1932

Abstract

Long noncoding RNAs (lncRNAs) are pervasively transcribed in the genome, exhibit a diverse range of biological functions, and exert effects through a variety of mechanisms. The sheer number of lncRNAs in the human genome has raised important questions about their potential biological significance and roles in human health and disease. Technological and computational advances have enabled functional annotation of a large number of lncRNAs. Though the number of publications related to lncRNAs has escalated in recent years, relatively few have focused on those involved in hepatic physiology and pathology. We provide an overview of evolving lncRNA classification systems and characteristics and highlight important advances in our understanding of the contribution of lncRNAs to liver disease, with a focus on nonalcoholic steatohepatitis, hepatocellular carcinoma, and cholestatic liver disease.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-pathol-042320-115255
2022-01-24
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/pathmechdis/17/1/annurev-pathol-042320-115255.html?itemId=/content/journals/10.1146/annurev-pathol-042320-115255&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Birney E, Stamatoyannopoulos JA, Dutta A, Guigo R, Gingeras TR et al.ENCODE Proj. Consort.) 2007. Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project. Nature 447:799–816
    [Google Scholar]
  2. 2. 
    ENCODE Proj. Consort 2012. An integrated encyclopedia of DNA elements in the human genome. Nature 489:57–74
    [Google Scholar]
  3. 3. 
    Kapranov P, Cheng J, Dike S, Nix DA, Duttagupta R et al. 2007. RNA maps reveal new RNA classes and a possible function for pervasive transcription. Science 316:1484–88
    [Google Scholar]
  4. 4. 
    Cech TR, Steitz JA. 2014. The noncoding RNA revolution—trashing old rules to forge new ones. Cell 157:77–94
    [Google Scholar]
  5. 5. 
    Iyer MK, Niknafs YS, Malik R, Singhal U, Sahu A et al. 2015. The landscape of long noncoding RNAs in the human transcriptome. Nat. Genet. 47:199–208
    [Google Scholar]
  6. 6. 
    Willingham AT, Orth AP, Batalov S, Peters EC, Wen BG et al. 2005. A strategy for probing the function of noncoding RNAs finds a repressor of NFAT. Science 309:1570–73
    [Google Scholar]
  7. 7. 
    Cho SW, Xu J, Sun R, Mumbach MR, Carter AC et al. 2018. Promoter of lncRNA gene PVT1 is a tumor-suppressor DNA boundary element. Cell 173:1398–412.e22
    [Google Scholar]
  8. 8. 
    Zhao J, Sun BK, Erwin JA, Song JJ, Lee JT. 2008. Polycomb proteins targeted by a short repeat RNA to the mouse X chromosome. Science 322:750–56
    [Google Scholar]
  9. 9. 
    Tsai MC, Manor O, Wan Y, Mosammaparast N, Wang JK et al. 2010. Long noncoding RNA as modular scaffold of histone modification complexes. Science 329:689–93
    [Google Scholar]
  10. 10. 
    Brown CJ, Ballabio A, Rupert JL, Lafreniere RG, Grompe M et al. 1991. A gene from the region of the human X inactivation centre is expressed exclusively from the inactive X chromosome. Nature 349:38–44
    [Google Scholar]
  11. 11. 
    Guttman M, Donaghey J, Carey BW, Garber M, Grenier JK et al. 2011. lincRNAs act in the circuitry controlling pluripotency and differentiation. Nature 477:295–300
    [Google Scholar]
  12. 12. 
    Tripathi V, Ellis JD, Shen Z, Song DY, Pan Q et al. 2010. The nuclear-retained noncoding RNA MALAT1 regulates alternative splicing by modulating SR splicing factor phosphorylation. Mol. Cell 39:925–38
    [Google Scholar]
  13. 13. 
    Derrien T, Johnson R, Bussotti G, Tanzer A, Djebali S et al. 2012. The GENCODE v7 catalog of human long noncoding RNAs: analysis of their gene structure, evolution, and expression. Genome Res 22:1775–89
    [Google Scholar]
  14. 14. 
    St Laurent G, Wahlestedt C, Kapranov P 2015. The landscape of long noncoding RNA classification. Trends Genet 31:239–51
    [Google Scholar]
  15. 15. 
    Ma L, Bajic VB, Zhang Z. 2013. On the classification of long non-coding RNAs. RNA Biol 10:925–33
    [Google Scholar]
  16. 16. 
    Ruiz-Orera J, Mar Albà M. 2019. Conserved regions in long non-coding RNAs contain abundant translation and protein-RNA interaction signatures. NAR Genom. Bioinform. 1:e2
    [Google Scholar]
  17. 17. 
    Ulitsky I. 2016. Evolution to the rescue: using comparative genomics to understand long non-coding RNAs. Nat. Rev. Genet. 17:601–14
    [Google Scholar]
  18. 18. 
