1932

Abstract

Air pollution is a complex mixture of gases and particulate matter, with adsorbed organic and inorganic contaminants, to which exposure is lifelong. Epidemiological studies increasingly associate air pollution with multiple neurodevelopmental disorders and neurodegenerative diseases, findings supported by experimental animal models. This breadth of neurotoxicity across these central nervous system diseases and disorders likely reflects shared vulnerability of their inflammatory and oxidative stress–based mechanisms and a corresponding ability to produce brain metal dyshomeo-stasis. Future research to define the responsible contaminants of air pollution underlying this neurotoxicity is critical to understanding mechanisms of these diseases and disorders and protecting public health.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-pharmtox-051921-020812
2023-01-20
2024-04-20
Loading full text...

Full text loading...

/deliver/fulltext/pharmtox/63/1/annurev-pharmtox-051921-020812.html?itemId=/content/journals/10.1146/annurev-pharmtox-051921-020812&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Friedlander SK. 1973. Chemical element balances and identification of air pollution sources. Environ. Sci. Technol. 7:235–40
    [Google Scholar]
  2. 2.
    Yu HL, Lin YC, Kuo YM. 2015. A time series analysis of multiple ambient pollutants to investigate the underlying air pollution dynamics and interactions. Chemosphere 134:571–80
    [Google Scholar]
  3. 3.
    Lin CC, Chen SJ, Huang KL, Hwang WI, Chang-Chien GP, Lin WY 2005. Characteristics of metals in nano/ultrafine/fine/coarse particles collected beside a heavily trafficked road. Environ. Sci. Technol. 39:8113–22
    [Google Scholar]
  4. 4.
    Saenen ND, Vrijens K, Janssen BG, Madhloum N, Peusens M et al. 2016. Placental nitrosative stress and exposure to ambient air pollution during gestation: a population study. Am. J. Epidemiol. 184:442–49
    [Google Scholar]
  5. 5.
    Valentino SA, Tarrade A, Aioun J, Mourier E, Richard C et al. 2016. Maternal exposure to diluted diesel engine exhaust alters placental function and induces intergenerational effects in rabbits. Part. Fibre Toxicol. 13:39
    [Google Scholar]
  6. 6.
    Soto SF, Melo JO, Marchesi GD, Lopes KL, Veras MM et al. 2017. Exposure to fine particulate matter in the air alters placental structure and the renin-angiotensin system. PLOS ONE 12:e0183314
    [Google Scholar]
  7. 7.
    de Melo JO, Soto SF, Katayama IA, Wenceslau CF, Pires AG et al. 2015. Inhalation of fine particulate matter during pregnancy increased IL-4 cytokine levels in the fetal portion of the placenta. Toxicol. Lett. 232:475–80
    [Google Scholar]
  8. 8.
    Pasquiou A, Pelluard F, Manangama G, Brochard P, Audignon S et al. 2021. Occupational exposure to ultrafine particles and placental histopathological lesions: a retrospective study about 130 cases. Int. J. Environ. Res. Public Health 18:12719
    [Google Scholar]
  9. 9.
    Aengenheister L, Favaro RR, Morales-Prieto DM, Furer LA, Gruber M et al. 2021. Research on nanoparticles in human perfused placenta: state of the art and perspectives. Placenta 104:199–207
    [Google Scholar]
  10. 10.
    Rao R, Georgieff MK. 2002. Perinatal aspects of iron metabolism. Acta Paediatr. Suppl. 91:124–29
    [Google Scholar]
  11. 11.
    Gambling L, Danzeisen R, Fosset C, Andersen HS, Dunford S et al. 2003. Iron and copper interactions in development and the effect on pregnancy outcome. J. Nutr. 133:1554S–56S
    [Google Scholar]
  12. 12.
    McArdle HJ, Andersen HS, Jones H, Gambling L. 2008. Copper and iron transport across the placenta: regulation and interactions. J. Neuroendocrinol. 20:427–31
    [Google Scholar]
  13. 13.
    Goyer RA. 1990. Transplacental transport of lead. Environ. Health Perspect. 89:101–5
    [Google Scholar]
  14. 14.
    Siddappa AJ, Rao RB, Wobken JD, Leibold EA, Connor JR, Georgieff MK. 2002. Developmental changes in the expression of iron regulatory proteins and iron transport proteins in the perinatal rat brain. J. Neurosci. Res. 68:761–75
    [Google Scholar]
  15. 15.
