1932

Abstract

A wide variety of organs are in a dynamic state, continuously undergoing renewal as a result of constant growth and differentiation. Stem cells are required during these dynamic events for continuous tissue maintenance within the organs. In a steady state of production and loss of cells within these tissues, new cells are constantly formed by differentiation from stem cells. Today, organoids derived from either adult stem cells or pluripotent stem cells can be grown to resemble various organs. As they are similar to their original organs, organoids hold great promise for use in medical research and the development of new treatments. Furthermore, they have already been utilized in the clinic, enabling personalized medicine for inflammatory bowel disease. In this review, I provide an update on current organoid technology and summarize the application of organoids in basic research, disease modeling, drug development, personalized treatment, and regenerative medicine.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-pharmtox-010818-021108
2019-01-06
2024-04-16
Loading full text...

Full text loading...

/deliver/fulltext/pharmtox/59/1/annurev-pharmtox-010818-021108.html?itemId=/content/journals/10.1146/annurev-pharmtox-010818-021108&mimeType=html&fmt=ahah

Literature Cited

  1. 1.  Trinkaus JP, Groves PW 1955. Differentiation in culture of mixed aggregates of dissociated tissue cells. PNAS 41:787–95
    [Google Scholar]
  2. 2.  Eiraku M, Watanabe K, Matsuo-Takasaki M, Kawada M, Yonemura S et al. 2008. Self-organized formation of polarized cortical tissues from ESCs and its active manipulation by extrinsic signals. Cell Stem Cell 3:519–32
    [Google Scholar]
  3. 3.  Lancaster MA, Knoblich JA 2014. Organogenesis in a dish: modeling development and disease using organoid technologies. Science 345:1247125
    [Google Scholar]
  4. 4.  Sato T, Vries RG, Snippert HJ, van de Wetering M, Barker N et al. 2009. Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche. Nature 459:262–65
    [Google Scholar]
  5. 5.  Howitt MR, Lavoie S, Michaud M, Blum AM, Tran SV et al. 2016. Tuft cells, taste-chemosensory cells, orchestrate parasite type 2 immunity in the gut. Science 351:1329–33
    [Google Scholar]
  6. 6.  von Moltke J, Ji M, Liang HE, Locksley RM 2016. Tuft-cell-derived IL-25 regulates an intestinal ILC2-epithelial response circuit. Nature 529:221–25
    [Google Scholar]
  7. 7.  Gerbe F, Sidot E, Smyth DJ, Ohmoto M, Matsumoto I et al. 2016. Intestinal epithelial tuft cells initiate type 2 mucosal immunity to helminth parasites. Nature 529:226–30
    [Google Scholar]
  8. 8.  Sasai Y 2013. Cytosystems dynamics in self-organization of tissue architecture. Nature 493:318–26
    [Google Scholar]
  9. 9.  Mahe MM, Aihara E, Schumacher MA, Zavros Y, Montrose MH et al. 2013. Establishment of gastrointestinal epithelial organoids. Curr. Protoc. Mouse Biol. 3:217–40
    [Google Scholar]
  10. 10.  DiMarco RL, Su J, Yan KS, Dewi R, Kuo C et al. 2014. Engineering of three-dimensional microenvironments to promote contractile behavior in primary intestinal organoids. Integr. Biol. 6:127–42
    [Google Scholar]
  11. 11.  Grabinger T, Luks L, Kostadinova F, Zimberlin C, Medema JP et al. 2014. Ex vivo culture of intestinal crypt organoids as a model system for assessing cell death induction in intestinal epithelial cells and enteropathy. Cell Death Dis 5:e1228
    [Google Scholar]
  12. 12.  Sangiorgi E, Capecchi MR 2008. Bmi1 is expressed in vivo in intestinal stem cells. Nat. Genet. 40:915–20
    [Google Scholar]
  13. 13.  Tian H, Biehs B, Warming S, Leong KG, Rangell L et al. 2011. A reverse stem cell population in small intestine renders Lgr5-positive cell dispensable. Nature 478:255–59