    Mukherjee N, Calviello L, Hirsekorn A, de Pretis S, Pelizzola M, Ohler U. 2017. Integrative classification of human coding and noncoding genes through RNA metabolism profiles. Nat. Struct. Mol. Biol. 24:86–96
    [Google Scholar]
  19. 19. 
    Raj A, Rinn JL. 2019. Illuminating genomic dark matter with RNA imaging. Cold Spring Harb. Perspect. Biol. 11:a032094
    [Google Scholar]
  20. 20. 
    Cabili MN, Trapnell C, Goff L, Koziol M, Tazon-Vega B et al. 2011. Integrative annotation of human large intergenic noncoding RNAs reveals global properties and specific subclasses. Genes Dev 25:1915–27
    [Google Scholar]
  21. 21. 
    Mele M, Mattioli K, Mallard W, Shechner DM, Gerhardinger C, Rinn JL. 2017. Chromatin environment, transcriptional regulation, and splicing distinguish lincRNAs and mRNAs. Genome Res 27:27–37
    [Google Scholar]
  22. 22. 
    Cabili MN, Dunagin MC, McClanahan PD, Biaesch A, Padovan-Merhar O et al. 2015. Localization and abundance analysis of human lncRNAs at single-cell and single-molecule resolution. Genome Biol 16:20
    [Google Scholar]
  23. 23. 
    Schlackow M, Nojima T, Gomes T, Dhir A, Carmo-Fonseca M, Proudfoot NJ. 2017. Distinctive patterns of transcription and RNA processing for human lincRNAs. Mol. Cell 65:25–38
    [Google Scholar]
  24. 24. 
    Tani H, Mizutani R, Salam KA, Tano K, Ijiri K et al. 2012. Genome-wide determination of RNA stability reveals hundreds of short-lived noncoding transcripts in mammals. Genome Res 22:947–56
    [Google Scholar]
  25. 25. 
    Clark MB, Johnston RL, Inostroza-Ponta M, Fox AH, Fortini E et al. 2012. Genome-wide analysis of long noncoding RNA stability. Genome Res 22:885–98
    [Google Scholar]
  26. 26. 
    Djebali S, Davis CA, Merkel A, Dobin A, Lassmann T et al. 2012. Landscape of transcription in human cells. Nature 489:101–8
    [Google Scholar]
  27. 27. 
    Mattioli K, Volders PJ, Gerhardinger C, Lee JC, Maass PG et al. 2019. High-throughput functional analysis of lncRNA core promoters elucidates rules governing tissue specificity. Genome Res 29:344–55
    [Google Scholar]
  28. 28. 
    Tilgner H, Knowles DG, Johnson R, Davis CA, Chakrabortty S et al. 2012. Deep sequencing of subcellular RNA fractions shows splicing to be predominantly co-transcriptional in the human genome but inefficient for lncRNAs. Genome Res 22:1616–25
    [Google Scholar]
  29. 29. 
    Guttman M, Amit I, Garber M, French C, Lin MF et al. 2009. Chromatin signature reveals over a thousand highly conserved large non-coding RNAs in mammals. Nature 458:223–27
    [Google Scholar]
  30. 30. 
    Lin J, Wen Y, He S, Yang X, Zhang H, Zhu H. 2019. Pipelines for cross-species and genome-wide prediction of long noncoding RNA binding. Nat. Protoc. 14:795–818
    [Google Scholar]
  31. 31. 
    Ponjavic J, Oliver PL, Lunter G, Ponting CP. 2009. Genomic and transcriptional co-localization of protein-coding and long non-coding RNA pairs in the developing brain. PLOS Genet 5:e1000617
    [Google Scholar]
  32. 32. 
    Hezroni H, Koppstein D, Schwartz MG, Avrutin A, Bartel DP, Ulitsky I. 2015. Principles of long noncoding RNA evolution derived from direct comparison of transcriptomes in 17 species. Cell Rep 11:1110–22
    [Google Scholar]
  33. 33. 
    Hon CC, Ramilowski JA, Harshbarger J, Bertin N, Rackham OJ et al. 2017. An atlas of human long non-coding RNAs with accurate 5′ ends. Nature 543:199–204
    [Google Scholar]
  34. 34. 
    Carlevaro-Fita J, Lanzos A, Feuerbach L, Hong C, Mas-Ponte D et al. 2020. Cancer LncRNA Census reveals evidence for deep functional conservation of long noncoding RNAs in tumorigenesis. Commun. Biol. 3:56
    [Google Scholar]
  35. 35. 
    Goff LA, Rinn JL. 2015. Linking RNA biology to lncRNAs. Genome Res 25:1456–65
    [Google Scholar]
  36. 36. 
    Denzler R, Agarwal V, Stefano J, Bartel DP, Stoffel M. 2014. Assessing the ceRNA hypothesis with quantitative measurements of miRNA and target abundance. Mol. Cell 54:766–76
    [Google Scholar]
  37. 37. 
