1932

Abstract

Research in the cannabinoid field, namely on phytocannabinoids, the endogenous cannabinoids anandamide and 2-arachidonoyl glycerol and their metabolizing and synthetic enzymes, the cannabinoid receptors, and anandamide-like cannabinoid compounds, has expanded tremendously over the last few years. Numerous endocannabinoid-like compounds have been discovered. The Cannabis plant constituent cannabidiol (CBD) was found to exert beneficial effects in many preclinical disease models ranging from epilepsy, cardiovascular disease, inflammation, and autoimmunity to neurodegenerative and kidney diseases and cancer. CBD was recently approved in the United States for the treatment of rare forms of childhood epilepsy. This has triggered the development of many CBD-based products for human use, often with overstated claims regarding their therapeutic effects. In this article, the recently published research on the chemistry and biological effects of plant cannabinoids (specifically CBD), endocannabinoids, certain long-chain fatty acid amides, and the variety of relevant receptors is critically reviewed.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-pharmtox-010818-021441
2020-01-06
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/pharmtox/60/1/annurev-pharmtox-010818-021441.html?itemId=/content/journals/10.1146/annurev-pharmtox-010818-021441&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Todd AR. 1946. Hashish. Experientia 2:55–60
    [Google Scholar]
  2. 2. 
    Paton WDM, Pertwee RG. 1973. The actions of cannabis in man. Marijuana R Mechoulam 287–333 New York: Academic
    [Google Scholar]
  3. 3. 
    Mechoulam R. 1970. Marihuana chemistry. Science 168:1159–66
    [Google Scholar]
  4. 4. 
    Mechoulam R, Hanus LO, Pertwee R, Howlett AC 2014. Early phytocannabinoid chemistry to endocannabinoids and beyond. Nat. Rev. Neurosci. 15:757–64
    [Google Scholar]
  5. 5. 
    Pertwee RG 2004. Handbook of Experimental Pharmacology Berlin: Springer
  6. 6. 
    Mechoulam R, Feigenbaum JJ, Lander N, Segal M, Jarbe TUC et al. 1988. Enantiomeric cannabinoids—stereospecificity of psychotropic activity. Experientia 44:762–64
    [Google Scholar]
  7. 7. 
    Devane WA, Dysarz FA 3rd, Johnson MR, Melvin LS, Howlett AC 1988. Determination and characterization of a cannabinoid receptor in rat brain. Mol. Pharmacol. 34:605–13
    [Google Scholar]
  8. 8. 
    Munro S, Thomas KL, Abushaar M 1993. Molecular characterization of a peripheral receptor for cannabinoids. Nature 365:61–65
    [Google Scholar]
  9. 9. 
    Pertwee RG 2015. Handbook of Experimental Pharmacology Berlin: Springer
  10. 10. 
    Devane WA, Hanus L, Breuer A, Pertwee RG, Stevenson LA et al. 1992. Isolation and structure of a brain constituent that binds to the cannabinoid receptor. Science 258:1946–49
    [Google Scholar]
  11. 11. 
    Mechoulam R, Ben-Shabat S, Hanus L, Ligumsky M, Kaminski NE et al. 1995. Identification of an endogenous 2-monoglyceride, present in canine gut, that binds to cannabinoid receptors. Biochem. Pharmacol. 50:83–90
    [Google Scholar]
  12. 12. 
    Sugiura T, Kondo S, Sukagawa A, Nakane S, Shinoda A et al. 1995. 2-arachidonoylglycerol: a possible endogenous cannabinoid receptor ligand in brain. Biochem. Biophys. Res. Commun. 215:89–97
    [Google Scholar]
  13. 13. 
    Muccioli GG. 2010. Endocannabinoid biosynthesis and inactivation, from simple to complex. Drug Discov. Today 15:474–83
    [Google Scholar]
  14. 14. 
    Maccarrone M. 2017. Metabolism of the endocannabinoid anandamide: open questions after 25 years. Front. Mol. Neurosci. 10:166
    [Google Scholar]
  15. 15. 
    Pacher P, Kunos G. 2013. Modulating the endocannabinoid system in human health and disease—successes and failures. FEBS J 280:1918–43
    [Google Scholar]
  16. 16. 
    ElSohly MA, Radwan MM, Gul W, Chandra S, Galal A 2017. Phytochemistry of Cannabis sativa L. Phytocannabinoids: Unraveling the Complex Chemistry and Pharmacology of Cannabis sativa AD Kinghorn, H Falk, S Gibbons, J Kobayashi 1–36 Cham, Switz: Springer
    [Google Scholar]
  17. 17. 
    Pertwee RG, Rock EM, Guenther K, Limebeer CL, Stevenson LA et al. 2018. Cannabidiolic acid methyl ester, a stable synthetic analogue of cannabidiolic acid, can produce 5-HT1A receptor-mediated suppression of nausea and anxiety in rats. Br. J. Pharmacol. 175:100–12
    [Google Scholar]
  18. 18. 
    Hen-Shoval D, Amar S, Shbiro L, Smoum R, Haj CG et al. 2018. Acute oral cannabidiolic acid methyl ester reduces depression-like behavior in two genetic animal models of depression. Behav. Brain Res. 351:1–3
    [Google Scholar]
  19. 19. 
    Hanus L, Gopher A, Almog S, Mechoulam R 1993. Two new unsaturated fatty acid ethanolamides in brain that bind to the cannabinoid receptor. J. Med. Chem. 36:3032–34
    [Google Scholar]
  20. 20. 
    Cravatt BF, Giang DK, Mayfield SP, Boger DL, Lerner RA, Gilula NB 1996. Molecular characterization of an enzyme that degrades neuromodulatory fatty-acid amides. Nature 384:83–87
    [Google Scholar]
  21. 21. 
    Dinh TP, Carpenter D, Leslie FM, Freund TF, Katona I et al. 2002. Brain monoglyceride lipase participating in endocannabinoid inactivation. PNAS 99:10819–24
    [Google Scholar]
  22. 22. 
