1932

Abstract

How cells muster a network of interlinking signaling pathways to faithfully convert diverse external cues to specific functional outcomes remains a central question in biology. Through their ability to convert dynamic biochemical activities to rapid and precise optical readouts, genetically encoded fluorescent biosensors have become instrumental in unraveling the molecular logic controlling the specificity of intracellular signaling. In this review, we discuss how the use of genetically encoded fluorescent biosensors to visualize dynamic signaling events within their native cellular context is elucidating the different strategies employed by cells to organize signaling activities into discrete compartments, or signaling microdomains, to ensure functional specificity.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-pharmtox-010617-053137
2021-01-06
2024-04-18
Loading full text...

Full text loading...

/deliver/fulltext/pharmtox/61/1/annurev-pharmtox-010617-053137.html?itemId=/content/journals/10.1146/annurev-pharmtox-010617-053137&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Kholodenko BN, Hancock JF, Kolch W 2010. Signalling ballet in space and time. Nat. Rev. Mol. Cell Biol. 11:6414–26
    [Google Scholar]
  2. 2. 
    Brunton LL, Hayes JS, Mayer SE 1979. Hormonally specific phosphorylation of cardiac troponin I and activation of glycogen phosphorylase. Nature 280:571778–80
    [Google Scholar]
  3. 3. 
    Steinberg SF, Brunton LL. 2001. Compartmentation of G protein-coupled signaling pathways in cardiac myocytes. Annu. Rev. Pharmacol. Toxicol. 41:751–73
    [Google Scholar]
  4. 4. 
    Sample V, Mehta S, Zhang J 2014. Genetically encoded molecular probes to visualize and perturb signaling dynamics in living biological systems. J. Cell Sci. 127:Part 61151–60
    [Google Scholar]
  5. 5. 
    Zhang J. 2009. The colorful journey of green fluorescent protein. ACS Chem. Biol. 4:285–88
    [Google Scholar]
  6. 6. 
    Rodriguez EA, Campbell RE, Lin JY, Lin MZ, Miyawaki A et al. 2017. The growing and glowing toolbox of fluorescent and photoactive proteins. Trends Biochem. Sci. 42:2111–29
    [Google Scholar]
  7. 7. 
    Greenwald EC, Mehta S, Zhang J 2018. Genetically encoded fluorescent biosensors illuminate the spatiotemporal regulation of signaling networks. Chem. Rev. 118:2411707–94
    [Google Scholar]
  8. 8. 
    Martin TF. 1998. Phosphoinositide lipids as signaling molecules: common themes for signal transduction, cytoskeletal regulation, and membrane trafficking. Annu. Rev. Cell Dev. Biol. 14:231–64
    [Google Scholar]
  9. 9. 
    Lemmon MA. 2003. Phosphoinositide recognition domains. Traffic 4:4201–13
    [Google Scholar]
  10. 10. 
    Hurley JH, Meyer T. 2001. Subcellular targeting by membrane lipids. Curr. Opin. Cell Biol. 13:2146–52
    [Google Scholar]
  11. 11. 
    Várnai P, Balla T. 1998. Visualization of phosphoinositides that bind pleckstrin homology domains: calcium- and agonist-induced dynamic changes and relationship to myo-[3H]inositol-labeled phosphoinositide pools. J. Cell Biol. 143:2501–10
    [Google Scholar]
  12. 12. 
    Gray A, Van Der Kaay J, Downes CP 1999. The pleckstrin homology domains of protein kinase B and GRP1 (general receptor for phosphoinositides-1) are sensitive and selective probes for the cellular detection of phosphatidylinositol 3,4-bisphosphate and/or phosphatidylinositol 3,4,5-trisphosphate in vivo. Biochem. J. 344:Part 3929–36
    [Google Scholar]
  13. 13. 
    Beghein E, Gettemans J. 2017. Nanobody technology: a versatile toolkit for microscopic imaging, protein–protein interaction analysis, and protein function exploration. Front. Immunol. 8:771
    [Google Scholar]
  14. 14. 
    Traenkle B, Emele F, Anton R, Poetz O, Haeussler RS et al. 2015. Monitoring interactions and dynamics of endogenous beta-catenin with intracellular nanobodies in living cells. Mol. Cell. Proteom. 14:3707–23
    [Google Scholar]
  15. 15. 
    Panza P, Maier J, Schmees C, Rothbauer U, Söllner C 2015. Live imaging of endogenous protein dynamics in zebrafish using chromobodies. Development 142:101879–84
    [Google Scholar]
  16. 16. 
    Buchfellner A, Yurlova L, Nüske S, Scholz AM, Bogner J et al. 2016. A new nanobody-based biosensor to study endogenous PARP1 in vitro and in live human cells. PLOS ONE 11:3e0151041
    [Google Scholar]
  17. 17. 