    [Google Scholar]
  14. 14.  Yan KS, Chia LA, Li X, Ootani A, Su J et al. 2012. The intestinal stem cell markers Bmi1 and Lgr5 identify two functionally distinct populations. PNAS 109:466–71
    [Google Scholar]
  15. 15.  Doudna JA, Charpentier E 2014. Genome editing. The new frontier of genome engineering with CRISPR-Cas9. Science 346:1258096
    [Google Scholar]
  16. 16.  Schwank G, Clevers H 2016. CRISPR/Cas9-mediated genome editing of mouse small intestinal organoids. Methods Mol. Biol. 1422:3–11
    [Google Scholar]
  17. 17.  Driehuis E, Clevers H 2017. CRISPR/Cas9 genome editing and its applications in organoids. Am. J. Physiol. Gastrointest. Liver Physiol. 312:G257–65
    [Google Scholar]
  18. 18.  Drost J, van Boxtel R, Blokzijl F, Mizutani T, Sasaki N et al. 2017. Use of CRISPR-modified human stem cell organoids to study the origin of mutational signatures in cancer. Science 358:234–38
    [Google Scholar]
  19. 19.  Heath JR, Ribas A, Mischel PS 2016. Single-cell analysis tools for drug discovery and development. Nat. Rev. Drug Discov. 15:204–16
    [Google Scholar]
  20. 20.  Fenno L, Yizhar O, Deisseroth K 2011. The development and application of optogenetics. Annu. Rev. Neurosci. 34:389–412
    [Google Scholar]
  21. 21.  Nozaki K, Mochizuki W, Matsumoto Y, Matsumoto T, Fukuda M et al. 2016. Co-culture with intestinal epithelial organoids allows efficient expansion and motility analysis of intraepithelial lymphocytes. J. Gastroenterol. 51:206–13
    [Google Scholar]
  22. 22.  Miyoshi H, Ajima R, Luo CT, Yamaguchi TP, Stappenbeck TS 2012. Wnt5a potentiates TGF-β signaling to promote colonic crypt regeneration after tissue injury. Science 338:108–13
    [Google Scholar]
  23. 23.  Li X, Nadauld L, Ootani A, Corney DC, Pai RK et al. 2014. Oncogenic transformation of diverse gastrointestinal tissues in primary organoid culture. Nat. Med. 20:769–77
    [Google Scholar]
  24. 24.  Drost J, Van Jaarsveld RH, Ponsioen B, Zimberlin C, Van Boxtel R et al. 2015. Sequential cancer mutations in cultured human intestinal stem cells. Nature 521:43–47
    [Google Scholar]
  25. 25.  Janeckova L, Pospichalova V, Fafilek B, Vojtechova M, Tureckova J et al. 2015. HIC1 tumor suppressor loss potentiates TLR2/NF-κB signaling and promotes tissue damage-associated tumorigenesis. Mol. Cancer Res. 13:1139–48
    [Google Scholar]
  26. 26.  Kitamura Y, Murata Y, Park JH, Kotani T, Imada S et al. 2015. Regulation by gut commensal bacteria of carcinoembryonic antigen-related cell adhesion molecule expression in the intestinal epithelium. Genes Cells 20:578–89
    [Google Scholar]
  27. 27.  Oshima H, Nakayama M, Han TS, Naoi K, Ju X et al. 2015. Suppressing TGFβ signaling in regenerating epithelia in an inflammatory microenvironment is sufficient to cause invasive intestinal cancer. Cancer Res 75:766–76
    [Google Scholar]
  28. 28.  Riemer P, Sreekumar A, Reinke S, Rad R, Schafer R et al. 2015. Transgenic expression of oncogenic BRAF induces loss of stem cells in the mouse intestine, which is antagonized by β-catenin activity. Oncogene 34:3164–75
    [Google Scholar]
  29. 29.  van de Wetering M, Francies HE, Francis JM, Bounova G, Iorio F et al. 2015. Prospective derivation of a living organoid biobank of colorectal cancer patients. Cell 161:933–45
    [Google Scholar]
  30. 30.  Fatehullah A, Tan SH, Barker N 2016. Organoids as an in vitro model of human development and disease. Nat. Cell Biol. 18:246–54
    [Google Scholar]
  31. 31.  Clevers H 2016. Modeling development and disease with organoids. Cell 165:1586–97
    [Google Scholar]
  32. 32.  Huch M, Koo B-K 2015. Modeling mouse and human development using organoid cultures. Development 142:3113–25