    Hanus L, Abu-Lafi S, Fride E, Breuer A, Vogel Z et al. 2001. 2-arachidonyl glyceryl ether, an endogenous agonist of the cannabinoid CB1 receptor. PNAS 98:3662–65
    [Google Scholar]
  23. 23. 
    Oka S, Tsuchie A, Tokumura A, Muramatsu M, Suhara Y et al. 2003. Ether-linked analogue of 2-arachidonoylglycerol (noladin ether) was not detected in the brains of various mammalian species. J. Neurochem. 85:1374–81
    [Google Scholar]
  24. 24. 
    Huang H, McIntosh AL, Martin GG, Landrock D, Chung S et al. 2016. FABP1: a novel hepatic endocannabinoid and cannabinoid binding protein. Biochemistry 55:5243–55
    [Google Scholar]
  25. 25. 
    Elmes MW, Kaczocha M, Berger WT, Leung K, Ralph BP et al. 2015. Fatty acid binding proteins (FABPs) are intracellular carriers for Δ9-tetrahydrocannabinol (THC) and cannabidiol (CBD). J. Biol. Chem. 290:148711–21
    [Google Scholar]
  26. 26. 
    Gomes I, Grushko JS, Golebiewska U, Hoogendoorn S, Gupta A et al. 2009. Novel endogenous peptide agonists of cannabinoid receptors. FASEB J 23:3020–29
    [Google Scholar]
  27. 27. 
    Reckziegel P, Festuccia WT, Britto LRG, Jang KLL, Romao CM et al. 2017. A novel peptide that improves metabolic parameters without adverse central nervous system effects. Sci. Rep. 7:14781
    [Google Scholar]
  28. 28. 
    Bauer M, Chicca A, Tamborrini M, Eisen D, Lerner R et al. 2012. Identification and quantification of a new family of peptide endocannabinoids (pepcans) showing negative allosteric modulation at CB1 receptors. J. Biol. Chem. 287:36944–67
    [Google Scholar]
  29. 29. 
    Starowicz K, Nigam S, Di Marzo V 2007. Biochemistry and pharmacology of endovanilloids. Pharmacol. Ther. 114:13–33
    [Google Scholar]
  30. 30. 
    McHugh D, Tanner C, Mechoulam R, Pertwee RG, Ross RA 2008. Inhibition of human neutrophil chemotaxis by endogenous cannabinoids and phytocannabinoids: evidence for a site distinct from CB1 and CB2. Mol. Pharmacol. 73:441–50
    [Google Scholar]
  31. 31. 
    Begg M, Pacher P, Batkai S, Osei-Hyiaman D, Offertaler L et al. 2005. Evidence for novel cannabinoid receptors. Pharmacol. Ther. 106:133–45
    [Google Scholar]
  32. 32. 
    Jarai Z, Wagner JA, Varga K, Lake KD, Compton DR et al. 1999. Cannabinoid-induced mesenteric vasodilation through an endothelial site distinct from CB1 or CB2 receptors. PNAS 96:14136–41
    [Google Scholar]
  33. 33. 
    Ho W-SV, Hiley CR. 2003. Endothelium-independent relaxation to cannabinoids in rat-isolated mesenteric artery and role of Ca2+ influx. Br. J. Pharmacol. 139:585–97
    [Google Scholar]
  34. 34. 
    Offertaler L, Mo FM, Batkai S, Liu J, Begg M et al. 2003. Selective ligands and cellular effectors of a G protein–coupled endothelial cannabinoid receptor. Mol. Pharmacol. 63:699–705
    [Google Scholar]
  35. 35. 
    Irving A, Abdulrazzaq G, Chan SLF, Penman J, Harvey J, Alexander SPH 2017. Cannabinoid receptor-related orphan G protein-coupled receptors. Advances in Pharmacology D Kendall, SPH Alexander 223–47 Cambridge, MA: Academic
    [Google Scholar]
  36. 36. 
    Ryberg E, Larsson N, Sjogren S, Hjorth S, Hermansson NO et al. 2007. The orphan receptor GPR55 is a novel cannabinoid receptor. Br. J. Pharmacol. 152:1092–101
    [Google Scholar]
  37. 37. 
    Johns DG, Behm DJ, Walker DJ, Ao Z, Shapland EM et al. 2007. The novel endocannabinoid receptor GPR55 is activated by atypical cannabinoids but does not mediate their vasodilator effects. Br. J. Pharmacol. 152:825–31
    [Google Scholar]
  38. 38. 
    Oka S, Nakajima K, Yamashita A, Kishimoto S, Sugiura T 2007. Identification of GPR55 as a lysophosphatidylinositol receptor. Biochem. Biophys. Res. Commun. 362:928–34
    [Google Scholar]
  39. 39. 
    Zhang X, Maor Y, Wang JF, Kunos G, Groopman JE 2010. Endocannabinoid-like N-arachidonoyl serine is a novel pro-angiogenic mediator. Br. J. Pharmacol. 160:1583–94
    [Google Scholar]
  40. 40. 
    Ross RA. 2009. The enigmatic pharmacology of GPR55. Trends Pharmacol. Sci. 30:156–63
    [Google Scholar]
  41. 41. 
    Kohno M, Hasegawa H, Inoue A, Muraoka M, Miyazaki T et al. 2006. Identification of N-arachidonylglycine as the endogenous ligand for orphan G-protein-coupled receptor GPR18. Biochem. Biophys. Res. Commun. 347:827–32
    [Google Scholar]
  42. 42. 
    McHugh D, Hu SSJ, Rimmerman N, Juknat A, Vogel Z et al. 2010. N-arachidonoyl glycine, an abundant endogenous lipid, potently drives directed cellular migration through GPR18, the putative abnormal cannabidiol receptor. BMC Neurosci 11:44
    [Google Scholar]
  43. 43. 
    Bondarenko AI, Panasiuk O, Drachuk K, Montecucco F, Brandt KJ, Mach F 2018. The quest for endothelial atypical cannabinoid receptor: BKCa channels act as cellular sensors for cannabinoids in in vitro and in situ endothelial cells. Vasc. Pharmacol. 102:44–55
    [Google Scholar]
  44. 44. 