    Irannejad R, Tomshine JC, Tomshine JR, Chevalier M, Mahoney JP et al. 2013. Conformational biosensors reveal GPCR signalling from endosomes. Nature 495:7442534–38
    [Google Scholar]
  18. 18. 
    Ismail S, Gherardi M-J, Froese A, Zanoun M, Gigoux V et al. 2016. Internalized receptor for glucose-dependent insulinotropic peptide stimulates adenylyl cyclase on early endosomes. Biochem. Pharmacol. 120:33–45
    [Google Scholar]
  19. 19. 
    Regot S, Hughey JJ, Bajar BT, Carrasco S, Covert MW 2014. High-sensitivity measurements of multiple kinase activities in live single cells. Cell 157:71724–34
    [Google Scholar]
  20. 20. 
    Kudo T, Jeknić S, Macklin DN, Akhter S, Hughey JJ et al. 2018. Live-cell measurements of kinase activity in single cells using translocation reporters. Nat. Protoc. 13:1155–69
    [Google Scholar]
  21. 21. 
    Baird GS, Zacharias DA, Tsien RY 1999. Circular permutation and receptor insertion within green fluorescent proteins. PNAS 96:2011241–46
    [Google Scholar]
  22. 22. 
    Nagai T, Sawano A, Park ES, Miyawaki A 2001. Circularly permuted green fluorescent proteins engineered to sense Ca2+. PNAS 98:63197–202
    [Google Scholar]
  23. 23. 
    Nakai J, Ohkura M, Imoto K 2001. A high signal-to-noise Ca2+ probe composed of a single green fluorescent protein. Nat. Biotechnol. 19:2137–41
    [Google Scholar]
  24. 24. 
    Barnett L, Platisa J, Popovic M, Pieribone VA, Hughes T 2012. A fluorescent, genetically-encoded voltage probe capable of resolving action potentials. PLOS ONE 7:9e43454
    [Google Scholar]
  25. 25. 
    Villette V, Chavarha M, Dimov IK, Bradley J, Pradhan L et al. 2019. Ultrafast two-photon imaging of a high-gain voltage indicator in awake behaving mice. Cell 179:71590–608.e23
    [Google Scholar]
  26. 26. 
    Abdelfattah AS, Farhi SL, Zhao Y, Brinks D, Zou P et al. 2016. A bright and fast red fluorescent protein voltage indicator that reports neuronal activity in organotypic brain slices. J. Neurosci. 36:82458–72
    [Google Scholar]
  27. 27. 
    Odaka H, Arai S, Inoue T, Kitaguchi T 2014. Genetically-encoded yellow fluorescent cAMP indicator with an expanded dynamic range for dual-color imaging. PLOS ONE 9:6e100252
    [Google Scholar]
  28. 28. 
    Tewson PH, Martinka S, Shaner NC, Hughes TE, Quinn AM 2016. New DAG and cAMP sensors optimized for live-cell assays in automated laboratories. J. Biomol. Screen. 21:3298–305
    [Google Scholar]
  29. 29. 
    Hackley CR, Mazzoni EO, Blau J 2018. CAMPr: a single-wavelength fluorescent sensor for cyclic AMP. Sci. Signal. 11:520eaah3738
    [Google Scholar]
  30. 30. 
    Ohta Y, Furuta T, Nagai T, Horikawa K 2018. Red fluorescent cAMP indicator with increased affinity and expanded dynamic range. Sci. Rep. 8:11866
    [Google Scholar]
  31. 31. 
    Bhargava Y, Hampden-Smith K, Chachlaki K, Wood KC, Vernon J et al. 2013. Improved genetically-encoded, FlincG-type fluorescent biosensors for neural cGMP imaging. Front. Mol. Neurosci. 6:26
    [Google Scholar]
  32. 32. 
    Matsuda S, Harada K, Ito M, Takizawa M, Wongso D et al. 2017. Generation of a cGMP indicator with an expanded dynamic range by optimization of amino acid linkers between a fluorescent protein and PDE5α. ACS Sens 2:146–51
    [Google Scholar]
  33. 33. 
    Lobas MA, Tao R, Nagai J, Kronschläger MT, Borden PM et al. 2019. A genetically encoded single-wavelength sensor for imaging cytosolic and cell surface ATP. Nat. Commun. 10:1711
    [Google Scholar]
  34. 34. 
    Hung YP, Albeck JG, Tantama M, Yellen G 2011. Imaging cytosolic NADH-NAD+ redox state with a genetically encoded fluorescent biosensor. Cell Metab 14:4545–54
    [Google Scholar]
  35. 35. 
    Patriarchi T, Cho JR, Merten K, Howe MW, Marley A et al. 2018. Ultrafast neuronal imaging of dopamine dynamics with designed genetically encoded sensors. Science 360:6396eaat4422
    [Google Scholar]
  36. 36. 
    Sun F, Zeng J, Jing M, Zhou J, Feng J et al. 2018. A genetically encoded fluorescent sensor enables rapid and specific detection of dopamine in flies, fish, and mice. Cell 174:2481–96.e19
    [Google Scholar]
  37. 37. 