    [Google Scholar]
  33. 33.  Shamir ER, Ewald AJ 2014. Three-dimensional organotypic culture: experimental models of mammalian biology and disease. Nat. Rev. Mol. Cell Biol. 15:647–64
    [Google Scholar]
  34. 34.  Simian M, Bissell MJ 2017. Organoids: a historical perspective of thinking in three dimensions. J. Cell Biol. 216:31–40
    [Google Scholar]
  35. 35.  Takahashi T, Ohnishi H, Sugiura Y, Honda K, Suematsu M et al. 2014. Non-neuronal acetylcholine as an endogenous regulator of proliferation and differentiation of Lgr5-positive stem cells in mice. FEBS J 281:4672–90
    [Google Scholar]
  36. 36.  Mahe MM, Sundaram N, Watson CL, Shroyer NF, Helmrath MA 2015. Establishment of human epithelial enteroids and colonoids from whole tissue and biopsy. J. Vis. Exp. 97:52483
    [Google Scholar]
  37. 37.  Okamoto R, Watanabe M 2015. Role of epithelial cells in the pathogenesis and treatment of inflammatory bowel disease. J. Gastroenterol. 51:11–21
    [Google Scholar]
  38. 38.  Schumacher MA, Aihara E, Feng R, Engevik A, Shroyer NF et al. 2015. The use of murine-derived fundic organoids in studies of gastric physiology. J. Physiol. 593:1809–27
    [Google Scholar]
  39. 39.  Schofield R 1978. The relationship between the spleen colony-forming cell and the haemopoietic stem cell. Blood Cells 4:7–25
    [Google Scholar]
  40. 40.  Ohlstein B, Spradling A 2006. The adult Drosophila posterior midgut is maintained by pluripotent stem cells. Nature 439:470–74
    [Google Scholar]
  41. 41.  Micchelli CA, Perrimon N 2006. Evidence that stem cells reside in the adult Drosophila midgut epithelium. Nature 439:475–79
    [Google Scholar]
  42. 42.  Cheng H, Leblond CP 1974. Origin, differentiation and renewal of the four main epithelial cell types in the mouse small intestine V. Unitarian theory of the origin of the four epithelial cell types. Am. J. Anat. 141:537–61
    [Google Scholar]
  43. 43.  Barker N, van Es JH, Kuipers J, Kujala P, van den Born M et al. 2007. Identification of stem cells in small intestine and colon by marker gene Lgr5. . Nature 449:1003–7
    [Google Scholar]
  44. 44.  Clevers H, Loh KM, Nusse R 2014. An integral program for tissue renewal and regeneration: Wnt signaling and stem cell control. Science 346:1248012
    [Google Scholar]
  45. 45.  Sato T, Stange DE, Ferrante M, Vries RG, Van Es JH et al. 2011. Long-term expansion of epithelial organoids from human colon, adenoma, adenocarcinoma, and Barrett's epithelium. Gastroenterology 141:1762–72
    [Google Scholar]
  46. 46.  Spence JR, Mayhew CN, Rankin SA, Kuhar MF, Vallance JE et al. 2011. Direct differentiation of human pluripotent stem cells into intestinal tissue in vitro. Nature 470:105–9
    [Google Scholar]
  47. 47.  Sato T, van Es JH, Snippert HJ, Stange DE, Vries RG et al. 2011. Paneth cells constitute the niche for Lgr5 stem cells in intestinal crypts. Nature 469:415–18
    [Google Scholar]
  48. 48.  Yilmaz ÖH, Katajisto P, Lamming DW, Gültekin Y, Bauer-Rowe KE et al. 2012. mTORC1 in the Paneth cell niche couples intestinal stem-cell function to calorie intake. Nature 486:490–95
    [Google Scholar]
  49. 49.  Kajava AV 1998. Structural diversity of leucine-rich repeat proteins. J. Mol. Biol. 277:519–27
    [Google Scholar]
  50. 50.  Van Hiel MB, Vandersmissen HP, Van Loy T, Vanden Broeck J 2012. An evolutionary comparison of leucine-rich repeat containing G protein-coupled receptors reveals a novel LGR subtype. Peptides 34:193–200
    [Google Scholar]
  51. 51.  Hsu SY, Kudo M, Chen T, Nakabayashi K, Bhalla A et al. 2000. The three subfamilies of leucine-rich repeat-containing G protein-coupled receptors (LGR): identification of LGR6 and LGR7 and the signaling mechanism for LGR7. Mol. Endocrinol. 14:1257–71