    Overton HA, Babbs AJ, Doel SM, Fyfe MCT, Gardner LS et al. 2006. Deorphanization of a G protein-coupled receptor for oleoylethanolamide and its use in the discovery of small-molecule hypophagic agents. Cell Metab 3:167–75
    [Google Scholar]
  45. 45. 
    Soga T, Ohishi T, Matsui T, Saito T, Matsumoto M et al. 2005. Lysophosphatidylcholine enhances glucose-dependent insulin secretion via an orphan G-protein-coupled receptor. Biochem. Biophys. Res. Commun. 326:744–51
    [Google Scholar]
  46. 46. 
    Lauffer LM, Lakoubov R, Brubaker PL 2009. GPR119 is essential for oleoylethanolamide-induced glucagon-like peptide-1 secretion from the intestinal enteroendocrine L-cell. Diabetes 58:1058–66
    [Google Scholar]
  47. 47. 
    Hansen KB, Rosenkilde MM, Knop FK, Wellner N, Diep TA et al. 2011. 2-oleoyl glycerol is a GPR119 agonist and signals GLP-1 release in humans. J. Clin. Endocrinol. Metab. 96:E1409–17
    [Google Scholar]
  48. 48. 
    Lee CW, Rivera R, Gardell S, Dubin AE, Chun J 2006. GPR92 as a new G12/13- and Gq-coupled lysophosphatidic acid receptor that increases cAMP, LPA5. J. Biol. Chem. 281:23589–97
    [Google Scholar]
  49. 49. 
    Oh DY, Yoon JM, Moon MJ, Hwang JI, Choe H et al. 2008. Identification of farnesyl pyrophosphate and N-arachidonylglycine as endogenous ligands for GPR92. J. Biol. Chem. 283:21054–64
    [Google Scholar]
  50. 50. 
    Fu J, Gaetani S, Oveisi F, Lo Verme J, Serrano A et al. 2003. Oleylethanolamide regulates feeding and body weight through activation of the nuclear receptor PPAR-α. Nature 425:90–93
    [Google Scholar]
  51. 51. 
    Lo Verme J, Fu J, Astarita G, La Rana G, Russo R et al. 2005. The nuclear receptor peroxisome proliferator-activated receptor-α mediates the anti-inflammatory actions of palmitoylethanolamide. Mol. Pharmacol. 67:15–19
    [Google Scholar]
  52. 52. 
    Ibsen MS, Connor M, Glass M 2017. Cannabinoid CB1 and CB2 receptor signaling and bias. Cannabis Cannabinoid Res 2:48–60
    [Google Scholar]
  53. 53. 
    Khajehali E, Malone DT, Glass M, Sexton PM, Christopoulos A, Leach K 2015. Biased agonism and biased allosteric modulation at the CB1 cannabinoid receptor. Mol. Pharmacol. 88:368–79
    [Google Scholar]
  54. 54. 
    Soethoudt M, Grether U, Fingerle J, Grim TW, Fezza F et al. 2017. Cannabinoid CB2 receptor ligand profiling reveals biased signalling and off-target activity. Nat. Commun. 8:13958
    [Google Scholar]
  55. 55. 
    Lin XY, Dhopeshwarkar AS, Huibregtse M, Mackie K, Hohmann AG 2018. Slowly signaling G protein–biased CB2 cannabinoid receptor agonist LY2828360 suppresses neuropathic pain with sustained efficacy and attenuates morphine tolerance and dependence. Mol. Pharmacol. 93:49–62
    [Google Scholar]
  56. 56. 
    Diez-Alarcia R, Ibarra-Lecue I, Lopez-Cardona AP, Meana J, Gutierrez-Adan A et al. 2016. Biased agonism of three different cannabinoid receptor agonists in mouse brain cortex. Front. Pharmacol. 7:415
    [Google Scholar]
  57. 57. 
    Console-Bram L, Brailoiu E, Brailoiu GC, Sharir H, Abood ME 2014. Activation of GPR18 by cannabinoid compounds: a tale of biased agonism. Br. J. Pharmacol. 171:3908–17
    [Google Scholar]
  58. 58. 
    Hassing HA, Fares S, Larsen O, Pad H, Hauge M et al. 2016. Biased signaling of lipids and allosteric actions of synthetic molecules for GPR119. Biochem. Pharmacol. 119:66–75
    [Google Scholar]
  59. 59. 
    Ben-Shabat S, Fride E, Sheskin T, Tamiri T, Rhee MH et al. 1998. An entourage effect: Inactive endogenous fatty acid glycerol esters enhance 2-arachidonoyl-glycerol cannabinoid activity. Eur. J. Pharmacol. 353:23–31
    [Google Scholar]
  60. 60. 
    De Petrocellis L, Bisogno T, Ligresti A, Bifulco M, Melck D, Di Marzo V 2002. Effect on cancer cell proliferation of palmitoylethanolamide, a fatty acid amide interacting with both the cannabinoid and vanilloid signalling systems. Fundam. Clin. Pharmacol. 16:297–302
    [Google Scholar]
  61. 61. 
    Garcia MDC, Adler-Graschinsky E, Celuch SM 2009. Enhancement of the hypotensive effects of intrathecally injected endocannabinoids by the entourage compound palmitoylethanolamide. Eur. J. Pharmacol. 610:75–80
    [Google Scholar]
  62. 62. 
    Hiley CR, Hoi PM. 2007. Oleamide: a fatty acid amide signaling molecule in the cardiovascular system. ? Cardiovasc. Drug Rev. 25:46–60
    [Google Scholar]
  63. 63. 
    Smart D, Jonsson KO, Vandevoorde S, Lambert DM, Fowler CJ 2002. ‘Entourage’ effects of N-acyl ethanolamines at human vanilloid receptors. Comparison of effects upon anandamide-induced vanilloid receptor activation and upon anandamide metabolism. Br. J. Pharmacol. 136:452–58
    [Google Scholar]
  64. 64. 