    Oberdorster G, Sharp Z, Atudorei V, Elder A, Gelein R et al. 2002. Extrapulmonary translocation of ultrafine carbon particles following whole-body inhalation exposure of rats. J. Toxicol. Environ. Health A 65:1531–43
    [Google Scholar]
  16. 16.
    Oberdorster G, Sharp Z, Atudorei V, Elder A, Gelein R et al. 2004. Translocation of inhaled ultrafine particles to the brain. Inhal. Toxicol. 16:437–45
    [Google Scholar]
  17. 17.
    Ibanez C, Suhard D, Tessier C, Delissen O, Lestaevel P et al. 2014. Intranasal exposure to uranium results in direct transfer to the brain along olfactory nerve bundles. Neuropathol. Appl. Neurobiol. 40:477–88
    [Google Scholar]
  18. 18.
    Szabo ST, Harry GJ, Hayden KM, Szabo DT, Birnbaum L. 2016. Comparison of metal levels between postmortem brain and ventricular fluid in Alzheimer's disease and nondemented elderly controls. Toxicol. Sci. 150:292–300
    [Google Scholar]
  19. 19.
    Tjalve H, Henriksson J. 1999. Uptake of metals in the brain via olfactory pathways. Neurotoxicology 20:181–95
    [Google Scholar]
  20. 20.
    Barnham KJ, Bush AI. 2014. Biological metals and metal-targeting compounds in major neurodegenerative diseases. Chem. Soc. Rev. 43:6727–49
    [Google Scholar]
  21. 21.
    Jellinger KA. 2013. The relevance of metals in the pathophysiology of neurodegeneration, pathological considerations. Int. Rev. Neurobiol. 110:1–47
    [Google Scholar]
  22. 22.
    Dallman PR, Spirito RA. 1977. Brain iron in the rat: Extremely slow turnover in normal rats may explain long-lasting effects of early iron deficiency. J. Nutr. 107:1075–81
    [Google Scholar]
  23. 23.
    Zhou W, Shen B, Shen WQ, Chen H, Zheng YF, Fei JJ. 2020. Dysfunction of the glymphatic system might be related to iron deposition in the normal aging brain. Front. Aging Neurosci. 12:559603
    [Google Scholar]
  24. 24.
    Chun H, Leung C, Wen SW, McDonald J, Shin HH. 2020. Maternal exposure to air pollution and risk of autism in children: a systematic review and meta-analysis. Environ. Pollut. 256:113307
    [Google Scholar]
  25. 25.
    Imbriani G, Panico A, Grassi T, Idolo A, Serio F et al. 2021. Early-life exposure to environmental air pollution and autism spectrum disorder: a review of available evidence. Int. J. Environ. Res. Public Health 18:1204
    [Google Scholar]
  26. 26.
    Dutheil F, Comptour A, Morlon R, Mermillod M, Pereira B et al. 2021. Autism spectrum disorder and air pollution: a systematic review and meta-analysis. Environ. Pollut. 278:116856
    [Google Scholar]
  27. 27.
    Donzelli G, Llopis-Gonzalez A, Llopis-Morales A, Cioni L, Morales-Suárez-Varela M. 2019. Particulate matter exposure and attention-deficit/hyperactivity disorder in children: a systematic review of epidemiological studies. Int. J. Environ. Res. Public Health 17:67
    [Google Scholar]
  28. 28.
    Shih P, Huang CC, Pan SC, Chiang TL, Guo YL. 2020. Hyperactivity disorder in children related to traffic-based air pollution during pregnancy. Environ. Res. 188:109588
    [Google Scholar]
  29. 29.
    Park J, Sohn JH, Cho SJ, Seo HY, Hwang IU et al. 2020. Association between short-term air pollution exposure and attention-deficit/hyperactivity disorder-related hospital admissions among adolescents: a nationwide time-series study. Environ. Pollut. 266:115369
    [Google Scholar]
  30. 30.
    Yuchi W, Brauer M, Czekajlo A, Davies HW, Davis Z et al. 2022. Neighborhood environmental exposures and incidence of attention deficit/hyperactivity disorder: a population-based cohort study. Environ. Int. 161:107120
    [Google Scholar]
  31. 31.
    Bernardini F, Trezzi R, Quartesan R, Attademo L. 2020. Air pollutants and daily hospital admissions for psychiatric care: a review. Psychiatr. Serv. 71:1270–76
    [Google Scholar]
  32. 32.