    Kristensen LS, Ebbesen KK, Sokol M, Jakobsen T, Korsgaard U et al. 2020. Spatial expression analyses of the putative oncogene ciRS-7 in cancer reshape the microRNA sponge theory. Nat. Commun. 11:4551
    [Google Scholar]
  38. 38. 
    Lewandowski JP, Dumbovic G, Watson AR, Hwang T, Jacobs-Palmer E et al. 2020. The Tug1 lncRNA locus is essential for male fertility. Genome Biol 21:237
    [Google Scholar]
  39. 39. 
    Schmitt AM, Chang HY. 2016. Long noncoding RNAs in cancer pathways. Cancer Cell 29:452–63
    [Google Scholar]
  40. 40. 
    Sarropoulos I, Marin R, Cardoso-Moreira M, Kaessmann H. 2019. Developmental dynamics of lncRNAs across mammalian organs and species. Nature 571:510–14
    [Google Scholar]
  41. 41. 
    Sauvageau M, Goff LA, Lodato S, Bonev B, Groff AF et al. 2013. Multiple knockout mouse models reveal lincRNAs are required for life and brain development. eLife 2:e01749
    [Google Scholar]
  42. 42. 
    Lewandowski JP, Lee JC, Hwang T, Sunwoo H, Goldstein JM et al. 2019. The Firre locus produces a trans-acting RNA molecule that functions in hematopoiesis. Nat. Commun. 10:5137
    [Google Scholar]
  43. 43. 
    Goyal A, Myacheva K, Gross M, Klingenberg M, Duran Arque B, Diederichs S. 2017. Challenges of CRISPR/Cas9 applications for long non-coding RNA genes. Nucleic Acids Res 45:e12
    [Google Scholar]
  44. 44. 
    Hasegawa M, Kawai K, Mitsui T, Taniguchi K, Monnai M et al. 2011. The reconstituted ‘humanized liver’ in TK-NOG mice is mature and functional. Biochem. Biophys. Res. Commun. 405:405–10
    [Google Scholar]
  45. 45. 
    Ruan X, Li P, Chen Y, Shi Y, Pirooznia M et al. 2020. In vivo functional analysis of non-conserved human lncRNAs associated with cardiometabolic traits. Nat. Commun. 11:45
    [Google Scholar]
  46. 46. 
    Liu SJ, Horlbeck MA, Cho SW, Birk HS, Malatesta M et al. 2017. CRISPRi-based genome-scale identification of functional long noncoding RNA loci in human cells. Science 355:eaah7111
    [Google Scholar]
  47. 47. 
    Raffeiner P, Hart JR, Garcia-Caballero D, Bar-Peled L, Weinberg MS, Vogt PK. 2020. An MXD1-derived repressor peptide identifies noncoding mediators of MYC-driven cell proliferation. PNAS 117:6571–79
    [Google Scholar]
  48. 48. 
    Bester AC, Lee JD, Chavez A, Lee YR, Nachmani D et al. 2018. An integrated genome-wide CRISPRa approach to functionalize lncRNAs in drug resistance. Cell 173:649–64.e20
    [Google Scholar]
  49. 49. 
    DiStefano JK. 2018. The emerging role of long noncoding RNAs in human disease. Methods Mol. Biol. 1706:91–110
    [Google Scholar]
  50. 50. 
    Huarte M. 2015. The emerging role of lncRNAs in cancer. Nat. Med. 21:1253–61
    [Google Scholar]
  51. 51. 
    Sun M, Kraus WL. 2015. From discovery to function: the expanding roles of long noncoding RNAs in physiology and disease. Endocr. Rev. 36:25–64
    [Google Scholar]
  52. 52. 
    Ipsen DH, Lykkesfeldt J, Tveden-Nyborg P. 2018. Molecular mechanisms of hepatic lipid accumulation in non-alcoholic fatty liver disease. Cell. Mol. Life Sci. 75:3313–27
    [Google Scholar]
  53. 53. 
    Matteoni CA, Younossi ZM, Gramlich T, Boparai N, Liu YC, McCullough AJ. 1999. Nonalcoholic fatty liver disease: a spectrum of clinical and pathological severity. Gastroenterology 116:1413–19
    [Google Scholar]
  54. 54. 
    Rafiq N, Bai C, Fang Y, Srishord M, McCullough A et al. 2009. Long-term follow-up of patients with nonalcoholic fatty liver. Clin. Gastroenterol. Hepatol. 7:234–38
    [Google Scholar]
  55. 55. 
    Eur. Assoc. Study Liver, Eur. Assoc. Study Diabetes, Eur. Assoc. Study Obes 2016. EASL-EASD-EASO Clinical Practice Guidelines for the management of non-alcoholic fatty liver disease. J. Hepatol. 64:1388–402
    [Google Scholar]
  56. 56. 
    Younossi ZM, Blissett D, Blissett R, Henry L, Stepanova M et al. 2016. The economic and clinical burden of nonalcoholic fatty liver disease in the United States and Europe. Hepatology 64:1577–86
    [Google Scholar]
  57. 57. 