    De Petrocellis L, Chu CJ, Moriello AS, Kellner JC, Walker JM, Di Marzo V 2004. Actions of two naturally occurring saturated N-acyldopamines on transient receptor potential vanilloid 1 (TRPV1) channels. Br. J. Pharmacol. 143:251–56
    [Google Scholar]
  65. 65. 
    Russo EB. 2011. Taming THC: potential cannabis synergy and phytocannabinoid-terpenoid entourage effects. Br. J. Pharmacol. 163:1344–64
    [Google Scholar]
  66. 66. 
    Murataeva N, Dhopeshwarkar A, Yin D, Mitjavila J, Bradshaw H et al. 2016. Where's my entourage? The curious case of 2-oleoylglycerol, 2-linolenoylglycerol, and 2-palmitoylglycerol. Pharmacol. Res. 110:173–80
    [Google Scholar]
  67. 67. 
    Kuehl FA, Jacob TA, Ganley OH, Ormond RE, Meisinger MAP 1957. The identification of N-(2-hydroxyethyl)-palmitamide as a naturally occurring anti-inflammatory agent. J. Am. Chem. Soc. 79:5577–78
    [Google Scholar]
  68. 68. 
    Sihag J, Jones PJH. 2018. Oleoylethanolamide: the role of a bioactive lipid amide in modulating eating behaviour. Obes. Rev. 19:178–97
    [Google Scholar]
  69. 69. 
    Laleh P, Yaser K, Alireza O 2019. Oleoylethanolamide: a novel pharmaceutical agent in the management of obesity—an updated review. J. Cell Physiol. 234:7893–902
    [Google Scholar]
  70. 70. 
    Payahoo L, Khajebishak Y, Asghari Jafarabadi M, Ostadrahimi A 2018. Oleoylethanolamide supplementation reduces inflammation and oxidative stress in obese people: a clinical trial. Adv. Pharm. Bull. 8:479–87
    [Google Scholar]
  71. 71. 
    Bilbao A, Serrano A, Cippitelli A, Pavon FJ, Giuffrida A et al. 2016. Role of the satiety factor oleoylethanolamide in alcoholism. Addict. Biol. 21:859–72
    [Google Scholar]
  72. 72. 
    Sagheddu C, Scherma M, Congiu M, Fadda P, Carta G et al. 2019. Inhibition of N-acylethanolamine acid amidase reduces nicotine-induced dopamine activation and reward. Neuropharmacology 144:327–36
    [Google Scholar]
  73. 73. 
    Bystrowska B, Frankowska M, Smaga I, Niedzielska-Andres E, Pomierny-Chamiolo L, Filip M 2019. Cocaine-induced reinstatement of cocaine seeking provokes changes in the endocannabinoid and N-acylethanolamine levels in rat brain structures. Molecules 24:1125
    [Google Scholar]
  74. 74. 
    Guzman M, Lo Verme J, Fu J, Oveisi F, Blazquez C, Piomelli D 2004. Oleoylethanolamide stimulates lipolysis by activating the nuclear receptor peroxisome proliferator-activated receptor α (PPAR-α). J. Biol. Chem. 279:27849–54
    [Google Scholar]
  75. 75. 
    Ahern GP. 2003. Activation of TRPV1 by the satiety factor oleoylethanolamide. J. Biol. Chem. 278:30429–34
    [Google Scholar]
  76. 76. 
    Overton HA, Babbs AJ, Doel SM, Fyfe MC, Gardner LS et al. 2006. Deorphanization of a G protein-coupled receptor for oleoylethanolamide and its use in the discovery of small-molecule hypophagic agents. Cell Metab 3:167–75
    [Google Scholar]
  77. 77. 
    Bradshaw HB, Walker JM. 2005. The expanding field of cannabimimetic and related lipid mediators. Br. J. Pharmacol. 144:459–65
    [Google Scholar]
  78. 78. 
    Tan B, O'Dell DK, Yu YW, Monn MF, Hughes HV et al. 2010. Identification of endogenous acyl amino acids based on a targeted lipidomics approach. J. Lipid Res. 51:112–19
    [Google Scholar]
  79. 79. 
    Leishman E, Mackie K, Luquet S, Bradshaw HB 2016. Lipidomics profile of a NAPE-PLD KO mouse provides evidence of a broader role of this enzyme in lipid metabolism in the brain. Biochim. Biophys. Acta 1861:491–500
    [Google Scholar]
  80. 80. 
    Rahman IAS, Tsuboi K, Uyama T, Ueda N 2014. New players in the fatty acyl ethanolamide metabolism. Pharmacol. Res. 86:1–10
    [Google Scholar]
  81. 81. 
    Tsuboi K, Uyama T, Okamoto Y, Ueda N 2018. Endocannabinoids and related N-acylethanolamines: biological activities and metabolism. Inflamm. Regen. 38:28
    [Google Scholar]
  82. 82. 
    Di Marzo V, Melck D, Orlando P, Bisogno T, Zagoory O et al. 2001. Palmitoylethanolamide inhibits the expression of fatty acid amide hydrolase and enhances the anti-proliferative effect of anandamide in human breast cancer cells. Biochem. J. 358:249–55
    [Google Scholar]
  83. 83. 
    Jonsson KO, Vandevoorde S, Lambert DM, Tiger G, Fowler CJ 2001. Effects of homologues and analogues of palmitoylethanolamide upon the inactivation of the endocannabinoid anandamide. Br. J. Pharmacol. 133:1263–75
    [Google Scholar]
  84. 84. 
    Lambert DM, Di Marzo V 1999. The palmitoylethanolamide and oleamide enigmas: Are these two fatty acid amides cannabimimetic?. Curr. Med. Chem. 6:757–73
    [Google Scholar]
  85. 85. 
    Long JZ, Svensson KJ, Bateman LA, Lin H, Kamenecka T et al. 2016. The secreted enzyme PM20D1 regulates lipidated amino acid uncouplers of mitochondria. Cell 166:424–35
    [Google Scholar]
  86. 86. 
    Koob GF, Buck CL, Cohen A, Edwards S, Park PE et al. 2014. Addiction as a stress surfeit disorder. Neuropharmacology 76:370–82
    [Google Scholar]
  87. 87. 