    Jing M, Zhang P, Wang G, Feng J, Mesik L et al. 2018. A genetically encoded fluorescent acetylcholine indicator for in vitro and in vivo studies. Nat. Biotechnol. 36:8726–37
    [Google Scholar]
  38. 38. 
    Mehta S, Zhang Y, Roth RH, Zhang J-F, Mo A et al. 2018. Single-fluorophore biosensors for sensitive and multiplexed detection of signalling activities. Nat. Cell Biol. 20:101215–25
    [Google Scholar]
  39. 39. 
    Zhao Y, Araki S, Wu J, Teramoto T, Chang Y-F et al. 2011. An expanded palette of genetically encoded Ca2+ indicators. Science 333:60511888–91
    [Google Scholar]
  40. 40. 
    Tao R, Zhao Y, Chu H, Wang A, Zhu J et al. 2017. Genetically encoded fluorescent sensors reveal dynamic regulation of NADPH metabolism. Nat. Methods 14:7720–28
    [Google Scholar]
  41. 41. 
    Grynkiewicz G, Poenie M, Tsien RY 1985. A new generation of Ca2+ indicators with greatly improved fluorescence properties. J. Biol. Chem. 260:63440–50
    [Google Scholar]
  42. 42. 
    Jares-Erijman EA, Jovin TM. 2003. FRET imaging. Nat. Biotechnol. 21:111387–95
    [Google Scholar]
  43. 43. 
    Stryer L. 1978. Fluorescence energy transfer as a spectroscopic ruler. Annu. Rev. Biochem. 47:819–46
    [Google Scholar]
  44. 44. 
    Miyawaki A, Llopis J, Heim R, McCaffery JM, Adams JA et al. 1997. Fluorescent indicators for Ca2+ based on green fluorescent proteins and calmodulin. Nature 388:6645882–87
    [Google Scholar]
  45. 45. 
    Miyawaki A, Griesbeck O, Heim R, Tsien RY 1999. Dynamic and quantitative Ca2+ measurements using improved cameleons. PNAS 96:52135–40
    [Google Scholar]
  46. 46. 
    van Dongen EMWM, Dekkers LM, Spijker K, Meijer EW, Klomp LWJ, Merkx M 2006. Ratiometric fluorescent sensor proteins with subnanomolar affinity for Zn(II) based on copper chaperone domains. J. Am. Chem. Soc. 128:3310754–62
    [Google Scholar]
  47. 47. 
    Park JG, Qin Y, Galati DF, Palmer AE 2012. New sensors for quantitative measurement of mitochondrial Zn2+. ACS Chem. Biol. 7:101636–40
    [Google Scholar]
  48. 48. 
    DiPilato LM, Cheng X, Zhang J 2004. Fluorescent indicators of cAMP and Epac activation reveal differential dynamics of cAMP signaling within discrete subcellular compartments. PNAS 101:4716513–18
    [Google Scholar]
  49. 49. 
    Nikolaev VO, Bünemann M, Hein L, Hannawacker A, Lohse MJ 2004. Novel single chain cAMP sensors for receptor-induced signal propagation. J. Biol. Chem. 279:3637215–18
    [Google Scholar]
  50. 50. 
    Surdo NC, Berrera M, Koschinski A, Brescia M, Machado MR et al. 2017. FRET biosensor uncovers cAMP nano-domains at β-adrenergic targets that dictate precise tuning of cardiac contractility. Nat. Commun. 8:15031
    [Google Scholar]
  51. 51. 
    Nikolaev VO, Gambaryan S, Lohse MJ 2006. Fluorescent sensors for rapid monitoring of intracellular cGMP. Nat. Methods 3:123–25
    [Google Scholar]
  52. 52. 
    Sato M, Hida N, Ozawa T, Umezawa Y 2000. Fluorescent indicators for cyclic GMP based on cyclic GMP-dependent protein kinase Iα and green fluorescent proteins. Anal. Chem. 72:245918–24
    [Google Scholar]
  53. 53. 
    Calamera G, Li D, Ulsund AH, Kim JJ, Neely OC et al. 2019. FRET-based cyclic GMP biosensors measure low cGMP concentrations in cardiomyocytes and neurons. Commun. Biol. 2:394
    [Google Scholar]
  54. 54. 
    Sato M, Ueda Y, Takagi T, Umezawa Y 2003. Production of PtdInsP3 at endomembranes is triggered by receptor endocytosis. Nat. Cell Biol. 5:111016–22
    [Google Scholar]
  55. 55. 
    Ananthanarayanan B, Ni Q, Zhang J 2005. Signal propagation from membrane messengers to nuclear effectors revealed by reporters of phosphoinositide dynamics and Akt activity. PNAS 102:4215081–86
    [Google Scholar]
  56. 56. 