    [Google Scholar]
  52. 52.  Kumagai J, Hsu SY, Matsumi H, Roh JS, Fu P et al. 2002. INSL3/Leydig insulin-like peptide activates the LGR8 receptor important in testis descent. J. Biol. Chem. 277:31283–86
    [Google Scholar]
  53. 53.  Hsu SY, Liang SG, Hsueh AJ 1998. Characterization of two LGR genes homologous to gonadotropin and thyrotropin receptors with extracellular leucine-rich repeats and a G protein-coupled, seven-transmembrane region. Mol. Endocrinol. 12:1830–45
    [Google Scholar]
  54. 54.  McDonald T, Wang R, Bailey W, Xie G, Chen F et al. 1998. Identification and cloning of an orphan G protein-coupled receptor of the glycoprotein hormone receptor subfamily. Biochem. Biophys. Res. Commun. 247:266–70
    [Google Scholar]
  55. 55.  Carmon KS, Gong X, Lin Q, Thomas A, Liu Q 2011. R-spondins function as ligands of the orphan receptors LGR4 and LGR5 to regulate Wnt/β-catenin signaling. PNAS 108:11452–57
    [Google Scholar]
  56. 56.  Carmon KS, Lin Q, Gong X, Thomas A, Liu Q 2012. LGR5 interacts and co-internalizes with Wnt receptors to modulate Wnt/β-catenin signaling. Mol. Cell Biol. 32:2054–64
    [Google Scholar]
  57. 57.  de Lau W, Barker N, Low TY, Koo BK, Li VS et al. 2011. Lgr5 homologues associate with Wnt receptors and mediate R-spondin signaling. Nature 476:293–97
    [Google Scholar]
  58. 58.  Glinka A, Dolde C, Kirsch N, Huang YL, Kazanskaya O et al. 2011. LGR4 and LGR5 are R-spondin receptors mediating Wnt/β-catenin and Wnt/PCP signaling. EMBO Rep 12:1055–61
    [Google Scholar]
  59. 59.  Ruffner H, Sprunger J, Charlat O, Leighton-Davies J, Grosshans B et al. 2012. R-spondin potentiates Wnt/β-catenin signaling through orphan receptors LGR4 and LGR5. PLOS ONE 7:e40976
    [Google Scholar]
  60. 60.  Gong X, Carmon KS, Lin Q, Thomas A, Yi J et al. 2012. LGR6 is a high affinity receptor of R-spondins and potentially functions as a tumor suppressor. PLOS ONE 7:e37137
    [Google Scholar]
  61. 61.  Barker N, Clevers H 2010. Leucine-rich repeat-containing G-protein-coupled receptors as markers of adult stem cells. Gastroenterology 138:1681–96
    [Google Scholar]
  62. 62.  Barker N, Tan S, Clevers H 2013. Lgr proteins in epithelial stem cell biology. Development 140:2484–94
    [Google Scholar]
  63. 63.  Klapproth H, Reinheimer T, Metzen J, Munch M, Bittinger F et al. 1997. Non-neuronal acetylcholine, a signaling molecule synthesized by surface cells of rat and man. Naunyn Schmiedebergs Arch. Pharmacol. 355:515–23
    [Google Scholar]
  64. 64.  Hirota CL, McKay DM 2006. Cholinergic regulation of epithelial ion transport in the mammalian intestine. Br. J. Pharmacol. 149:463–79
    [Google Scholar]
  65. 65.  Yajima T, Inoue R, Matsumoto M, Yajima M 2011. Non-neuronal release of ACh plays a key role in secretory response to luminal propionate in rat colon. J. Physiol. 589:953–62
    [Google Scholar]
  66. 66.  Kawashima K, Fujii T 2003. The lymphocytic cholinergic system and its contribution to the regulation of immune activity. Life Sci. 74:675–96
    [Google Scholar]
  67. 67.  Danielson P, Alfredson H, Forsgren S 2006. Immunohistochemical and histochemical findings favoring the occurrence of autocrine/paracrine as well as nerve-related cholinergic effects in chronic painful patellar tendon tendinosis. Microsc. Res. Tech. 69:808–19
    [Google Scholar]
  68. 68.  Kurzen H, Henrich C, Booken D, Poenitz N, Gratchev A et al. 2006. Functional characterization of the epidermal cholinergic system in vitro. J. Investig. Dermatol. 126:2458–72
    [Google Scholar]