    Parsons LH, Hurd YL. 2015. Endocannabinoid signalling in reward and addiction. Nat. Rev. Neurosci. 16:579–94
    [Google Scholar]
  88. 88. 
    Donvito G, Piscitelli F, Muldoon P, Jackson A, Vitale RM et al. 2018. N-oleoyl-glycine reduces nicotine reward and withdrawal in mice. Neuropharmacology 148:320–31
    [Google Scholar]
  89. 89. 
    Naqvi NH, Rudrauf D, Damasio H, Bechara A 2007. Damage to the insula disrupts addiction to cigarette smoking. Science 315:531–34
    [Google Scholar]
  90. 90. 
    Abdolahi A, Williams GC, Benesch CG, Wang HZ, Spitzer EM et al. 2015. Damage to the insula leads to decreased nicotine withdrawal during abstinence. Addiction 110:1994–2003
    [Google Scholar]
  91. 91. 
    Wang S, Xu Q, Shu G, Wang L, Gao P et al. 2015. N-oleoyl glycine, a lipoamino acid, stimulates adipogenesis associated with activation of CB1 receptor and Akt signaling pathway in 3T3-L1 adipocyte. Biochem. Biophys. Res. Commun. 466:438–43
    [Google Scholar]
  92. 92. 
    Burstein SH. 2018. N-acyl amino acids (elmiric acids): endogenous signaling molecules with therapeutic potential. Mol. Pharmacol. 93:228–38
    [Google Scholar]
  93. 93. 
    Bradshaw HB, Rimmerman N, Hu SS, Benton VM, Stuart JM et al. 2009. The endocannabinoid anandamide is a precursor for the signaling lipid N-arachidonoyl glycine by two distinct pathways. BMC Biochem 10:14
    [Google Scholar]
  94. 94. 
    Burstein SH, McQuain CA, Ross AH, Salmonsen RA, Zurier RE 2011. Resolution of inflammation by N-arachidonoylglycine. J. Cell. Biochem. 112:3227–33
    [Google Scholar]
  95. 95. 
    Vuong LA, Mitchell VA, Vaughan CW 2008. Actions of N-arachidonyl-glycine in a rat neuropathic pain model. Neuropharmacology 54:189–93
    [Google Scholar]
  96. 96. 
    McHugh D, Page J, Dunn E, Bradshaw HB 2012. Δ9-tetrahydrocannabinol and N-arachidonyl glycine are full agonists at GPR18 receptors and induce migration in human endometrial HEC-1B cells. Br. J. Pharmacol. 165:2414–24
    [Google Scholar]
  97. 97. 
    Edington AR, McKinzie AA, Reynolds AJ, Kassiou M, Ryan RM, Vandenberg RJ 2009. Extracellular loops 2 and 4 of GLYT2 are required for N-arachidonylglycine inhibition of glycine transport. J. Biol. Chem. 284:36424–30
    [Google Scholar]
  98. 98. 
    Parmar N, Ho W-SV. 2010. N-arachidonoyl glycine, an endogenous lipid that acts as a vasorelaxant via nitric oxide and large conductance calcium-activated potassium channels. Br. J. Pharmacol. 160:594–603
    [Google Scholar]
  99. 99. 
    Milman G, Maor Y, Abu-Lafi S, Horowitz M, Gallily R et al. 2006. N-arachidonoyl l-serine, an endocannabinoid-like brain constituent with vasodilatory properties. PNAS 103:2428–33
    [Google Scholar]
  100. 100. 
    Cohen-Yeshurun A, Willner D, Trembovler V, Alexandrovich A, Mechoulam R et al. 2013. N-arachidonoyl-l-serine (AraS) possesses proneurogenic properties in vitro and in vivo after traumatic brain injury. J. Cereb. Blood Flow Metab. 33:1242–50
    [Google Scholar]
  101. 101. 
    Bab I, Smoum R, Bradshaw H, Mechoulam R 2011. Skeletal lipidomics: regulation of bone metabolism by fatty acid amide family. Br. J. Pharmacol. 163:1441–46
    [Google Scholar]
  102. 102. 
    Trichopoulou A, Georgiou E, Bassiakos Y, Lipworth L, Lagiou P et al. 1997. Energy intake and monounsaturated fat in relation to bone mineral density among women and men in Greece. Prev. Med. 26:395–400
    [Google Scholar]
  103. 103. 
    Smoum R, Bar A, Tan B, Milman G, Attar-Namdar M et al. 2010. Oleoyl serine, an endogenous N-acyl amide, modulates bone remodeling and mass. PNAS 107:17710–15
    [Google Scholar]
  104. 104. 
    Mann A, Smoum R, Trembovler V, Alexandrovich A, Breuer A et al. 2015. Palmitoyl serine: an endogenous neuroprotective endocannabinoid-like entity after traumatic brain injury. J. Neuroimmune Pharmacol. 10:356–63
    [Google Scholar]
  105. 105. 
    Mechoulam R, Shvo Y. 1963. Hashish—I. The structure of cannabidiol. Tetrahedron 19:2073–78
    [Google Scholar]
  106. 106. 
    Cunha JM, Carlini EA, Pereira AE, Ramos OL, Pimentel C et al. 1980. Chronic administration of cannabidiol to healthy volunteers and epileptic patients. Pharmacology 21:175–85
    [Google Scholar]
  107. 107. 
    Mechoulam R. 2017. Cannabis and epilepsy. Epilepsy Behav 70:278–79
    [Google Scholar]
  108. 108. 
    Russo EB. 2018. Cannabis therapeutics and the future of neurology. Front. Integr. Neurosci. 12:51
    [Google Scholar]
  109. 109. 
    Hampson AJ, Grimaldi M, Axelrod J, Wink D 1998. Cannabidiol and (−)Δ9-tetrahydrocannabinol are neuroprotective antioxidants. PNAS 95:8268–73
    [Google Scholar]
  110. 110. 
