tuberculosis infection in cynomolgus macaques. Infect. Immun. 84:51301–11
    [Google Scholar]
  200. 200. 
    Lu LL, Chung AW, Rosebrock TR, Ghebremichael M, Yu WH et al. 2016. A functional role for antibodies in tuberculosis. Cell 167:2433–43.e14
    [Google Scholar]
  201. 201. 
    Lu LL, Smith MT, Yu KKQ, Luedemann C, Suscovich TJ et al. 2019. IFN-γ-independent immune markers of Mycobacterium tuberculosis exposure. Nat. Med. 25:6977–87
    [Google Scholar]
  202. 202. 
    Li H, Wang XX, Wang B, Fu L, Liu G et al. 2017. Latently and uninfected healthcare workers exposed to TB make protective antibodies against Mycobacterium tuberculosis. . PNAS 114:195023–28
    [Google Scholar]
  203. 203. 
    Olivares N, Marquina B, Mata-Espinoza D, Zatarain-Barron ZL, Pinzón CE et al. 2013. The protective effect of immunoglobulin in murine tuberculosis is dependent on IgG glycosylation. Pathog. Dis. 69:3176–83
    [Google Scholar]
  204. 204. 
    Maglione PJ, Xu J, Casadevall A, Chan J 2008. Fcγ receptors regulate immune activation and susceptibility during Mycobacterium tuberculosis infection. J. Immunol. 180:53329–38
    [Google Scholar]
  205. 205. 
    Hamasur B, Haile M, Pawlowski A, Schröder U, Källenius G, Svenson SB 2004. A mycobacterial lipoarabinomannan specific monoclonal antibody and its F(ab′)2 fragment prolong survival of mice infected with Mycobacterium tuberculosis.Clin.Exp. . Immunol 138:130–38
    [Google Scholar]
  206. 206. 
    Guirado E, Amat I, Gil O, Díaz J, Arcos V et al. 2006. Passive serum therapy with polyclonal antibodies against Mycobacterium tuberculosis protects against post-chemotherapy relapse of tuberculosis infection in SCID mice. Microbes Infect 8:51252–59
    [Google Scholar]
  207. 207. 
    Foreman TW, Mehra S, LoBato DN, Malek A, Alvarez X et al. 2016. CD4+ T-cell–independent mechanisms suppress reactivation of latent tuberculosis in a macaque model of HIV coinfection. PNAS 113:38E5636–44
    [Google Scholar]
  208. 208. 
    Amelio P, Portevin D, Hella J, Reither K, Kamwela L et al. 2018. HIV infection functionally impairs Mycobacterium tuberculosis-specific CD4 and CD8 T-cell responses. J. Virol. 93:5e01728–18
    [Google Scholar]
  209. 209. 
    Pathak S, Wentzel-Larsen T, Åsjö B 2010. Effects of in vitro HIV-1 infection on mycobacterial growth in peripheral blood monocyte-derived macrophages. Infect. Immun. 78:94022–32
    [Google Scholar]
  210. 210. 
    Lai RPJ, Nakiwala JK, Meintjes G, Wilkinson RJ 2013. The immunopathogenesis of the HIV tuberculosis immune reconstitution inflammatory syndrome. Eur. J. Immunol. 43:81995–2002
    [Google Scholar]
  211. 211. 
    Seddiki N, Sasson SC, Santner-Nanan B, Munier M, van Bockel D et al. 2009. Proliferation of weakly suppressive regulatory CD4+ T cells is associated with over-active CD4+ T-cell responses in HIV-positive patients with mycobacterial immune restoration disease. Eur. J. Immunol. 39:2391–403
    [Google Scholar]
  212. 212. 
    Cheekatla SS, Tripathi D, Venkatasubramanian S, Nathella PK, Paidipally P et al. 2016. NK-CD11c+ cell crosstalk in diabetes enhances IL-6-mediated inflammation during Mycobacterium tuberculosis infection. PLOS Pathog 12:10e1005972
    [Google Scholar]
  213. 213. 
    Gomez DI, Twahirwa M, Schlesinger LS, Restrepo BI 2013. Reduced Mycobacterium tuberculosis association with monocytes from diabetes patients that have poor glucose control. Tuberculosis 93:2192–97
    [Google Scholar]
  214. 214. 
    Martinez N, Ketheesan N, West K, Vallerskog T, Kornfeld H 2016. Impaired recognition of Mycobacterium tuberculosis by alveolar macrophages from diabetic mice. J. Infect. Dis. 214:111629–37
    [Google Scholar]
  215. 215. 
    Vrieling F, Wilson L, Rensen PCN, Walzl G, Ottenhoff THM, Joosten SA 2019. Oxidized low-density lipoprotein (oxLDL) supports Mycobacterium tuberculosis survival in macrophages by inducing lysosomal dysfunction. PLOS Pathog 15:4e1007724
    [Google Scholar]
  216. 216. 
    Chao WC, Yen CL, Wu YH, Chen SY, Hsieh CY et al. 2015. Increased resistin may suppress reactive oxygen species production and inflammasome activation in type 2 diabetic patients with pulmonary tuberculosis infection. Microbes Infect 17:3195–204
    [Google Scholar]
  217. 217. 