    Newbury JB, Stewart R, Fisher HL, Beevers S, Dajnak D et al. 2021. Association between air pollution exposure and mental health service use among individuals with first presentations of psychotic and mood disorders: retrospective cohort study. Br. J. Psychiatry 219:678–85
    [Google Scholar]
  33. 33.
    Ji Y, Liu B, Song J, Pan R, Cheng J et al. 2021. Particulate matter pollution associated with schizophrenia hospital re-admissions: a time-series study in a coastal Chinese city. Environ. Sci. Pollut. Res. Int. 28:58355–63
    [Google Scholar]
  34. 34.
    Antonsen S, Mok PLH, Webb RT, Mortensen PB, McGrath JJ et al. 2020. Exposure to air pollution during childhood and risk of developing schizophrenia: a national cohort study. Lancet Planet. Health 4:e64–73
    [Google Scholar]
  35. 35.
    Cristaldi A, Fiore M, Oliveri Conti G, Pulvirenti E, Favara C et al. 2021. Possible association between PM2.5 and neurodegenerative diseases: a systematic review. Environ. Res. 208:112581
    [Google Scholar]
  36. 36.
    Fu P, Yung KKL. 2020. Air pollution and Alzheimer's disease: a systematic review and meta-analysis. J. Alzheimer's Dis. 77:701–14
    [Google Scholar]
  37. 37.
    Tsai TL, Lin YT, Hwang BF, Nakayama SF, Tsai CH et al. 2019. Fine particulate matter is a potential determinant of Alzheimer's disease: a systemic review and meta-analysis. Environ. Res. 177:108638
    [Google Scholar]
  38. 38.
    Fu P, Guo X, Cheung FMH, Yung KKL. 2019. The association between PM2.5 exposure and neurological disorders: a systematic review and meta-analysis. Sci. Total Environ. 655:1240–48
    [Google Scholar]
  39. 39.
    Power MC, Adar SD, Yanosky JD, Weuve J. 2016. Exposure to air pollution as a potential contributor to cognitive function, cognitive decline, brain imaging, and dementia: a systematic review of epidemiologic research. Neurotoxicology 56:235–53
    [Google Scholar]
  40. 40.
    Han C, Lu Y, Cheng H, Wang C, Chan P. 2020. The impact of long-term exposure to ambient air pollution and second-hand smoke on the onset of Parkinson disease: a review and meta-analysis. Public Health 179:100–10
    [Google Scholar]
  41. 41.
    Kasdagli MI, Katsouyanni K, Dimakopoulou K, Samoli E. 2019. Air pollution and Parkinson's disease: a systematic review and meta-analysis up to 2018. Int. J. Hyg. Environ. Health 222:402–9
    [Google Scholar]
  42. 42.
    Jo S, Kim YJ, Park KW, Hwang YS, Lee SH et al. 2021. Association of NO2 and other air pollution exposures with the risk of Parkinson disease. JAMA Neurol 78:800–8
    [Google Scholar]
  43. 43.
    Yu Z, Wei F, Zhang X, Wu M, Lin H et al. 2021. Air pollution, surrounding green, road proximity and Parkinson's disease: a prospective cohort study. Environ. Res. 197:111170
    [Google Scholar]
  44. 44.
    Nunez Y, Boehme AK, Weisskopf MG, Re DB, Navas-Acien A et al. 2021. Fine particle exposure and clinical aggravation in neurodegenerative diseases in New York state. Environ. Health Perspect. 129:27003
    [Google Scholar]
  45. 45.
    Shi L, Wu X, Danesh Yazdi M, Braun D, Abu Awad Y et al. 2020. Long-term effects of PM2.5 on neurological disorders in the American Medicare population: a longitudinal cohort study. Lancet Planet. Health 4:e557–65
    [Google Scholar]
  46. 46.
    Lotfi F, Mansourian M, Mirmoayyeb O, Najdaghi S, Shaygannejad V, Esmaeil N. 2022. Association of exposure to particulate matters and multiple sclerosis: a systematic review and meta-analysis. Neuroimmunomodulation 29:21–27
    [Google Scholar]
  47. 47.
    Tang C, Li QR, Mao YM, Xia YR, Guo HS et al. 2021. Association between ambient air pollution and multiple sclerosis: a systemic review and meta-analysis. Environ. Sci. Pollut. Res. Int. 28:58142–53
    [Google Scholar]
  48. 48.