    Hayakawa K, Mishima K, Irie K, Hazekawa M, Mishima S et al. 2008. Cannabidiol prevents a post-ischemic injury progressively induced by cerebral ischemia via a high-mobility group box1-inhibiting mechanism. Neuropharmacology 55:1280–86
    [Google Scholar]
  111. 111. 
    Borrelli F, Aviello G, Romano B, Orlando P, Capasso R et al. 2009. Cannabidiol, a safe and non-psychotropic ingredient of the marijuana plant Cannabis sativa, is protective in a murine model of colitis. J. Mol. Med. 87:1111–21
    [Google Scholar]
  112. 112. 
    Mukhopadhyay P, Rajesh M, Horvath B, Batkai S, Park O et al. 2011. Cannabidiol protects against hepatic ischemia/reperfusion injury by attenuating inflammatory signaling and response, oxidative/nitrative stress, and cell death. Free Radic. Biol. Med. 50:1368–81
    [Google Scholar]
  113. 113. 
    Silvestri C, Paris D, Martella A, Melck D, Guadagnino I et al. 2015. Two non-psychoactive cannabinoids reduce intracellular lipid levels and inhibit hepatosteatosis. J. Hepatol. 62:1382–90
    [Google Scholar]
  114. 114. 
    Fouad AA, Al-Mulhim AS, Jresat I 2012. Cannabidiol treatment ameliorates ischemia/reperfusion renal injury in rats. Life Sci 91:284–92
    [Google Scholar]
  115. 115. 
    Rajesh M, Mukhopadhyay P, Batkai S, Patel V, Saito K et al. 2010. Cannabidiol attenuates cardiac dysfunction, oxidative stress, fibrosis, and inflammatory and cell death signaling pathways in diabetic cardiomyopathy. J. Am. Coll. Cardiol. 56:2115–25
    [Google Scholar]
  116. 116. 
    Hao E, Mukhopadhyay P, Cao Z, Erdelyi K, Holovac E et al. 2015. Cannabidiol protects against doxorubicin-induced cardiomyopathy by modulating mitochondrial function and biogenesis. Mol. Med. 21:38–45
    [Google Scholar]
  117. 117. 
    Lee WS, Erdelyi K, Matyas C, Mukhopadhyay P, Varga ZV et al. 2016. Cannabidiol limits T cell–mediated chronic autoimmune myocarditis: implications to autoimmune disorders and organ transplantation. Mol. Med. 22:136–46
    [Google Scholar]
  118. 118. 
    Durst R, Danenberg H, Gallily R, Mechoulam R, Meir K et al. 2007. Cannabidiol, a nonpsychoactive cannabis constituent, protects against myocardial ischemic reperfusion injury. Am. J. Physiol. Heart Circ. Physiol. 293:H3602–7
    [Google Scholar]
  119. 119. 
    Malfait AM, Gallily R, Sumariwalla PF, Malik AS, Andreakos E et al. 2000. The nonpsychoactive cannabis constituent cannabidiol is an oral anti-arthritic therapeutic in murine collagen-induced arthritis. PNAS 97:9561–66
    [Google Scholar]
  120. 120. 
    Cassol OJ Jr., Comim CM, Silva BR, Hermani FV, Constantino LS et al. 2010. Treatment with cannabidiol reverses oxidative stress parameters, cognitive impairment and mortality in rats submitted to sepsis by cecal ligation and puncture. Brain Res 1348:128–38
    [Google Scholar]
  121. 121. 
    Weiss L, Zeira M, Reich S, Slavin S, Raz I et al. 2008. Cannabidiol arrests onset of autoimmune diabetes in NOD mice. Neuropharmacology 54:244–49
    [Google Scholar]
  122. 122. 
    Izzo AA, Borrelli F, Capasso R, Di Marzo V, Mechoulam R 2009. Non-psychotropic plant cannabinoids: new therapeutic opportunities from an ancient herb. Trends Pharmacol. Sci. 30:515–27
    [Google Scholar]
  123. 123. 
    Gruden G, Barutta F, Kunos G, Pacher P 2016. Role of the endocannabinoid system in diabetes and diabetic complications. Br. J. Pharmacol. 173:1116–27
    [Google Scholar]
  124. 124. 
    Yeshurun M, Shpilberg O, Herscovici C, Shargian L, Dreyer J et al. 2015. Cannabidiol for the prevention of graft-versus-host-disease after allogeneic hematopoietic cell transplantation: results of a phase II study. Biol. Blood Marrow Transplant. 21:1770–75
    [Google Scholar]
  125. 125. 
    Ligresti A, Moriello AS, Starowicz K, Matias I, Pisanti S et al. 2006. Antitumor activity of plant cannabinoids with emphasis on the effect of cannabidiol on human breast carcinoma. J. Pharmacol. Exp. Ther. 318:1375–87
    [Google Scholar]
  126. 126. 
    Kogan NM, Rabinowitz R, Levi P, Gibson D, Sandor P et al. 2004. Synthesis and antitumor activity of quinonoid derivatives of cannabinoids. J. Med. Chem. 47:3800–6
    [Google Scholar]
  127. 127. 
    Devinsky O, Marsh E, Friedman D, Thiele E, Laux L et al. 2016. Cannabidiol in patients with treatment-resistant epilepsy: an open-label interventional trial. Lancet Neurol 15:270–78
    [Google Scholar]
  128. 128. 
    Devinsky O, Cross JH, Laux L, Marsh E, Miller I et al. 2017. Trial of cannabidiol for drug-resistant seizures in the Dravet syndrome. N. Engl. J. Med. 376:2011–20
    [Google Scholar]
  129. 129. 
    Thiele EA, Marsh ED, French JA, Mazurkiewicz-Beldzinska M, Benbadis SR et al. 2018. Cannabidiol in patients with seizures associated with Lennox-Gastaut syndrome (GWPCARE4): a randomised, double-blind, placebo-controlled phase 3 trial. Lancet 391:1085–96
    [Google Scholar]
  130. 130. 
    Billakota S, Devinsky O, Marsh E 2019. Cannabinoid therapy in epilepsy. Curr. Opin. Neurol. 32:220–26
    [Google Scholar]
  131. 131. 