    Younossi ZM, Koenig AB, Abdelatif D, Fazel Y, Henry L, Wymer M. 2016. Global epidemiology of nonalcoholic fatty liver disease—meta-analytic assessment of prevalence, incidence, and outcomes. Hepatology 64:73–84
    [Google Scholar]
  58. 58. 
    Estes C, Razavi H, Loomba R, Younossi Z, Sanyal AJ. 2018. Modeling the epidemic of nonalcoholic fatty liver disease demonstrates an exponential increase in burden of disease. Hepatology 67:123–33
    [Google Scholar]
  59. 59. 
    Charlton MR, Burns JM, Pedersen RA, Watt KD, Heimbach JK, Dierkhising RA. 2011. Frequency and outcomes of liver transplantation for nonalcoholic steatohepatitis in the United States. Gastroenterology 141:1249–53
    [Google Scholar]
  60. 60. 
    Negishi M, Wongpalee SP, Sarkar S, Park J, Lee KY et al. 2014. A new lncRNA, APTR, associates with and represses the CDKN1A/p21 promoter by recruiting polycomb proteins. PLOS ONE 9:e95216
    [Google Scholar]
  61. 61. 
    Yu F, Zheng J, Mao Y, Dong P, Li G et al. 2015. Long non-coding RNA APTR promotes the activation of hepatic stellate cells and the progression of liver fibrosis. Biochem. Biophys. Res. Commun. 463:679–85
    [Google Scholar]
  62. 62. 
    Sukowati CHC, Cabral LKD, Tiribelli C, Pascut D. 2021. Circulating long and circular noncoding RNA as non-invasive diagnostic tools of hepatocellular carcinoma. Biomedicines 9:90
    [Google Scholar]
  63. 63. 
    Deng Q, Sun H, He B, Pan Y, Gao T et al. 2014. Prognostic value of long non-coding RNA HOTAIR in various cancers. PLOS ONE 9:e110059
    [Google Scholar]
  64. 64. 
    Yu F, Chen B, Dong P, Zheng J. 2017. HOTAIR epigenetically modulates PTEN expression via microRNA-29b: a novel mechanism in regulation of liver fibrosis. Mol. Ther. 25:205–17
    [Google Scholar]
  65. 65. 
    Bian EB, Wang YY, Yang Y, Wu BM, Xu T et al. 2017. Hotair facilitates hepatic stellate cells activation and fibrogenesis in the liver. Biochim. Biophys. Acta Mol. Basis Dis. 1863:674–86
    [Google Scholar]
  66. 66. 
    He Y, Wu YT, Huang C, Meng XM, Ma TT et al. 2014. Inhibitory effects of long noncoding RNA MEG3 on hepatic stellate cells activation and liver fibrogenesis. Biochim. Biophys. Acta Mol. Basis Dis. 1842:2204–15
    [Google Scholar]
  67. 67. 
    Rinn JL, Kertesz M, Wang JK, Squazzo SL, Xu X et al. 2007. Functional demarcation of active and silent chromatin domains in human HOX loci by noncoding RNAs. Cell 129:1311–23
    [Google Scholar]
  68. 68. 
    Khalil AM, Guttman M, Huarte M, Garber M, Raj A et al. 2009. Many human large intergenic noncoding RNAs associate with chromatin-modifying complexes and affect gene expression. PNAS 106:11667–72
    [Google Scholar]
  69. 69. 
    Zhang K, Han X, Zhang Z, Zheng L, Hu Z et al. 2017. The liver-enriched lnc-LFAR1 promotes liver fibrosis by activating TGFβ and Notch pathways. Nat. Commun. 8:144
    [Google Scholar]
  70. 70. 
    Chen C, Li H, Wang X, Wang L, Zeng Q 2019. Lnc-LFAR1 affects intrahepatic cholangiocarcinoma proliferation, invasion, and EMT by regulating the TGFβ/Smad signaling pathway. Int. J. Clin. Exp. Pathol. 12:2455–61
    [Google Scholar]
  71. 71. 
    Zhang K, Shi Z, Zhang M, Dong X, Zheng L et al. 2020. Silencing lncRNA Lfar1 alleviates the classical activation and pyoptosis of macrophage in hepatic fibrosis. Cell Death Dis 11:132
    [Google Scholar]
  72. 72. 
    Li C, Chen J, Zhang K, Feng B, Wang R, Chen L 2015. Progress and prospects of long noncoding RNAs (lncRNAs) in hepatocellular carcinoma. Cell Physiol. Biochem. 36:423–34
    [Google Scholar]
  73. 73. 
    Yu F, Lu Z, Cai J, Huang K, Chen B et al. 2015. MALAT1 functions as a competing endogenous RNA to mediate Rac1 expression by sequestering miR-101b in liver fibrosis. Cell Cycle 14:3885–96
    [Google Scholar]
  74. 74. 