    Elgabsi M, Novack L, Yarza S, Elgabsi M, Shtein A, Ifergane G. 2021. An impact of air pollution on moderate to severe relapses among multiple sclerosis patients. Mult. Scler. Relat. Disord. 53:103043
    [Google Scholar]
  49. 49.
    Januel E, Dessimond B, Colette A, Annesi-Maesano I, Stankoff B 2021. Fine particulate matter related to multiple sclerosis relapse in young patients. Front. Neurol. 12:651084
    [Google Scholar]
  50. 50.
    Tateo F, Grassivaro F, Ermani M, Puthenparampil M, Gallo P. 2019. PM2.5 levels strongly associate with multiple sclerosis prevalence in the province of Padua, Veneto region, North-East Italy. Mult. Scler. 25:1719–27
    [Google Scholar]
  51. 51.
    Avram M, Brandl F, Bäuml J, Sorg C. 2018. Cortico-thalamic hypo- and hyperconnectivity extend consistently to basal ganglia in schizophrenia. Neuropsychopharmacology 43:2239–48
    [Google Scholar]
  52. 52.
    Zhu Y, Jiang X, Ji W 2018. The mechanism of cortico-striato-thalamo-cortical neurocircuitry in response inhibition and emotional responding in attention deficit hyperactivity disorder with comorbid disruptive behavior disorder. Neurosci. Bull. 34:566–72
    [Google Scholar]
  53. 53.
    Peterson BS, Bansal R, Sawardekar S, Nati C, Elgabalawy ER et al. 2022. Prenatal exposure to air pollution is associated with altered brain structure, function, and metabolism in childhood. J. Child Psychol. Psychiatry. In press
    [Google Scholar]
  54. 54.
    Worthington MA, Petkova E, Freudenreich O, Cather C, Holt D et al. 2020. Air pollution and hippocampal atrophy in first episode schizophrenia. Schizophr. Res. 218:63–69
    [Google Scholar]
  55. 55.
    Lubczynska MJ, Muetzel RL, El Marroun H, Hoek G, Kooter IM et al. 2021. Air pollution exposure during pregnancy and childhood and brain morphology in preadolescents. Environ. Res. 198:110446
    [Google Scholar]
  56. 56.
    Mortamais M, Pujol J, Martinez-Vilavella G, Fenoll R, Reynes C et al. 2019. Effects of prenatal exposure to particulate matter air pollution on corpus callosum and behavioral problems in children. Environ. Res. 178:108734
    [Google Scholar]
  57. 57.
    Cserbik D, Chen JC, McConnell R, Berhane K, Sowell ER et al. 2020. Fine particulate matter exposure during childhood relates to hemispheric-specific differences in brain structure. Environ. Int. 143:105933
    [Google Scholar]
  58. 58.
    Beckwith T, Cecil K, Altaye M, Severs R, Wolfe C et al. 2020. Reduced gray matter volume and cortical thickness associated with traffic-related air pollution in a longitudinally studied pediatric cohort. PLOS ONE 15:e0228092
    [Google Scholar]
  59. 59.
    Pujol J, Martinez-Vilavella G, Macia D, Fenoll R, Alvarez-Pedrerol M et al. 2016. Traffic pollution exposure is associated with altered brain connectivity in school children. NeuroImage 129:175–84
    [Google Scholar]
  60. 60.
    Pujol J, Fenoll R, Macia D, Martinez-Vilavella G, Alvarez-Pedrerol M et al. 2016. Airborne copper exposure in school environments associated with poorer motor performance and altered basal ganglia. Brain Behav 6:e00467
    [Google Scholar]
  61. 61.
    Chen C, Hayden KM, Kaufman JD, Espeland MA, Whitsel EA et al. 2021. Adherence to a MIND-like dietary pattern, long-term exposure to fine particulate matter air pollution, and MRI-based measures of brain volume: the Women's Health Initiative Memory Study-MRI. Environ. Health Perspect. 129:127008
    [Google Scholar]
  62. 62.
    Chen JC, Wang X, Wellenius GA, Serre ML, Driscoll I et al. 2015. Ambient air pollution and neurotoxicity on brain structure: evidence from Women's Health Initiative Memory Study. Ann. Neurol. 78:466–76
    [Google Scholar]
  63. 63.