    Di Marzo V. 2018. New approaches and challenges to targeting the endocannabinoid system. Nat. Rev. Drug Discov. 17:623–39
    [Google Scholar]
  132. 132. 
    Pacher P, Batkai S, Kunos G 2006. The endocannabinoid system as an emerging target of pharmacotherapy. Pharmacol. Rev. 58:389–462
    [Google Scholar]
  133. 133. 
    Mechoulam R, Hanus L. 2000. A historical overview of chemical research on cannabinoids. Chem. Phys. Lipids 108:1–13
    [Google Scholar]
  134. 134. 
    Agarwal N, Pacher P, Tegeder I, Amaya F, Constantin CE et al. 2007. Cannabinoids mediate analgesia largely via peripheral type 1 cannabinoid receptors in nociceptors. Nat. Neurosci. 10:870–79
    [Google Scholar]
  135. 135. 
    Hohmann AG, Suplita RL 2nd 2006. Endocannabinoid mechanisms of pain modulation. AAPS J 8:E693–708
    [Google Scholar]
  136. 136. 
    Anand P, Whiteside G, Fowler CJ, Hohmann AG 2009. Targeting CB2 receptors and the endocannabinoid system for the treatment of pain. Brain Res. Rev. 60:255–66
    [Google Scholar]
  137. 137. 
    Pacher P, Mechoulam R. 2011. Is lipid signaling through cannabinoid 2 receptors part of a protective system. ? Prog. Lipid Res. 50:193–211
    [Google Scholar]
  138. 138. 
    Pryce G, Baker D. 2012. Potential control of multiple sclerosis by cannabis and the endocannabinoid system. CNS Neurol. Disord. Drug Targets 11:624–41
    [Google Scholar]
  139. 139. 
    Lichtman AH, Lux EA, McQuade R, Rossetti S, Sanchez R et al. 2018. Results of a double-blind, randomized, placebo-controlled study of nabiximols oromucosal spray as an adjunctive therapy in advanced cancer patients with chronic uncontrolled pain. J. Pain Symptom Manag. 55:179–88.e1
    [Google Scholar]
  140. 140. 
    Zhornitsky S, Potvin S. 2012. Cannabidiol in humans—the quest for therapeutic targets. Pharmaceuticals 5:529–52
    [Google Scholar]
  141. 141. 
    Laprairie RB, Bagher AM, Kelly ME, Denovan-Wright EM 2015. Cannabidiol is a negative allosteric modulator of the cannabinoid CB1 receptor. Br. J. Pharmacol. 172:4790–805
    [Google Scholar]
  142. 142. 
    Portenoy RK, Ganae-Motan ED, Allende S, Yanagihara R, Shaiova L et al. 2012. Nabiximols for opioid-treated cancer patients with poorly-controlled chronic pain: a randomized, placebo-controlled, graded-dose trial. J. Pain 13:438–49
    [Google Scholar]
  143. 143. 
    Lynch ME, Cesar-Rittenberg P, Hohmann AG 2014. A double-blind, placebo-controlled, crossover pilot trial with extension using an oral mucosal cannabinoid extract for treatment of chemotherapy-induced neuropathic pain. J. Pain Symptom Manag. 47:166–73
    [Google Scholar]
  144. 144. 
    Johnson JR, Lossignol D, Burnell-Nugent M, Fallon MT 2013. An open-label extension study to investigate the long-term safety and tolerability of THC/CBD oromucosal spray and oromucosal THC spray in patients with terminal cancer-related pain refractory to strong opioid analgesics. J. Pain Symptom Manag. 46:207–18
    [Google Scholar]
  145. 145. 
    Koppel BS, Brust JC, Fife T, Bronstein J, Youssof S et al. 2014. Systematic review: efficacy and safety of medical marijuana in selected neurologic disorders: report of the Guideline Development Subcommittee of the American Academy of Neurology. Neurology 82:1556–63
    [Google Scholar]
  146. 146. 
    Pacher P, Steffens S, Hasko G, Schindler TH, Kunos G 2018. Cardiovascular effects of marijuana and synthetic cannabinoids: the good, the bad, and the ugly. Nat. Rev. Cardiol. 15:151–66
    [Google Scholar]
  147. 147. 
    Feng Y, Chen F, Yin T, Xia Q, Liu Y et al. 2015. Pharmacologic effects of cannabidiol on acute reperfused myocardial infarction in rabbits: evaluated with 3.0T cardiac magnetic resonance imaging and histopathology. J. Cardiovasc. Pharmacol. 66:354–63
    [Google Scholar]
  148. 148. 
    Fouad AA, Albuali WH, Al-Mulhim AS, Jresat I 2013. Cardioprotective effect of cannabidiol in rats exposed to doxorubicin toxicity. Environ. Toxicol. Pharmacol. 36:347–57
    [Google Scholar]
  149. 149. 
    Rajesh M, Mukhopadhyay P, Batkai S, Hasko G, Liaudet L et al. 2007. Cannabidiol attenuates high glucose-induced endothelial cell inflammatory response and barrier disruption. Am. J. Physiol. Heart Circ. Physiol. 293:H610–19
    [Google Scholar]
  150. 150. 
    Horvath B, Mukhopadhyay P, Hasko G, Pacher P 2012. The endocannabinoid system and plant-derived cannabinoids in diabetes and diabetic complications. Am. J. Pathol. 180:432–42
    [Google Scholar]
  151. 151. 
    Mishima K, Hayakawa K, Abe K, Ikeda T, Egashira N et al. 2005. Cannabidiol prevents cerebral infarction via a serotonergic 5-hydroxytryptamine1A receptor-dependent mechanism. Stroke 36:1077–82
    [Google Scholar]
  152. 152. 
    Hayakawa K, Mishima K, Nozako M, Ogata A, Hazekawa M et al. 2007. Repeated treatment with cannabidiol but not Δ9-tetrahydrocannabinol has a neuroprotective effect without the development of tolerance. Neuropharmacology 52:1079–87
    [Google Scholar]
  153. 153. 