  69. 69.  Kummer W, Wiegand S, Akinci S, Wessler I, Schinkel AH et al. 2006. Role of acetylcholine and polyspecific cation transporters in serotonin-induced bronchoconstriction in the mouse. Respir. Res. 7:65
    [Google Scholar]
  70. 70.  Schlereth T, Birklein F, Haack K, Schiffmann S, Kilbinger H et al. 2006. In vivo release of non-neuronal acetylcholine from the human skin as measured by dermal microdialysis: effect of botulinum toxin. Br. J. Pharmacol. 147:183–87
    [Google Scholar]
  71. 71.  Kakinuma Y, Akiyama T, Sato T 2009. Cholinoceptive and cholinergic properties of cardiomyocytes involving an amplification mechanism for vagal efferent effects in sparsely innervated ventricular myocardium. FEBS J 276:5111–25
    [Google Scholar]
  72. 72.  Kakinuma Y, Akiyama T, Okazaki K, Arikawa M, Noguchi T et al. 2012. A non-neuronal cardiac cholinergic system plays a protective role in myocardium salvage during ischemic insulta. PLOS ONE 7:e50761
    [Google Scholar]
  73. 73.  Oikawa S, Iketani S, Kakinuma Y 2014. A non-neuronal cholinergic system regulates cellular ATP levels to maintain cell viability. Cell Physiol. Biochem. 34:781–89
    [Google Scholar]
  74. 74.  Fujii T, Kawashima K 2001. An independent non-neuronal cholinergic system in lymphocytes. Jpn. J. Pharmacol. 85:11–15
    [Google Scholar]
  75. 75.  Mashimo M, Yurie Y, Kawashima K, Fujii T 2016. CRAC channels are required for [Ca2+]i oscillations and c-fos gene expression after muscarinic acetylcholine receptor activation in leukemic T cells. Life Sci 161:45–50
    [Google Scholar]
  76. 76.  Paraoanu LE, Steinert G, Koehler A, Wessler I, Layer PG 2007. Expression and possible functions of the cholinergic system in a murine embryonic stem cell line. Life Sci 80:2375–79
    [Google Scholar]
  77. 77.  Landgraf D, Barth M, Layer PG, Sperling LE 2010. Acetylcholine as a possible signaling molecule in embryonic stem cells: studies on survival, proliferation and death. Chem. Biol. Interact. 187:115–19
    [Google Scholar]
  78. 78.  Ishizuka T, Ozawa A, Goshima H, Watanabe Y 2012. Involvement of nicotinic acetylcholine receptor in the proliferation of mouse induced pluripotent stem cells. Life Sci 90:637–48
    [Google Scholar]
  79. 79.  Bartfeld S, Clevers H 2017. Stem cell-derived organoids and their application for medical research and patient treatment. J. Mol. Med. 95:729–38
    [Google Scholar]
  80. 80.  Barker N, Huch M, Kujala P, van de Wetering M, Snippert HJ et al. 2010. Lgr5+ve stem cells drive self-renewal in the stomach and build long-lived gastric units in vitro. Cell Stem Cell 6:25–36
    [Google Scholar]
  81. 81.  Stange DE, Koo B-K, Huch M, Sibbel G, Basak O et al. 2013. Differentiated Troy+ chief cells act as reserve stem cells to generate all lineages of the stomach epithelium. Cell 155:357–68
    [Google Scholar]
  82. 82.  Bartfeld S, Bayram T, van de Wetering M, Huch M, Begthel H et al. 2015. In vitro expansion of human gastric epithelial stem cells and their responses to bacterial infection. Gastroenterology 148:126–36
    [Google Scholar]
  83. 83.  Huch M, Bonfanti P, Boj SF, Sato T, Loomans CJ et al. 2013. Unlimited in vitro expansion of adult bi-potent pancreas progenitors through the Lgr5/R-spondin axis. EMBO J 32:2708–21
    [Google Scholar]
  84. 84.  Boj SF, Hwang C-I, Baker LA, Chio IIC, Engle DD et al. 2015. Organoid models of human and mouse ductal pancreatic cancer. Cell 160:324–38
    [Google Scholar]
  85. 85.  Greggio C, Franceschi FD, Figueirdo-Larsen M, Gobaa S, Ranga A et al. 2013. Artificial three-dimensional niches deconstruct pancreas development in vitro. Development 140:4452–62
    [Google Scholar]
  86. 86.  Huch M, Gehart H, van Boxtel R, Hamer K, Blokzijl F et al. 2015. Long-term culture of genome-stable bipotent stem cells from adult human liver. Cell 160:299–312