    Leti F, Legendre C, Still CD, Chu X, Petrick A et al. 2017. Altered expression of MALAT1 lncRNA in nonalcoholic steatohepatitis fibrosis regulates CXCL5 in hepatic stellate cells. Transl. Res. 190:25–39.e21
    [Google Scholar]
  75. 75. 
    Sookoian S, Flichman D, Garaycoechea ME, San Martino J, Castano GO, Pirola CJ 2018. Metastasis-associated lung adenocarcinoma transcript 1 as a common molecular driver in the pathogenesis of nonalcoholic steatohepatitis and chronic immune-mediated liver damage. Hepatol. Commun. 2:654–65
    [Google Scholar]
  76. 76. 
    Yu F, Jiang Z, Chen B, Dong P, Zheng J. 2017. NEAT1 accelerates the progression of liver fibrosis via regulation of microRNA-122 and Kruppel-like factor 6. J. Mol. Med. 95:1191–202
    [Google Scholar]
  77. 77. 
    Mang Y, Li L, Ran J, Zhang S, Liu J et al. 2017. Long noncoding RNA NEAT1 promotes cell proliferation and invasion by regulating hnRNP A2 expression in hepatocellular carcinoma cells. OncoTargets Ther 10:1003–16
    [Google Scholar]
  78. 78. 
    Chen X, Tan XR, Li SJ, Zhang XX. 2019. LncRNA NEAT1 promotes hepatic lipid accumulation via regulating miR-146a-5p/ROCK1 in nonalcoholic fatty liver disease. Life Sci 235:116829
    [Google Scholar]
  79. 79. 
    Sun Y, Song Y, Liu C, Geng J. 2019. LncRNA NEAT1-MicroRNA-140 axis exacerbates nonalcoholic fatty liver through interrupting AMPK/SREBP-1 signaling. Biochem. Biophys. Res. Commun. 516:584–90
    [Google Scholar]
  80. 80. 
    Wang X. 2018. Down-regulation of lncRNA-NEAT1 alleviated the non-alcoholic fatty liver disease via mTOR/S6K1 signaling pathway. J. Cell. Biochem. 119:1567–74
    [Google Scholar]
  81. 81. 
    Delire B, Starkel P, Leclercq I. 2015. Animal models for fibrotic liver diseases: what we have, what we need, and what is under development. J. Clin. Transl. Hepatol. 3:53–66
    [Google Scholar]
  82. 82. 
    Dong S, Chen QL, Song YN, Sun Y, Wei B et al. 2016. Mechanisms of CCl4-induced liver fibrosis with combined transcriptomic and proteomic analysis. J. Toxicol. Sci. 41:561–72
    [Google Scholar]
  83. 83. 
    Balogh J, Victor D3rd, Asham EH, Burroughs SG, Boktour M et al. 2016. Hepatocellular carcinoma: a review. J. Hepatocell. Carcinoma 3:41–53
    [Google Scholar]
  84. 84. 
    Mittal S, El-Serag HB. 2013. Epidemiology of hepatocellular carcinoma: Consider the population. J. Clin. Gastroenterol. 47:Suppl.S2–6
    [Google Scholar]
  85. 85. 
    El-Serag HB, Rudolph KL 2007. Hepatocellular carcinoma: epidemiology and molecular carcinogenesis. Gastroenterology 132:2557–76
    [Google Scholar]
  86. 86. 
    Ilikhan SU, Bilici M, Sahin H, Akca AS, Can M et al. 2015. Assessment of the correlation between serum prolidase and alpha-fetoprotein levels in patients with hepatocellular carcinoma. World J. Gastroenterol. 21:6999–7007
    [Google Scholar]
  87. 87. 
    Cicinnati VR, Sotiropoulos GC, Beckebaum S. 2010. Established and emerging therapies for hepatocellular carcinoma. Minerva Med 101:405–18
    [Google Scholar]
  88. 88. 
    Jia M, Jiang L, Wang YD, Huang JZ, Yu M, Xue HZ 2016. lincRNA-p21 inhibits invasion and metastasis of hepatocellular carcinoma through Notch signaling-induced epithelial-mesenchymal transition. Hepatol. Res. 46:1137–44
    [Google Scholar]
  89. 89. 
    Peng W, Fan H 2016. Long noncoding RNA CCHE1 indicates a poor prognosis of hepatocellular carcinoma and promotes carcinogenesis via activation of the ERK/MAPK pathway. Biomed. Pharmacother. 83:450–55
    [Google Scholar]
  90. 90. 
    Sui CJ, Zhou YM, Shen WF, Dai BH, Lu JJ et al. 2016. Long noncoding RNA GIHCG promotes hepatocellular carcinoma progression through epigenetically regulating miR-200b/a/429. J. Mol. Med. 94:1281–96
    [Google Scholar]
  91. 91. 
    Wang T, Ma S, Qi X, Tang X, Cui D et al. 2016. Long noncoding RNA ZNFX1-AS1 suppresses growth of hepatocellular carcinoma cells by regulating the methylation of miR-9. OncoTargets Ther. 9:5005–14
    [Google Scholar]
  92. 92. 