    Furlong MA, Alexander GE, Klimentidis YC, Raichlen DA. 2021. Association of air pollution and physical activity with brain volumes. Neurology 98:e416–26
    [Google Scholar]
  64. 64.
    Hedges DW, Erickson LD, Kunzelman J, Brown BL, Gale SD. 2019. Association between exposure to air pollution and hippocampal volume in adults in the UK Biobank. Neurotoxicology 74:108–20
    [Google Scholar]
  65. 65.
    Falcón C, Gascon M, Molinuevo JL, Operto G, Cirach M et al. 2021. Brain correlates of urban environmental exposures in cognitively unimpaired individuals at increased risk for Alzheimer's disease: a study on Barcelona's population. Alzheimer's Dement. 13:e12205
    [Google Scholar]
  66. 66.
    Cho J, Noh Y, Kim SY, Sohn J, Noh J et al. 2020. Long-term ambient air pollution exposures and brain imaging markers in Korean adults: the Environmental Pollution-Induced Neurological Effects (EPINEF) study. Environ. Health Perspect 128:117006
    [Google Scholar]
  67. 67.
    Casanova R, Wang X, Reyes J, Akita Y, Serre ML et al. 2016. A voxel-based morphometry study reveals local brain structural alterations associated with ambient fine particles in older women. Front. Hum. Neurosci. 10:495
    [Google Scholar]
  68. 68.
    Younan D, Petkus AJ, Widaman KF, Wang X, Casanova R et al. 2020. Particulate matter and episodic memory decline mediated by early neuroanatomic biomarkers of Alzheimer's disease. Brain 143:289–302
    [Google Scholar]
  69. 69.
    Wu J, Ning Y, Gao Y, Shan R, Wang B et al. 2021. Association between ambient air pollution and MRI-defined brain infarcts in health examinations in China. Int. J. Environ. Res. Public Health 18:4325
    [Google Scholar]
  70. 70.
    Wilker EH, Preis SR, Beiser AS, Wolf PA, Au R et al. 2015. Long-term exposure to fine particulate matter, residential proximity to major roads and measures of brain structure. Stroke 46:1161–66
    [Google Scholar]
  71. 71.
    Klocke C, Allen JL, Sobolewski M, Blum JL, Zelikoff JT, Cory-Slechta DA. 2017. Exposure to fine and ultrafine particulate matter during gestation alters postnatal oligodendrocyte maturation, proliferation capacity, and myelination. Neurotoxicology 65:196–206
    [Google Scholar]
  72. 72.
    Klocke C, Allen JL, Sobolewski M, Mayer-Proschel M, Blum JL et al. 2017. Neuropathological consequences of gestational exposure to concentrated ambient fine and ultrafine particles in the mouse. Toxicol. Sci. 156:492–508
    [Google Scholar]
  73. 73.
    Allen JL, Conrad K, Oberdorster G, Johnston CJ, Sleezer B, Cory-Slechta DA. 2013. Developmental exposure to concentrated ambient particles and preference for immediate reward in mice. Environ. Health Perspect. 121:32–38
    [Google Scholar]
  74. 74.
    Allen JL, Klocke C, Morris-Schaffer K, Conrad K, Sobolewski M, Cory-Slechta DA. 2017. Cognitive effects of air pollution exposures and potential mechanistic underpinnings. Curr. Environ. Health Rep. 4:180–91
    [Google Scholar]
  75. 75.
    Allen JL, Liu X, Pelkowski S, Palmer B, Conrad K et al. 2014. Early postnatal exposure to ultrafine particulate matter air pollution: persistent ventriculomegaly, neurochemical disruption, and glial activation preferentially in male mice. Environ. Health Perspect. 122:939–45
    [Google Scholar]
  76. 76.
    Allen JL, Liu X, Weston D, Prince L, Oberdorster G et al. 2014. Developmental exposure to concentrated ambient ultrafine particulate matter air pollution in mice results in persistent and sex-dependent behavioral neurotoxicity and glial activation. Toxicol. Sci. 140:160–78
    [Google Scholar]
  77. 77.
    Allen JL, Oberdorster G, Morris-Schaffer K, Wong C, Klocke C et al. 2017. Developmental neurotoxicity of inhaled ambient ultrafine particle air pollution: parallels with neuropathological and behavioral features of autism and other neurodevelopmental disorders. Neurotoxicology 59:140–54
    [Google Scholar]
  78. 78.