    [Google Scholar]
  87. 87.  Karthaus WR, Iaquinta PJ, Drost J, Gracanin A, van Boxtel R et al. 2014. Identification of multipotent luminal progenitor cells in human prostate organoid cultures. Cell 159:163–75
    [Google Scholar]
  88. 88.  Chua CW, Shibata M, Lei M, Toivanen R, Barlow LJ et al. 2014. Single luminal epithelial progenitors can generate prostate organoids in culture. Nat. Cell Biol. 16:951–61
    [Google Scholar]
  89. 89.  DeWard AD, Cramer J, Lagasse E 2014. Cellular heterogeneity in the esophagus implicates the presence of a nonquiescent epithelial stem cell population. Cell Rep 9:701–11
    [Google Scholar]
  90. 90.  Scanu T, Spaapen RM, Bakker JM, Pratap CB, Wu L et al. 2015. Salmonella manipulation of host signaling pathways provokes cellular transformation associated with gallbladder carcinoma. Cell Host Microbe 17:763–74
    [Google Scholar]
  91. 91.  Lugli N, Kamileri I, Keogh A, Malinka T, Sarris ME et al. 2016. R-spondin 1 and noggin facilitate expansion of resident stem cells from non-damaged gallbladders. EMBO Rep 17:769–79
    [Google Scholar]
  92. 92.  Ren W, Lewandowski BC, Watson J, Aihara E, Iwatsuki K et al. 2014. Single Lgr5- or Lgr6-expressing taste stem/progenitor cells generate taste bud cells ex vivo. PNAS 111:16401–6
    [Google Scholar]
  93. 93.  Spence JR, Mayhew CN, Rankin SA, Kuhar MF, Vallance JE et al. 2011. Directed differentiation of human pluripotent stem cells into intestinal tissue in vitro. Nature 470:105–9
    [Google Scholar]
  94. 94.  Wong AP, Bear CE, Chin S, Pasceri P, Thompson TO et al. 2012. Directed differentiation of human pluripotent stem cells into mature airway epithelia expressing functional CFTR protein. Nat. Biotechnol. 30:876–82
    [Google Scholar]
  95. 95.  Dye BR, Hill DR, Ferguson MA, Tsai Y-H, Nagy MS et al. 2015. In vitro generation of human pluripotent stem cell derived lung organoids. eLife 4:e05098
    [Google Scholar]
  96. 96.  Huang SX, Islam MN, O'Neill J, Hu Z, Yang Y-G et al. 2014. Efficient generation of lung and airway epithelial cells from human pluripotent stem cells. Nat. Biotechnol. 32:84–91
    [Google Scholar]
  97. 97.  Takebe T, Sekine K, Enomura M, Koike H, Kimura M et al. 2013. Vascularized and functional human liver from an iPSC-derived organ bud transplant. Nature 499:481–84
    [Google Scholar]
  98. 98.  Kurmann AA, Serra M, Hawkins F, Rankin SA, Mori M et al. 2015. Regeneration of thyroid function by transplantation of differentiated pluripotent stem cells. Cell Stem Cell 17:527–42
    [Google Scholar]
  99. 99.  Longmire TA, Ikonomou L, Hawkins F, Christodoulou C, Cao Y et al. 2012. Efficient derivation of purified lung and thyroid progenitors from embryonic stem cells. Cell Stem Cell 10:398–411
    [Google Scholar]
  100. 100.  McCracken KW, Catá EM, Crawford CM, Sinagoga KL, Schumacher M et al. 2014. Modeling human development and disease in pluripotent stem-cell-derived gastric organoids. Nature 516:400–4
    [Google Scholar]
  101. 101.  Noguchi TK, Ninomiya N, Sekine M, Komazaki S, Wang P-C et al. 2015. Generation of stomach tissue from mouse embryonic stem cells. Nat. Cell Biol. 17:984–93
    [Google Scholar]
  102. 102.  Huang L, Holtzinger A, Jagan I, BeGora M, Lohse I et al. 2015. Ductal pancreatic cancer modeling and drug screening using human pluripotent stem cell- and patient-derived tumor organoids. Nat. Med. 21:1364–71
    [Google Scholar]
  103. 103.  Ogawa M, Ogawa S, Bear CE, Ahmadi S, Chin S et al. 2015. Directed differentiation of cholangiocytes from human pluripotent stem cells. Nat. Biotechnol. 33:853–61
    [Google Scholar]