    Xiong D, Sheng Y, Ding S, Chen J, Tan X et al. 2016. LINC00052 regulates the expression of NTRK3 by miR-128 and miR-485-3p to strengthen HCC cells invasion and migration. Oncotarget 7:47593–608
    [Google Scholar]
  93. 93. 
    Yang L, Zhang X, Li H, Liu J. 2016. The long noncoding RNA HOTAIR activates autophagy by upregulating ATG3 and ATG7 in hepatocellular carcinoma. Mol. Biosyst. 12:2605–12
    [Google Scholar]
  94. 94. 
    Yu J, Han J, Zhang J, Li G, Liu H et al. 2016. The long noncoding RNAs PVT1 and uc002mbe.2 in sera provide a new supplementary method for hepatocellular carcinoma diagnosis. Medicine 95:e4436
    [Google Scholar]
  95. 95. 
    Yuan P, Cao W, Zang Q, Li G, Guo X, Fan J 2016. The HIF-2α-MALAT1-miR-216b axis regulates multi-drug resistance of hepatocellular carcinoma cells via modulating autophagy. Biochem. Biophys. Res. Commun. 478:1067–73
    [Google Scholar]
  96. 96. 
    Zhou N, Si Z, Li T, Chen G, Zhang Z, Qi H. 2016. Long non-coding RNA CCAT2 functions as an oncogene in hepatocellular carcinoma, regulating cellular proliferation, migration and apoptosis. Oncol. Lett. 12:132–38
    [Google Scholar]
  97. 97. 
    Zhu XT, Yuan JH, Zhu TT, Li YY, Cheng XY. 2016. Long noncoding RNA glypican 3 (GPC3) antisense transcript 1 promotes hepatocellular carcinoma progression via epigenetically activating GPC3. FEBS J 283:3739–54
    [Google Scholar]
  98. 98. 
    DiStefano JK. 2017. Long noncoding RNAs in the initiation, progression, and metastasis of hepatocellular carcinoma. Non-coding RNA Res 2:129–36
    [Google Scholar]
  99. 99. 
    Panzitt K, Tschernatsch MM, Guelly C, Moustafa T, Stradner M et al. 2007. Characterization of HULC, a novel gene with striking up-regulation in hepatocellular carcinoma, as noncoding RNA. Gastroenterology 132:330–42
    [Google Scholar]
  100. 100. 
    Wang J, Liu X, Wu H, Ni P, Gu Z et al. 2010. CREB up-regulates long non-coding RNA, HULC expression through interaction with microRNA-372 in liver cancer. Nucleic Acids Res 38:5366–83
    [Google Scholar]
  101. 101. 
    Li SP, Xu HX, Yu Y, He JD, Wang Z et al. 2016. LncRNA HULC enhances epithelial-mesenchymal transition to promote tumorigenesis and metastasis of hepatocellular carcinoma via the miR-200a-3p/ZEB1 signaling pathway. Oncotarget 7:42431–46
    [Google Scholar]
  102. 102. 
    Xie H, Ma H, Zhou D. 2013. Plasma HULC as a promising novel biomarker for the detection of hepatocellular carcinoma. Biomed. Res. Int. 2013:136106
    [Google Scholar]
  103. 103. 
    Li J, Wang X, Tang J, Jiang R, Zhang W et al. 2015. HULC and Linc00152 act as novel biomarkers in predicting diagnosis of hepatocellular carcinoma. Cell. Physiol. Biochem. 37:687–96
    [Google Scholar]
  104. 104. 
    Li D, Liu X, Zhou J, Hu J, Zhang D et al. 2017. Long noncoding RNA HULC modulates the phosphorylation of YB-1 through serving as a scaffold of extracellular signal-regulated kinase and YB-1 to enhance hepatocarcinogenesis. Hepatology 65:1612–27
    [Google Scholar]
  105. 105. 
    Cui M, Xiao Z, Wang Y, Zheng M, Song T et al. 2015. Long noncoding RNA HULC modulates abnormal lipid metabolism in hepatoma cells through an miR-9-mediated RXRA signaling pathway. Cancer Res 75:846–57
    [Google Scholar]
  106. 106. 
    Wang Y, Chen F, Zhao M, Yang Z, Li J et al. 2017. The long noncoding RNA HULC promotes liver cancer by increasing the expression of the HMGA2 oncogene via sequestration of the microRNA-186. J. Biol. Chem. 292:15395–407
    [Google Scholar]
  107. 107. 
    Xin X, Wu M, Meng Q, Wang C, Lu Y et al. 2018. Long noncoding RNA HULC accelerates liver cancer by inhibiting PTEN via autophagy cooperation to miR15a. Mol. Cancer 17:94
    [Google Scholar]
  108. 108. 
    Wu M, Lin Z, Li X, Xin X, An J et al. 2016. HULC cooperates with MALAT1 to aggravate liver cancer stem cells growth through telomere repeat-binding factor 2. Sci. Rep. 6:36045
    [Google Scholar]
  109. 109. 