    Hertel F, Li S, Chen M, Pott L, Mehta S, Zhang J 2020. Fluorescent biosensors for multiplexed imaging of phosphoinositide dynamics. ACS Chem. Biol. 15:133–38
    [Google Scholar]
  57. 57. 
    Zhang J, Hupfeld CJ, Taylor SS, Olefsky JM, Tsien RY 2005. Insulin disrupts β-adrenergic signalling to protein kinase A in adipocytes. Nature 437:7058569–73
    [Google Scholar]
  58. 58. 
    Ma L, Jongbloets BC, Xiong W-H, Melander JB, Qin M et al. 2018. A highly sensitive A-kinase activity reporter for imaging neuromodulatory events in awake mice. Neuron 99:4665–65
    [Google Scholar]
  59. 59. 
    Violin JD, Zhang J, Tsien RY, Newton AC 2003. A genetically encoded fluorescent reporter reveals oscillatory phosphorylation by protein kinase C. J. Cell Biol. 161:5899–909
    [Google Scholar]
  60. 60. 
    Ross BL, Tenner B, Markwardt ML, Zviman A, Shi G et al. 2018. Single-color, ratiometric biosensors for detecting signaling activities in live cells. eLife 7:e35458
    [Google Scholar]
  61. 61. 
    Kunkel MT, Ni Q, Tsien RY, Zhang J, Newton AC 2005. Spatio-temporal dynamics of protein kinase B/Akt signaling revealed by a genetically encoded fluorescent reporter. J. Biol. Chem. 280:75581–87
    [Google Scholar]
  62. 62. 
    Harvey CD, Ehrhardt AG, Cellurale C, Zhong H, Yasuda R et al. 2008. A genetically encoded fluorescent sensor of ERK activity. PNAS 105:4919264–69
    [Google Scholar]
  63. 63. 
    Fuller BG, Lampson MA, Foley EA, Rosasco-Nitcher S, Le KV et al. 2008. Midzone activation of aurora B in anaphase produces an intracellular phosphorylation gradient. Nature 453:71981132–36
    [Google Scholar]
  64. 64. 
    Mochizuki N, Yamashita S, Kurokawa K, Ohba Y, Nagai T et al. 2001. Spatio-temporal images of growth-factor-induced activation of Ras and Rap1. Nature 411:68411065–68
    [Google Scholar]
  65. 65. 
    Kitano M, Nakaya M, Nakamura T, Nagata S, Matsuda M 2008. Imaging of Rab5 activity identifies essential regulators for phagosome maturation. Nature 453:7192241–45
    [Google Scholar]
  66. 66. 
    Zawistowski JS, Sabouri-Ghomi M, Danuser G, Hahn KM, Hodgson L 2013. A RhoC biosensor reveals differences in the activation kinetics of RhoA and RhoC in migrating cells. PLOS ONE 8:11e79877
    [Google Scholar]
  67. 67. 
    Bastiaens PI, Squire A. 1999. Fluorescence lifetime imaging microscopy: spatial resolution of biochemical processes in the cell. Trends Cell Biol 9:248–52
    [Google Scholar]
  68. 68. 
    Calebiro D, Nikolaev VO, Gagliani MC, de Filippis T, Dees C et al. 2009. Persistent cAMP-signals triggered by internalized G-protein-coupled receptors. PLOS Biol 7:8e1000172
    [Google Scholar]
  69. 69. 
    Ferrandon S, Feinstein TN, Castro M, Wang B, Bouley R et al. 2009. Sustained cyclic AMP production by parathyroid hormone receptor endocytosis. Nat. Chem. Biol. 5:10734–42
    [Google Scholar]
  70. 70. 
    Godbole A, Lyga S, Lohse MJ, Calebiro D 2017. Internalized TSH receptors en route to the TGN induce local Gs-protein signaling and gene transcription. Nat. Commun. 8:1443
    [Google Scholar]
  71. 71. 
    Irannejad R, Pessino V, Mika D, Huang B, Wedegaertner PB et al. 2017. Functional selectivity of GPCR-directed drug action through location bias. Nat. Chem. Biol. 13:7799–806
    [Google Scholar]
  72. 72. 
    Nash CA, Wei W, Irannejad R, Smrcka AV 2019. Golgi localized β1-adrenergic receptors stimulate Golgi PI4P hydrolysis by PLCε to regulate cardiac hypertrophy. eLife 8:10140
    [Google Scholar]
  73. 73. 
    Eichel K, von Zastrow M 2018. Subcellular organization of GPCR signaling. Trends Pharmacol. Sci. 39:2200–8
    [Google Scholar]
  74. 74. 
    Allen MD, Zhang J. 2006. Subcellular dynamics of protein kinase A activity visualized by FRET-based reporters. Biochem. Biophys. Res. Commun. 348:2716–21
    [Google Scholar]
  75. 75. 
    Gallegos LL, Kunkel MT, Newton AC 2006. Targeting protein kinase C activity reporter to discrete intracellular regions reveals spatiotemporal differences in agonist-dependent signaling. J. Biol. Chem. 281:4130947–56
    [Google Scholar]
  76. 76. 