  104. 104.  Xia Y, Nivet E, Sancho-Martinez I, Gallegos T, Suzuki K et al. 2013. Directed differentiation of human pluripotent cells to ureteric bud kidney progenitor-like cells. Nat. Cell Biol. 15:1507–15
    [Google Scholar]
  105. 105.  Taguchi A, Kaku Y, Ohmori T, Sharmin S, Ogawa M et al. 2014. Redefining the in vivo organ of metanephric nephron progenitors enables generation of complex kidney structures from pluripotent stem cells. Cell Stem Cell 14:53–67
    [Google Scholar]
  106. 106.  Takasato M, Er PX, Becroft M, Vanslambrouck JM, Stanley EG et al. 2014. Directing human embryonic stem cell differentiation towards a renal lineage generates a self-organizing kidney. Nat. Cell Biol. 16:118–26
    [Google Scholar]
  107. 107.  Takasato M, Er PX, Chiu HS, Maier B, Baillie GJ et al. 2015. Kidney organoids from human iPS cells contain multiple lineages and model human nephrogenesis. Nature 526:564–68
    [Google Scholar]
  108. 108.  Taguchi A, Nishinakamura R 2017. Higher-order kidney organogenesis from pluripotent stem cells. Cell Stem Cell 21:730–46
    [Google Scholar]
  109. 109.  Kessler M, Hoffmann K, Brinkmann V, Thieck O, Jackisch S et al. 2015. The Notch and Wnt pathways regulate stemness and differentiation in human fallopian tube organoids. Nat. Commun. 6:8989
    [Google Scholar]
  110. 110.  Eiraku M, Takata N, Ishibashi H, Kawada M, Sakakura E et al. 2011. Self-organizing optic-cup morphogenesis in three-dimensional culture. Nature 472:51–56
    [Google Scholar]
  111. 111.  Nakano T, Ando S, Takata N, Kawada M, Muguruma K et al. 2012. Self-formation of optic cups and storable stratified neural retina from human ESCs. Cell Stem Cell 10:771–85
    [Google Scholar]
  112. 112.  Muguruma K, Nishiyama A, Kawakami H, Hashimoto K, Sasai Y 2015. Self-organization of polarized cerebellar tissue in 3D culture of human pluripotent stem cells. Cell Rep 10:537–50
    [Google Scholar]
  113. 113.  Sakaguchi H, Kadoshima T, Soen M, Narii N, Ishida Y et al. 2015. Generation of functional hippocampal neurons from self-organizing human embryonic stem cell-derived dorsomedial telencephalic tissue. Nat. Commun. 6:8896
    [Google Scholar]
  114. 114.  Suga H, Kadoshima T, Minaguchi M, Ohgushi M, Soen M et al. 2011. Self-formation of functional adenohypophysis in three-dimensional culture. Nature 480:57–62
    [Google Scholar]
  115. 115.  Wessler I, Kirkpatrick CJ 2008. Acetylcholine beyond neurons: the non-neuronal cholinergic system in humans. Br. J. Pharmacol. 154:1558–71
    [Google Scholar]
  116. 116.  Eglen RM, Randle DH 2015. Drug discovery goes three-dimensional: goodbye to flat high-throughput screening?. Assay Drug Dev. Technol. 13:262–65
    [Google Scholar]
  117. 117.  Martin U 2015. Pluripotent stem cells for disease modeling and drug screening: new perspectives for treatment of cystic fibrosis?. Mol. Cell Pediatr. 2:15
    [Google Scholar]
  118. 118.  Sampaziotis F, Cardoso De Brito M, Madrigal P, Bertero A, Saeb-Parsy K et al. 2015. Cholangiocytes derived from human induced pluripotent stem cells for disease modeling and drug validation. Nat. Biotechnol. 33:845–52
    [Google Scholar]
  119. 119.  Dedhia PH, Bertaux-Skeirik N, Zavros Y, Spence JR 2016. Organoid models of human gastrointestinal development and disease. Gastroenterology 150:1098–112
    [Google Scholar]
  120. 120.  Hynds RE, Giangreco A 2013. Concise review: the relevance of human stem cell-derived organoids models for epithelial translational medicine. Stem Cells 31:417–22
    [Google Scholar]
  121. 121.  Walsh AJ, Cook RS, Sanders ME, Arteaga CL, Skala MC 2016. Drug response in organoids generated from frozen primary tumor tissues. Sci. Rep. 6:18889
    [Google Scholar]