    Xiong H, Ni Z, He J, Jiang S, Li X et al. 2017. LncRNA HULC triggers autophagy via stabilizing Sirt1 and attenuates the chemosensitivity of HCC cells. Oncogene 36:3528–40
    [Google Scholar]
  110. 110. 
    Yang Z, Zhou L, Wu LM, Lai MC, Xie HY et al. 2011. Overexpression of long non-coding RNA HOTAIR predicts tumor recurrence in hepatocellular carcinoma patients following liver transplantation. Ann. Surg. Oncol. 18:1243–50
    [Google Scholar]
  111. 111. 
    Geng YJ, Xie SL, Li Q, Ma J, Wang GY 2011. Large intervening non-coding RNA HOTAIR is associated with hepatocellular carcinoma progression. J. Int. Med. Res. 39:2119–28
    [Google Scholar]
  112. 112. 
    Ding C, Cheng S, Yang Z, Lv Z, Xiao H et al. 2014. Long non-coding RNA HOTAIR promotes cell migration and invasion via down-regulation of RNA binding motif protein 38 in hepatocellular carcinoma cells. Int. J. Mol. Sci. 15:4060–76
    [Google Scholar]
  113. 113. 
    Ishibashi M, Kogo R, Shibata K, Sawada G, Takahashi Y et al. 2013. Clinical significance of the expression of long non-coding RNA HOTAIR in primary hepatocellular carcinoma. Oncol. Rep. 29:946–50
    [Google Scholar]
  114. 114. 
    Zhou JJ, Cheng D, He XY, Meng Z, Li WZ, Chen RF. 2017. Knockdown of Hotair suppresses proliferation and cell cycle progression in hepatocellular carcinoma cell by downregulating CCND1 expression. Mol. Med. Rep. 16:4980–86
    [Google Scholar]
  115. 115. 
    Gao JZ, Li J, Du JL, Li XL. 2016. Long non-coding RNA HOTAIR is a marker for hepatocellular carcinoma progression and tumor recurrence. Oncol. Lett. 11:1791–98
    [Google Scholar]
  116. 116. 
    Fu WM, Zhu X, Wang WM, Lu YF, Hu BG et al. 2015. Hotair mediates hepatocarcinogenesis through suppressing miRNA-218 expression and activating P14 and P16 signaling. J. Hepatol. 63:886–95
    [Google Scholar]
  117. 117. 
    Su DN, Wu SP, Chen HT, He JH. 2016. HOTAIR, a long non-coding RNA driver of malignancy whose expression is activated by FOXC1, negatively regulates miRNA-1 in hepatocellular carcinoma. Oncol. Lett. 12:4061–67
    [Google Scholar]
  118. 118. 
    Chiang JY. 2009. Bile acids: regulation of synthesis. J. Lipid Res. 50:1955–66
    [Google Scholar]
  119. 119. 
    Zollner G, Trauner M. 2008. Mechanisms of cholestasis. Clin. Liver Dis. 12:1–26
    [Google Scholar]
  120. 120. 
    Yang Y, Deng X, Li Q, Wang F, Miao L, Jiang Q. 2020. Emerging roles of long noncoding RNAs in cholangiocarcinoma: advances and challenges. Cancer Commun 40:655–80
    [Google Scholar]
  121. 121. 
    Rachmilewitz J, Goshen R, Ariel I, Schneider T, de Groot N, Hochberg A 1992. Parental imprinting of the human H19 gene. FEBS Lett 309:25–28
    [Google Scholar]
  122. 122. 
    Bartolomei MS, Zemel S, Tilghman SM. 1991. Parental imprinting of the mouse H19 gene. Nature 351:153–55
    [Google Scholar]
  123. 123. 
    Poirier F, Chan CT, Timmons PM, Robertson EJ, Evans MJ, Rigby PW. 1991. The murine H19 gene is activated during embryonic stem cell differentiation in vitro and at the time of implantation in the developing embryo. Development 113:1105–14
    [Google Scholar]
  124. 124. 
    Zhang Y, Liu C, Barbier O, Smalling R, Tsuchiya H et al. 2016. Bcl2 is a critical regulator of bile acid homeostasis by dictating Shp and lncRNA H19 function. Sci. Rep. 6:20559
    [Google Scholar]
  125. 125. 
    Song Y, Liu C, Liu X, Trottier J, Beaudoin M et al. 2017. H19 promotes cholestatic liver fibrosis by preventing ZEB1-mediated inhibition of epithelial cell adhesion molecule. Hepatology 66:1183–96
    [Google Scholar]
  126. 126. 
    Liu R, Li X, Zhu W, Wang Y, Zhao D et al. 2019. Cholangiocyte-derived exosomal long noncoding RNA H19 promotes hepatic stellate cell activation and cholestatic liver fibrosis. Hepatology 70:1317–35
    [Google Scholar]
  127. 127. 