    Kunkel MT, Toker A, Tsien RY, Newton AC 2007. Calcium-dependent regulation of protein kinase D revealed by a genetically encoded kinase activity reporter. J. Biol. Chem. 282:96733–42
    [Google Scholar]
  77. 77. 
    Mehta S, Aye-Han N-N, Ganesan A, Oldach L, Gorshkov K, Zhang J 2014. Calmodulin-controlled spatial decoding of oscillatory Ca2+ signals by calcineurin. eLife 3:e03765
    [Google Scholar]
  78. 78. 
    Zhou X, Clister TL, Lowry PR, Seldin MM, Wong GW, Zhang J 2015. Dynamic visualization of mTORC1 activity in living cells. Cell Rep 10:101767–77
    [Google Scholar]
  79. 79. 
    Kim J, Guan K-L. 2019. MTOR as a central hub of nutrient signalling and cell growth. Nat. Cell Biol. 21:163–71
    [Google Scholar]
  80. 80. 
    Wu H, Carvalho P, Voeltz GK 2018. Here, there, and everywhere: the importance of ER membrane contact sites. Science 361:6401eaan5835
    [Google Scholar]
  81. 81. 
    Scorrano L, De Matteis MA, Emr S, Giordano F, Hajnóczky G et al. 2019. Coming together to define membrane contact sites. Nat. Commun. 10:11287
    [Google Scholar]
  82. 82. 
    Bernhard W, Rouiller C. 1956. Close topographical relationship between mitochondria and ergastoplasm of liver cells in a definite phase of cellular activity. J. Biophys. Biochem. Cytol. 2:4 Suppl.73–78
    [Google Scholar]
  83. 83. 
    Copeland DE, Dalton AJ. 1959. An association between mitochondria and the endoplasmic reticulum in cells of the pseudobranch gland of a teleost. J. Biophys. Biochem. Cytol. 5:3393–96
    [Google Scholar]
  84. 84. 
    Jones PP, MacQuaide N, Louch WE 2018. Dyadic plasticity in cardiomyocytes. Front. Physiol. 9:1773
    [Google Scholar]
  85. 85. 
    Chen T-W, Wardill TJ, Sun Y, Pulver SR, Renninger SL et al. 2013. Ultrasensitive fluorescent proteins for imaging neuronal activity. Nature 499:7458295–300
    [Google Scholar]
  86. 86. 
    Shang W, Lu F, Sun T, Xu J, Li L-L et al. 2014. Imaging Ca2+ nanosparks in heart with a new targeted biosensor. Circ. Res. 114:3412–20
    [Google Scholar]
  87. 87. 
    Lee MY, Song H, Nakai J, Ohkura M, Kotlikoff MI et al. 2006. Local subplasma membrane Ca2+ signals detected by a tethered Ca2+ sensor. PNAS 103:3513232–37
    [Google Scholar]
  88. 88. 
    Chang C-L, Chen Y-J, Liou J 2017. ER-plasma membrane junctions: Why and how do we study them. ? Biochim. Biophys. Acta Mol. Cell Res. 1864. 9:1494–506
    [Google Scholar]
  89. 89. 
    Song H, Lee MY, Kinsey SP, Weber DJ, Blaustein MP 2006. An N-terminal sequence targets and tethers Na+ pump α2 subunits to specialized plasma membrane microdomains. J. Biol. Chem. 281:1812929–40
    [Google Scholar]
  90. 90. 
    Agarwal A, Wu P-H, Hughes EG, Fukaya M, Tischfield MA et al. 2017. Transient opening of the mitochondrial permeability transition pore induces microdomain calcium transients in astrocyte processes. Neuron 93:3587–605.e7
    [Google Scholar]
  91. 91. 
    Tian L, Hires SA, Mao T, Huber D, Chiappe ME et al. 2009. Imaging neural activity in worms, flies and mice with improved GCaMP calcium indicators. Nat. Methods 6:12875–81
    [Google Scholar]
  92. 92. 
    Bernardi P, Petronilli V. 1996. The permeability transition pore as a mitochondrial calcium release channel: a critical appraisal. J. Bioenerg. Biomembr. 28:2131–38
    [Google Scholar]
  93. 93. 
    Kuchibhotla KV, Lattarulo CR, Hyman BT, Bacskai BJ 2009. Synchronous hyperactivity and intercellular calcium waves in astrocytes in Alzheimer mice. Science 323:59181211–15
    [Google Scholar]
  94. 94. 
    Simons K, Toomre D. 2000. Lipid rafts and signal transduction. Nat. Rev. Mol. Cell Biol. 1:131–39
    [Google Scholar]
  95. 95. 
    Sezgin E, Levental I, Mayor S, Eggeling C 2017. The mystery of membrane organization: composition, regulation and roles of lipid rafts. Nat. Rev. Mol. Cell Biol. 18:6361–74
    [Google Scholar]
  96. 96. 