    Clancy B, Finlay BL, Darlington RB, Anand KJ. 2007. Extrapolating brain development from experimental species to humans. Neurotoxicology 28:931–37
    [Google Scholar]
  79. 79.
    Badaracco ME, Siri MV, Pasquini JM. 2010. Oligodendrogenesis: the role of iron. Biofactors 36:98–102
    [Google Scholar]
  80. 80.
    Klocke C, Sherina V, Graham UM, Gunderson J, Allen JL et al. 2018. Enhanced cerebellar myelination with concomitant iron elevation and ultrastructural irregularities following prenatal exposure to ambient particulate matter in the mouse. Inhal. Toxicol. 30:381–96
    [Google Scholar]
  81. 81.
    Bandeira F, Lent R, Herculano-Houzel S. 2009. Changing numbers of neuronal and non-neuronal cells underlie postnatal brain growth in the rat. PNAS 106:14108–13
    [Google Scholar]
  82. 82.
    Sobolewski M, Anderson T, Conrad K, Marvin E, Klocke C et al. 2018. Developmental exposures to ultrafine particle air pollution reduces early testosterone levels and adult male social novelty preference: risk for children's sex-biased neurobehavioral disorders. NeuroToxicology 68:203–11
    [Google Scholar]
  83. 83.
    Di Domenico M, Benevenuto SGM, Tomasini PP, Yariwake VY, de Oliveira Alves N et al. 2020. Concentrated ambient fine particulate matter (PM2.5) exposure induce brain damage in pre and postnatal exposed mice. Neurotoxicology 79:127–41
    [Google Scholar]
  84. 84.
    Woodward NC, Haghani A, Johnson RG, Hsu TM, Saffari A et al. 2018. Prenatal and early life exposure to air pollution induced hippocampal vascular leakage and impaired neurogenesis in association with behavioral deficits. Transl. Psychiatry 8:261
    [Google Scholar]
  85. 85.
    Nephew BC, Nemeth A, Hudda N, Beamer G, Mann P et al. 2020. Traffic-related particulate matter affects behavior, inflammation, and neural integrity in a developmental rodent model. Environ. Res. 183:109242
    [Google Scholar]
  86. 86.
    Patten KT, González EA, Valenzuela A, Berg E, Wallis C et al. 2020. Effects of early life exposure to traffic-related air pollution on brain development in juvenile Sprague-Dawley rats. Transl. Psychiatry 10:166
    [Google Scholar]
  87. 87.
    Davis DA, Bortolato M, Godar SC, Sander TK, Iwata N et al. 2013. Prenatal exposure to urban air nanoparticles in mice causes altered neuronal differentiation and depression-like responses. PLOS ONE 8:e64128
    [Google Scholar]
  88. 88.
    Cole TB, Chang YC, Dao K, Daza R, Hevner R, Costa LG. 2020. Developmental exposure to diesel exhaust upregulates transcription factor expression, decreases hippocampal neurogenesis, and alters cortical lamina organization: relevance to neurodevelopmental disorders. J. Neurodev. Disord. 12:41
    [Google Scholar]
  89. 89.
    Chang YC, Daza R, Hevner R, Costa LG, Cole TB. 2019. Prenatal and early life diesel exhaust exposure disrupts cortical lamina organization: evidence for a reelin-related pathogenic pathway induced by interleukin-6. Brain Behav. Immun. 78:105–15
    [Google Scholar]
  90. 90.
    Morris-Schaffer K, Merrill AK, Wong C, Jew K, Sobolewski M, Cory-Slechta DA. 2019. Limited developmental neurotoxicity from neonatal inhalation exposure to diesel exhaust particles in C57BL/6 mice. Part. Fibre Toxicol. 16:1
    [Google Scholar]
  91. 91.
    Ehsanifar M, Jafari AJ, Nikzad H, Zavareh MS, Atlasi MA et al. 2019. Prenatal exposure to diesel exhaust particles causes anxiety, spatial memory disorders with alters expression of hippocampal pro-inflammatory cytokines and NMDA receptor subunits in adult male mice offspring. Ecotoxicol. Environ. Saf. 176:34–41
    [Google Scholar]
  92. 92.
    Connor M, Lamorie-Foote K, Liu Q, Shkirkova K, Baertsch H et al. 2021. Nanoparticulate matter exposure results in white matter damage and an inflammatory microglial response in an experimental murine model. PLOS ONE 16:e0253766
    [Google Scholar]
  93. 93.