  122. 122.  van de Wetering M, Francies HE, Francis JM, Bounova G, Iorio F et al. 2015. Prospective derivation of a living organoid biobank of colorectal cancer patients. Cell 161:933–45
    [Google Scholar]
  123. 123.  Fujii M, Shimokawa M, Date S, Takano A, Matano M et al. 2016. A colorectal tumor organoid library demonstrates progressive loss of niche factor requirements during tumorigenesis. Cell Stem Cell 18:827–38
    [Google Scholar]
  124. 124.  Dekkers JF, Berkers G, Kruisselbrink E, Vonk A, de Jonge HR et al. 2016. Characterizing responses to CFTR-modulating drugs using rectal organoids derived from subjects with cystic fibrosis. Sci. Transl. Med. 8:344ra84
    [Google Scholar]
  125. 125.  de Law W, Peng WC, Gros P, Clevers H 2014. The R-spondin/Lgr5/Rnf43 module: regulator of Wnt signal strength. Genes Dev 28:305–16
    [Google Scholar]
  126. 126.  Spurrier RG, Grikscheit TC 2013. Tissue engineering the small intestine. Clin. Gastroenterol. Hepatol. 11:354–58
    [Google Scholar]
  127. 127.  Forster R, Chiba K, Schaeffer L, Regalado SG, Lai CS et al. 2014. Human intestinal tissue with adult stem cell properties derived from pluripotent stem cells. Stem Cell Rep 2:838–52
    [Google Scholar]
  128. 128.  Todhunter ME, Jee NY, Hughes AJ, Coyle MC, Cerchiari A et al. 2015. Programmed synthesis of three-dimensional tissues. Nat. Methods 12:975–81
    [Google Scholar]
  129. 129.  Huang L, Holtzinger A, Jagan I, Begora M, Lohse I et al. 2015. Ductal pancreatic cancer modeling and drug screening using human pluripotent stem cell- and patient-derived tumor organoids. Mat. Med. 21:1364–71
    [Google Scholar]
  130. 130.  Nielsen MF, Mortensen MB, Detlefsen S 2016. Key players in pancreatic cancer-stroma interaction: cancer-associated fibroblasts, endothelial and inflammatory cells. World J. Gastroenterol. 22:2678–700
    [Google Scholar]
  131. 131.  Seino T, Kawasaki S, Shimokawa M, Tamagawa H, Toshimitsu K et al. 2018. Human pancreatic tumor organoids reveal loss of stem cell niche factor dependence during disease progression. Cell Stem Cell 22:454–67.e6
    [Google Scholar]
  132. 132.  Vaira V, Fedele G, Pyne S, Fasoli E, Zadra G et al. 2010. Preclinical model of organotypic culture for pharmacodynamic profiling of human tumors. PNAS 107:8352–56
    [Google Scholar]
  133. 133.  Rookmaaker MB, Schutgens F, Verhaar MC, Clevers H 2015. Development and application of human adult stem or progenitor cell organoids. Nat. Rev. Nephrol. 11:546–54
    [Google Scholar]
  134. 134.  Schwank G, Koo B-K, Sasselli V, Dekkers JF, Heo I et al. 2013. Functional repair of CFTR by CRISPR/Cas9 in intestinal stem cell organoids of cystic fibrosis patients. Cell Stem Cell 13:653–58
    [Google Scholar]
  135. 135.  Koo B-K, Stange DE, Sato T, Karthaus W, Farin HF et al. 2012. Controlled gene expression in primary Lgr5 organoid cultures. Nat. Methods 9:81–83
    [Google Scholar]
  136. 136.  Sugimoto S, Ohta Y, Fujii M, Matano M, Shimokawa M et al. 2018. Reconstruction of the human colon epithelium in vivo. Cell Stem Cell 22:171–76.e5
    [Google Scholar]
  137. 137.  O'Rourke KP, Loizou E, Livshits G, Schattoff EM, Baslan T et al. 2017. Transplantation of engineering organoids enables rapid generation of metastatic mouse models of colorectal cancer. Nat. Biotechnol. 35:577–82
    [Google Scholar]
  138. 138.  Roper J, Tammela T, Cetinbas NM, Akkad A, Roghanian A et al. 2017. In vivo genome editing and organoid transplantation models of colorectal cancer and metastasis. Nat. Biotechnol. 35:569–76
    [Google Scholar]
/content/journals/10.1146/annurev-pharmtox-010818-021108
Loading
/content/journals/10.1146/annurev-pharmtox-010818-021108
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error