    Raposo-García S, Guerra-Laso JM, García-García S, Juan-García J, López-Fidalgo E et al. 2017. Immunological response to Mycobacterium tuberculosis infection in blood from type 2 diabetes patients. Immunol. Lett. 186:41–45
    [Google Scholar]
  218. 218. 
    Tripathi D, Radhakrishnan RK, Thandi RS, Paidipally P, Devalraju KP et al. 2019. IL-22 produced by type 3 innate lymphoid cells (ILC3s) reduces the mortality of type 2 diabetes mellitus (T2DM) mice infected with Mycobacterium tuberculosis. . PLOS Pathog 15:12e1008140
    [Google Scholar]
  219. 219. 
    Vallerskog T, Martens GW, Kornfeld H 2010. Diabetic mice display a delayed adaptive immune response to Mycobacterium tuberculosis. J. Immunol 184:116275–82
    [Google Scholar]
  220. 220. 
    Feng Y, Kong Y, Barnes PF, Huang FF, Klucar P et al. 2011. Exposure to cigarette smoke inhibits the pulmonary T-cell response to influenza virus and Mycobacterium tuberculosis. Infect. . Immun 79:1229–37
    [Google Scholar]
  221. 221. 
    Berg RD, Levitte S, O'Sullivan MP, O'Leary SM, Cambier CJ et al. 2016. Lysosomal disorders drive susceptibility to tuberculosis by compromising macrophage migration. Cell 165:1139–52
    [Google Scholar]
  222. 222. 
    O'Leary SM, Coleman MM, Chew WM, Morrow C, McLaughlin AM et al. 2014. Cigarette smoking impairs human pulmonary immunity to Mycobacterium tuberculosis. Am. J. Respir. Crit. . Care Med 190:121430–36
    [Google Scholar]
  223. 223. 
    Mason CM, Dobard E, Zhang P, Nelson S 2004. Alcohol exacerbates murine pulmonary tuberculosis. Infect. Immun. 72:52556–63
    [Google Scholar]
  224. 224. 
    Tripathi D, Welch E, Cheekatla SS, Radhakrishnan RK, Venkatasubramanian S et al. 2018. Alcohol enhances type 1 interferon-α production and mortality in young mice infected with Mycobacterium tuberculosis. . PLOS Pathog 14:8e1007174
    [Google Scholar]
  225. 225. 
    Cegielski JP, McMurray DN. 2004. The relationship between malnutrition and tuberculosis: evidence from studies in humans and experimental animals. Int. J. Tuberc. Lung Dis. 8:3286–98
    [Google Scholar]
  226. 226. 
    Bourke CD, Berkley JA, Prendergast AJ 2016. Immune dysfunction as a cause and consequence of malnutrition. Trends Immunol 37:6386–98
    [Google Scholar]
  227. 227. 
    Vilchèze C, Jacobs WR Jr 2014. Resistance to isoniazid and ethionamide in Mycobacterium tuberculosis: genes, mutations, and causalities. Microbiol. Spectr. 2:4MGM2–0014-2013
    [Google Scholar]
  228. 228. 
    Lin W, Mandal S, Degen D, Liu Y, Ebright YW et al. 2017. Structural basis of Mycobacterium tuberculosis transcription and transcription inhibition. Mol. Cell 66:2169–79.e8
    [Google Scholar]
  229. 229. 
    Jagielski T, Bakuła Z, Brzostek A, Minias A, Law Stachowiak R et al. 2018. Characterization of mutations conferring resistance to rifampin in Mycobacterium tuberculosis clinical strains. Antimicrob. Agents Chemother. 62:10e01093-18
    [Google Scholar]
  230. 230. 
    Lamont EA, Dillon NA, Baughn AD 2020. The bewildering antitubercular action of pyrazinamide. Microbiol. Mol. Biol. Rev. 84:2e00070–19
    [Google Scholar]
  231. 231. 
    Mikusova K, Slayden RA, Besra GS, Brennan PJ 1995. Biogenesis of the mycobacterial cell wall and the site of action of ethambutol. Antimicrob. Agents Chemother. 39:112484–89
    [Google Scholar]
  232. 232. 
    Sreevatsan S, Stockbauer KE, Pan X, Kreiswirth BN, Moghazeh SL et al. 1997. Ethambutol resistance in Mycobacterium tuberculosis: critical role of embB mutations. Antimicrob. Agents Chemother. 41:81677–81
    [Google Scholar]
  233. 233. 
    Zhao L, Sun Q, Liu H, Wu X, Xiao T et al. 2015. Analysis of embCAB mutations associated with ethambutol resistance in multidrug-resistant Mycobacterium tuberculosis isolates from China. Antimicrob. Agents Chemother. 59:42045–50
    [Google Scholar]
  234. 234. 
    Plinke C, Cox HS, Zarkua N, Karimovich HA, Braker K et al. 2010. embCAB sequence variation among ethambutol-resistant Mycobacterium tuberculosis isolates without embB306 mutation. J. Antimicrob. Chemother. 65:71359–67
    [Google Scholar]
/content/journals/10.1146/annurev-pathol-042120-032916
Loading
/content/journals/10.1146/annurev-pathol-042120-032916
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error