    Fernandez-Ruiz J, Sagredo O, Pazos MR, Garcia C, Pertwee R et al. 2013. Cannabidiol for neurodegenerative disorders: important new clinical applications for this phytocannabinoid. ? Br. J. Clin. Pharmacol. 75:323–33
    [Google Scholar]
  154. 154. 
    Ligresti A, De Petrocellis L, Di Marzo V 2016. From phytocannabinoids to cannabinoid receptors and endocannabinoids: pleiotropic physiological and pathological roles through complex pharmacology. Physiol. Rev. 96:1593–659
    [Google Scholar]
  155. 155. 
    Vilela LR, Gomides LF, David BA, Antunes MM, Diniz AB et al. 2015. Cannabidiol rescues acute hepatic toxicity and seizure induced by cocaine. Mediators Inflamm 2015:523418
    [Google Scholar]
  156. 156. 
    Fouad AA, Al-Mulhim AS, Gomaa W 2013. Protective effect of cannabidiol against cadmium hepatotoxicity in rats. J. Trace Elem. Med. Biol. 27:355–63
    [Google Scholar]
  157. 157. 
    Magen I, Avraham Y, Ackerman Z, Vorobiev L, Mechoulam R, Berry EM 2009. Cannabidiol ameliorates cognitive and motor impairments in mice with bile duct ligation. J. Hepatol. 51:528–34
    [Google Scholar]
  158. 158. 
    Wang Y, Mukhopadhyay P, Cao Z, Wang H, Feng D et al. 2017. Cannabidiol attenuates alcohol-induced liver steatosis, metabolic dysregulation, inflammation and neutrophil-mediated injury. Sci. Rep. 7:12064
    [Google Scholar]
  159. 159. 
    Pan H, Mukhopadhyay P, Rajesh M, Patel V, Mukhopadhyay B et al. 2009. Cannabidiol attenuates cisplatin-induced nephrotoxicity by decreasing oxidative/nitrosative stress, inflammation, and cell death. J. Pharmacol. Exp. Ther. 328:708–14
    [Google Scholar]
  160. 160. 
    Pacher P, Beckman JS, Liaudet L 2007. Nitric oxide and peroxynitrite in health and disease. Physiol. Rev. 87:315–424
    [Google Scholar]
  161. 161. 
    Elliott DM, Singh N, Nagarkatti M, Nagarkatti PS 2018. Cannabidiol attenuates experimental autoimmune encephalomyelitis model of multiple sclerosis through induction of myeloid-derived suppressor cells. Front. Immunol. 9:1782
    [Google Scholar]
  162. 162. 
    Gallily R, Yekhtin Z. 2018. Avidekel Cannabis extracts and cannabidiol are as efficient as Copaxone in suppressing EAE in SJL/J mice. Inflammopharmacology 27:167–73
    [Google Scholar]
  163. 163. 
    Kozela E, Lev N, Kaushansky N, Eilam R, Rimmerman N et al. 2011. Cannabidiol inhibits pathogenic T cells, decreases spinal microglial activation and ameliorates multiple sclerosis-like disease in C57BL/6 mice. Br. J. Pharmacol. 163:1507–19
    [Google Scholar]
  164. 164. 
    Guimaraes FS, de Aguiar JC, Mechoulam R, Breuer A 1994. Anxiolytic effect of cannabidiol derivatives in the elevated plus-maze. Gen. Pharmacol. 25:161–64
    [Google Scholar]
  165. 165. 
    Rock EM, Bolognini D, Limebeer CL, Cascio MG, Anavi-Goffer S et al. 2012. Cannabidiol, a non-psychotropic component of cannabis, attenuates vomiting and nausea-like behaviour via indirect agonism of 5-HT1A somatodendritic autoreceptors in the dorsal raphe nucleus. Br. J. Pharmacol. 165:2620–34
    [Google Scholar]
  166. 166. 
    Irving PM, Iqbal T, Nwokolo C, Subramanian S, Bloom S et al. 2018. A randomized, double-blind, placebo-controlled, parallel-group, pilot study of cannabidiol-rich botanical extract in the symptomatic treatment of ulcerative colitis. Inflamm. Bowel Dis. 24:714–24
    [Google Scholar]
  167. 167. 
    Torres S, Lorente M, Rodriguez-Fornes F, Hernandez-Tiedra S, Salazar M et al. 2011. A combined preclinical therapy of cannabinoids and temozolomide against glioma. Mol. Cancer Ther. 10:90–103
    [Google Scholar]
  168. 168. 
    Kenyon J, Liu W, Dalgleish A 2018. Report of objective clinical responses of cancer patients to pharmaceutical-grade synthetic cannabidiol. Anticancer Res 38:5831–35
    [Google Scholar]
  169. 169. 
    Wargent ET, Zaibi MS, Silvestri C, Hislop DC, Stocker CJ et al. 2013. The cannabinoid Δ9-tetrahydrocannabivarin (THCV) ameliorates insulin sensitivity in two mouse models of obesity. Nutr. Diabetes 3:e68
    [Google Scholar]
  170. 170. 
    Jadoon KA, Ratcliffe SH, Barrett DA, Thomas EL, Stott C et al. 2016. Efficacy and safety of cannabidiol and tetrahydrocannabivarin on glycemic and lipid parameters in patients with type 2 diabetes: a randomized, double-blind, placebo-controlled, parallel group pilot study. Diabetes Care 39:1777–86
    [Google Scholar]
  171. 171. 
    Englund A, Atakan Z, Kralj A, Tunstall N, Murray R, Morrison P 2016. The effect of five day dosing with THCV on THC-induced cognitive, psychological and physiological effects in healthy male human volunteers: a placebo-controlled, double-blind, crossover pilot trial. J. Psychopharmacol. 30:140–51
    [Google Scholar]
  172. 172. 
    Russo EB, Marcu J. 2017. Cannabis pharmacology: the usual suspects and a few promising leads. Adv. Pharmacol. 80:67–134
    [Google Scholar]
/content/journals/10.1146/annurev-pharmtox-010818-021441
Loading
/content/journals/10.1146/annurev-pharmtox-010818-021441
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error