    Zacharias DA, Violin JD, Newton AC, Tsien RY 2002. Partitioning of lipid-modified monomeric GFPs into membrane microdomains of live cells. Science 296:5569913–16
    [Google Scholar]
  97. 97. 
    Lasserre R, Guo X-J, Conchonaud F, Hamon Y, Hawchar O et al. 2008. Raft nanodomains contribute to Akt/PKB plasma membrane recruitment and activation. Nat. Chem. Biol. 4:9538–47
    [Google Scholar]
  98. 98. 
    Gao X, Zhang J. 2008. Spatiotemporal analysis of differential Akt regulation in plasma membrane microdomains. Mol. Biol. Cell 19:104366–73
    [Google Scholar]
  99. 99. 
    Gao X, Lowry PR, Zhou X, Depry C, Wei Z et al. 2011. PI3K/Akt signaling requires spatial compartmentalization in plasma membrane microdomains. PNAS 108:3514509–14
    [Google Scholar]
  100. 100. 
    Seong J, Huang M, Sim KM, Kim H, Wang Y 2017. FRET-based visualization of PDGF receptor activation at membrane microdomains. Sci. Rep. 7:11593
    [Google Scholar]
  101. 101. 
    Wu H. 2013. Higher-order assemblies in a new paradigm of signal transduction. Cell 153:2287–92
    [Google Scholar]
  102. 102. 
    Lillemeier BF, Mörtelmaier MA, Forstner MB, Huppa JB, Groves JT, Davis MM 2010. TCR and Lat are expressed on separate protein islands on T cell membranes and concatenate during activation. Nat. Immunol. 11:190–96
    [Google Scholar]
  103. 103. 
    Ma Y, Pandzic E, Nicovich PR, Yamamoto Y, Kwiatek J et al. 2017. An intermolecular FRET sensor detects the dynamics of T cell receptor clustering. Nat. Commun. 8:15100
    [Google Scholar]
  104. 104. 
    Wachten S, Masada N, Ayling L-J, Ciruela A, Nikolaev VO et al. 2010. Distinct pools of cAMP centre on different isoforms of adenylyl cyclase in pituitary-derived GH3B6 cells. J. Cell Sci. 123:Part 195–106
    [Google Scholar]
  105. 105. 
    Willoughby D, Wachten S, Masada N, Cooper DMF 2010. Direct demonstration of discrete Ca2+ microdomains associated with different isoforms of adenylyl cyclase. J. Cell Sci. 123:Part 1107–17
    [Google Scholar]
  106. 106. 
    Tallini YN, Ohkura M, Choi B-R, Ji G, Imoto K et al. 2006. Imaging cellular signals in the heart in vivo: cardiac expression of the high-signal Ca2+ indicator GCaMP2. PNAS 103:124753–58
    [Google Scholar]
  107. 107. 
    Lohse C, Bock A, Maiellaro I, Hannawacker A, Schad LR et al. 2017. Experimental and mathematical analysis of cAMP nanodomains. PLOS ONE 12:4e0174856
    [Google Scholar]
  108. 108. 
    Zaccolo M, Di Benedetto G, Lissandron V, Mancuso L, Terrin A, Zamparo I 2006. Restricted diffusion of a freely diffusible second messenger: mechanisms underlying compartmentalized cAMP signalling. Biochem. Soc. Trans. 34:Part 4495–97
    [Google Scholar]
  109. 109. 
    Baillie GS. 2009. Compartmentalized signalling: spatial regulation of cAMP by the action of compartmentalized phosphodiesterases. FEBS J 276:71790–99
    [Google Scholar]
  110. 110. 
    Clister T, Greenwald EC, Baillie GS, Zhang J 2019. AKAP95 organizes a nuclear microdomain to control local cAMP for regulating nuclear PKA. Cell Chem. Biol. 26:6885–91.e4
    [Google Scholar]
  111. 111. 
    DiPilato LM, Zhang J. 2009. The role of membrane microdomains in shaping β2-adrenergic receptor-mediated cAMP dynamics. Mol. Biosyst. 5:8832–37
    [Google Scholar]
  112. 112. 
    Sample V, DiPilato LM, Yang JH, Ni Q, Saucerman JJ, Zhang J 2012. Regulation of nuclear PKA revealed by spatiotemporal manipulation of cyclic AMP. Nat. Chem. Biol. 8:4375–82
    [Google Scholar]
  113. 113. 
    Haugh JM, Codazzi F, Teruel M, Meyer T 2000. Spatial sensing in fibroblasts mediated by 3′ phosphoinositides. J. Cell Biol. 151:61269–80
    [Google Scholar]
  114. 114. 
    Servant G, Weiner OD, Herzmark P, Balla T, Sedat JW, Bourne HR 2000. Polarization of chemoattractant receptor signaling during neutrophil chemotaxis. Science 287:54551037–40
    [Google Scholar]
  115. 115. 