    Li X, Liu R, Huang Z, Gurley EC, Wang X et al. 2018. Cholangiocyte-derived exosomal long noncoding RNA H19 promotes cholestatic liver injury in mouse and humans. Hepatology 68:599–615
    [Google Scholar]
  128. 128. 
    Zhang EB, Han L, Yin DD, Kong R, De W, Chen J 2014. c-Myc-induced, long, noncoding H19 affects cell proliferation and predicts a poor prognosis in patients with gastric cancer. Med. Oncol. 31:914
    [Google Scholar]
  129. 129. 
    Matouk IJ, DeGroot N, Mezan S, Ayesh S, Abu-lail R et al. 2007. The H19 non-coding RNA is essential for human tumor growth. PLOS ONE 2:e845
    [Google Scholar]
  130. 130. 
    Gabory A, Jammes H, Dandolo L. 2010. The H19 locus: role of an imprinted non-coding RNA in growth and development. BioEssays 32:473–80
    [Google Scholar]
  131. 131. 
    Raveh E, Matouk IJ, Gilon M, Hochberg A. 2015. The H19 long non-coding RNA in cancer initiation, progression and metastasis – a proposed unifying theory. Mol. Cancer 14:184
    [Google Scholar]
  132. 132. 
    Jiang Y, Huang Y, Cai S, Song Y, Boyer JL et al. 2018. H19 is expressed in hybrid hepatocyte nuclear factor 4α+ periportal hepatocytes but not cytokeratin 19+ cholangiocytes in cholestatic livers. Hepatol. Commun. 2:1356–68
    [Google Scholar]
  133. 133. 
    Li X, Liu R, Yang J, Sun L, Zhang L et al. 2017. The role of long noncoding RNA H19 in gender disparity of cholestatic liver injury in multidrug resistance 2 gene knockout mice. Hepatology 66:869–84
    [Google Scholar]
  134. 134. 
    Xiao Y, Liu R, Li X, Gurley EC, Hylemon PB et al. 2019. Long noncoding RNA H19 contributes to cholangiocyte proliferation and cholestatic liver fibrosis in biliary atresia. Hepatology 70:1658–73
    [Google Scholar]
  135. 135. 
    Li X, Liu R, Wang Y, Zhu W, Zhao D et al. 2020. Cholangiocyte-derived exosomal lncRNA H19 promotes macrophage activation and hepatic inflammation under cholestatic conditions. Cells 9:190
    [Google Scholar]
  136. 136. 
    Uszczynska-Ratajczak B, Lagarde J, Frankish A, Guigo R, Johnson R 2018. Towards a complete map of the human long non-coding RNA transcriptome. Nat. Rev. Genet. 19:535–48
    [Google Scholar]
  137. 137. 
    Bialecki ES, Di Bisceglie AM. 2005. Diagnosis of hepatocellular carcinoma. HPB 7:26–34
    [Google Scholar]
  138. 138. 
    Sumida Y, Nakajima A, Itoh Y. 2014. Limitations of liver biopsy and non-invasive diagnostic tests for the diagnosis of nonalcoholic fatty liver disease/nonalcoholic steatohepatitis. World J. Gastroenterol. 20:475–85
    [Google Scholar]
  139. 139. 
    Castera L, Pinzani M. 2010. Non-invasive assessment of liver fibrosis: Are we ready?. Lancet 375:1419–20
    [Google Scholar]
  140. 140. 
    Di Mauro S, Scamporrino A, Petta S, Urbano F, Filippello A et al. 2019. Serum coding and non-coding RNAs as biomarkers of NAFLD and fibrosis severity. Liver Int 39:1742–54
    [Google Scholar]
  141. 141. 
    Hanson A, Wilhelmsen D, DiStefano JK. 2018. The role of long non-coding RNAs (lncRNAs) in the development and progression of fibrosis associated with nonalcoholic fatty liver disease (NAFLD). Noncoding RNA 4:18
    [Google Scholar]
  142. 142. 
    Bolha L, Ravnik-Glavac M, Glavac D. 2017. Long noncoding RNAs as biomarkers in cancer. Dis. Markers 2017:7243968
    [Google Scholar]
  143. 143. 
    Jiang X, Lei R, Ning Q. 2016. Circulating long noncoding RNAs as novel biomarkers of human diseases. Biomark. Med. 10:757–69
    [Google Scholar]
  144. 144. 
    Hessels D, Klein Gunnewiek JM, van Oort I, Karthaus HF, van Leenders GJ et al. 2003. DD3PCA3-based molecular urine analysis for the diagnosis of prostate cancer. Eur. Urol. 44:8–16
    [Google Scholar]
  145. 145. 
    Marks LS, Bostwick DG. 2008. Prostate cancer specificity of PCA3 gene testing: examples from clinical practice. Rev. Urol. 10:175–81
    [Google Scholar]
/content/journals/10.1146/annurev-pathol-042320-115255
Loading
/content/journals/10.1146/annurev-pathol-042320-115255
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error