    Funamoto S, Meili R, Lee S, Parry L, Firtel RA 2002. Spatial and temporal regulation of 3-phosphoinositides by PI 3-kinase and PTEN mediates chemotaxis. Cell 109:5611–23
    [Google Scholar]
  116. 116. 
    Kim JM, Lee M, Kim N, Heo WD 2016. Optogenetic toolkit reveals the role of Ca2+ sparklets in coordinated cell migration. PNAS 113:215952–57
    [Google Scholar]
  117. 117. 
    Gorshkov K, Mehta S, Ramamurthy S, Ronnett GV, Zhou F-Q, Zhang J 2017. AKAP-mediated feedback control of cAMP gradients in developing hippocampal neurons. Nat. Chem. Biol. 13:4425–31
    [Google Scholar]
  118. 118. 
    Maiellaro I, Lohse MJ, Kittel RJ, Calebiro D 2016. CAMP signals in Drosophila motor neurons are confined to single synaptic boutons. Cell Rep 17:51238–46
    [Google Scholar]
  119. 119. 
    Cugno A, Bartol TM, Sejnowski TJ, Iyengar R, Rangamani P 2019. Geometric principles of second messenger dynamics in dendritic spines. Sci. Rep. 9:111676
    [Google Scholar]
  120. 120. 
    Neves SR, Tsokas P, Sarkar A, Grace EA, Rangamani P et al. 2008. Cell shape and negative links in regulatory motifs together control spatial information flow in signaling networks. Cell 133:4666–80
    [Google Scholar]
  121. 121. 
    Milo R, Jorgensen P, Moran U, Weber G, Springer M 2010. BioNumbers—the database of key numbers in molecular and cell biology. Nucleic Acids Res 38:Database issueD750–53
    [Google Scholar]
  122. 122. 
    An S, Kumar R, Sheets ED, Benkovic SJ 2008. Reversible compartmentalization of de novo purine biosynthetic complexes in living cells. Science 320:5872103–6
    [Google Scholar]
  123. 123. 
    Kohnhorst CL, Kyoung M, Jeon M, Schmitt DL, Kennedy EL et al. 2017. Identification of a multienzyme complex for glucose metabolism in living cells. J. Biol. Chem. 292:229191–203
    [Google Scholar]
  124. 124. 
    Greenwald EC, Saucerman JJ. 2011. Bigger, better, faster: principles and models of AKAP anchoring protein signaling. J. Cardiovasc. Pharmacol. 58:5462–69
    [Google Scholar]
  125. 125. 
    Good MC, Zalatan JG, Lim WA 2011. Scaffold proteins: hubs for controlling the flow of cellular information. Science 332:6030680–86
    [Google Scholar]
  126. 126. 
    Wong W, Scott JD. 2004. AKAP signalling complexes: focal points in space and time. Nat. Rev. Mol. Cell Biol. 5:12959–70
    [Google Scholar]
  127. 127. 
    Dodge-Kafka KL, Soughayer J, Pare GC, Carlisle Michel JJ, Langeberg LK et al. 2005. The protein kinase A anchoring protein mAKAP coordinates two integrated cAMP effector pathways. Nature 437:7058574–78
    [Google Scholar]
  128. 128. 
    Kapiloff MS, Piggott LA, Sadana R, Li J, Heredia LA et al. 2009. An adenylyl cyclase-mAKAPβ signaling complex regulates cAMP levels in cardiac myocytes. J. Biol. Chem. 284:3523540–46
    [Google Scholar]
  129. 129. 
    Boczek T, Cameron EG, Yu W, Xia X, Shah SH et al. 2019. Regulation of neuronal survival and axon growth by a perinuclear cAMP compartment. J. Neurosci. 39:285466–80
    [Google Scholar]
  130. 130. 
    Tobias IS, Newton AC. 2016. Protein scaffolds control localized protein kinase Cζ activity. J. Biol. Chem. 291:2613809–22
    [Google Scholar]
  131. 131. 
    Brown MD, Sacks DB. 2009. Protein scaffolds in MAP kinase signalling. Cell. Signal. 21:4462–69
    [Google Scholar]
  132. 132. 
    Jang ER, Galperin E. 2016. The function of Shoc2: a scaffold and beyond. Commun. Integr. Biol. 9:4e1188241
    [Google Scholar]
  133. 133. 
    Yoshiki S, Matsunaga-Udagawa R, Aoki K, Kamioka Y, Kiyokawa E, Matsuda M 2010. Ras and calcium signaling pathways converge at Raf1 via the Shoc2 scaffold protein. Mol. Biol. Cell 21:61088–96
    [Google Scholar]
  134. 134. 
    Terai K, Matsuda M. 2005. Ras binding opens c-Raf to expose the docking site for mitogen-activated protein kinase kinase. EMBO Rep 6:3251–55
    [Google Scholar]
  135. 135. 
    Matsunaga-Udagawa R, Fujita Y, Yoshiki S, Terai K, Kamioka Y et al. 2010. The scaffold protein Shoc2/SUR-8 accelerates the interaction of Ras and Raf. J. Biol. Chem. 285:107818–26
    [Google Scholar]
  136. 136. 
    Mo GCH, Ross B, Hertel F, Manna P, Yang X et al. 2017. Genetically encoded biosensors for visualizing live-cell biochemical activity at super-resolution. Nat. Methods 14:4427–34
    [Google Scholar]
  137. 137. 
    Dedecker P, Mo GCH, Dertinger T, Zhang J 2012. Widely accessible method for superresolution fluorescence imaging of living systems. PNAS 109:2710909–14
    [Google Scholar]
  138. 138. 
    Nobis M, McGhee EJ, Morton JP, Schwarz JP, Karim SA et al. 2013. Intravital FLIM-FRET imaging reveals dasatinib-induced spatial control of SRC in pancreatic cancer. Cancer Res 73:154674–86
    [Google Scholar]
  139. 139. 
    Mizutani T, Kondo T, Darmanin S, Tsuda M, Tanaka S et al. 2010. A novel FRET-based biosensor for the measurement of BCR-ABL activity and its response to drugs in living cells. Clin. Cancer Res. 16:153964–75
    [Google Scholar]
  140. 140. 
    Kondo T, Fujioka M, Tsuda M, Murai K, Yamaguchi K et al. 2018. Pretreatment evaluation of fluorescence resonance energy transfer-based drug sensitivity test for patients with chronic myelogenous leukemia treated with dasatinib. Cancer Sci 109:72256–65
    [Google Scholar]
  141. 141. 
    Kondo T, Fujioka M, Fujisawa S, Sato K, Tsuda M et al. 2019. Clinical efficacy and safety of first-line nilotinib therapy and evaluation of the clinical utility of the FRET-based drug sensitivity test. Int. J. Hematol. 110:4482–89
    [Google Scholar]
  142. 142. 
    Zhao Y, Hu Q, Cheng F, Su N, Wang A et al. 2015. SoNar, a highly responsive NAD+/NADH sensor, allows high-throughput metabolic screening of anti-tumor agents. Cell Metab 21:5777–89
    [Google Scholar]
  143. 143. 
    Contreras-Baeza Y, Ceballo S, Arce-Molina R, Sandoval PY, Alegría K et al. 2019. MitoToxy assay: a novel cell-based method for the assessment of metabolic toxicity in a multiwell plate format using a lactate FRET nanosensor, Laconic. PLOS ONE 14:10e0224527
    [Google Scholar]
  144. 144. 
    San Martín A, Ceballo S, Ruminot I, Lerchundi R, Frommer WB, Barros LF 2013. A genetically encoded FRET lactate sensor and its use to detect the Warburg effect in single cancer cells. PLOS ONE 8:2e57712
    [Google Scholar]
  145. 145. 
    Helmchen F, Denk W. 2005. Deep tissue two-photon microscopy. Nat. Methods 2:12932–40
    [Google Scholar]
  146. 146. 
    To T-L, Piggott BJ, Makhijani K, Yu D, Jan YN, Shu X 2015. Rationally designed fluorogenic protease reporter visualizes spatiotemporal dynamics of apoptosis in vivo. PNAS 112:113338–43
    [Google Scholar]
  147. 147. 
    Qian Y, Piatkevich KD, McLarney B, Abdelfattah AS, Mehta S et al. 2019. A genetically encoded near-infrared fluorescent calcium ion indicator. Nat. Methods 16:2171–74
    [Google Scholar]
  148. 148. 
    Shcherbakova DM, Cox Cammer N, Huisman TM, Verkhusha VV, Hodgson L 2018. Direct multiplex imaging and optogenetics of Rho GTPases enabled by near-infrared FRET. Nat. Chem. Biol. 14:6591–600
    [Google Scholar]
  149. 149. 
    Hyman AA, Weber CA, Jülicher F 2014. Liquid-liquid phase separation in biology. Annu. Rev. Cell Dev. Biol. 30:39–58
    [Google Scholar]
  150. 150. 
    Banani SF, Lee HO, Hyman AA, Rosen MK 2017. Biomolecular condensates: organizers of cellular biochemistry. Nat. Rev. Mol. Cell Biol. 18:5285–98
    [Google Scholar]
  151. 151. 
    Wright PE, Dyson HJ. 2015. Intrinsically disordered proteins in cellular signalling and regulation. Nat. Rev. Mol. Cell Biol. 16:118–29
    [Google Scholar]
  152. 152. 
    Chong PA, Forman-Kay JD. 2016. Liquid-liquid phase separation in cellular signaling systems. Curr. Opin. Struct. Biol. 41:180–86
    [Google Scholar]
/content/journals/10.1146/annurev-pharmtox-010617-053137
Loading
/content/journals/10.1146/annurev-pharmtox-010617-053137
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error