    Patten KT, Valenzuela AE, Wallis C, Berg EL, Silverman JL et al. 2021. The effects of chronic exposure to ambient traffic-related air pollution on Alzheimer's disease phenotypes in wildtype and genetically predisposed male and female rats. Environ. Health Perspect. 129:57005
    [Google Scholar]
  94. 94.
    Calabro V, Garces M, Caceres L, Magnani ND, Marchini T et al. 2021. Urban air pollution induces alterations in redox metabolism and mitochondrial dysfunction in mice brain cortex. Arch. Biochem. Biophys. 704:108875
    [Google Scholar]
  95. 95.
    Bernardi RB, Zanchi ACT, Damaceno-Rodrigues NR, Veras MM, Saldiva PHN et al. 2021. The impact of chronic exposure to air pollution over oxidative stress parameters and brain histology. Environ. Sci. Pollut. Res. Int. 28:47407–17
    [Google Scholar]
  96. 96.
    Sahu B, Mackos AR, Floden AM, Wold LE, Combs CK. 2021. Particulate matter exposure exacerbates amyloid-β plaque deposition and gliosis in APP/PS1 mice. J. Alzheimer's Dis. 80:761–74
    [Google Scholar]
  97. 97.
    Shou Y, Zhu X, Zhu D, Yin H, Shi Y et al. 2020. Ambient PM2.5 chronic exposure leads to cognitive decline in mice: from pulmonary to neuronal inflammation. Toxicol. Lett. 331:208–17
    [Google Scholar]
  98. 98.
    Yan W, Ku T, Yue H, Li G, Sang N 2016. NO2 inhalation causes tauopathy by disturbing the insulin signaling pathway. Chemosphere 165:248–56
    [Google Scholar]
  99. 99.
    Ehsanifar M, Montazeri Z, Taheri MA, Rafati M, Behjati M, Karimian M. 2021. Hippocampal inflammation and oxidative stress following exposure to diesel exhaust nanoparticles in male and female mice. Neurochem. Int. 145:104989
    [Google Scholar]
  100. 100.
    Chen Z, Chen F, Fang Z, Zhao H, Zhan C et al. 2021. Glial activation and inflammation in the NTS in a rat model after exposure to diesel exhaust particles. Environ. Toxicol. Pharmacol. 83:103584
    [Google Scholar]
  101. 101.
    Hullmann M, Albrecht C, van Berlo D, Gerlofs-Nijland ME, Wahle T et al. 2017. Diesel engine exhaust accelerates plaque formation in a mouse model of Alzheimer's disease. Part. Fibre Toxicol. 14:35
    [Google Scholar]
  102. 102.
    Woodward NC, Pakbin P, Saffari A, Shirmohammadi F, Haghani A et al. 2017. Traffic-related air pollution impact on mouse brain accelerates myelin and neuritic aging changes with specificity for CA1 neurons. Neurobiol. Aging 53:48–58
    [Google Scholar]
  103. 103.
    Padurariu M, Ciobica A, Mavroudis I, Fotiou D, Baloyannis S. 2012. Hippocampal neuronal loss in the CA1 and CA3 areas of Alzheimer's disease patients. Psychiatr. Danub. 24:152–58
    [Google Scholar]
  104. 104.
    Coburn JL, Cole TB, Dao KT, Costa LG. 2018. Acute exposure to diesel exhaust impairs adult neurogenesis in mice: prominence in males and protective effect of pioglitazone. Arch. Toxicol. 92:1815–29
    [Google Scholar]
  105. 105.
    Santos S, Ferreira H, Martins J, Gonçalves J, Castelo-Branco M. 2022. Male sex bias in early and late onset neurodevelopmental disorders: shared aspects and differences in autism spectrum disorder, attention deficit/hyperactivity disorder, and schizophrenia. Neurosci. Biobehav. Rev. 135:104577
    [Google Scholar]
  106. 106.
    Ransohoff RM. 2016. How neuroinflammation contributes to neurodegeneration. Science 353:777–83
    [Google Scholar]
  107. 107.
    Arias-Pérez RD, Taborda NA, Gómez DM, Narvaez JF, Porras J, Hernandez JC. 2020. Inflammatory effects of particulate matter air pollution. Environ. Sci. Pollut. Res. Int. 27:42390–404
    [Google Scholar]
  108. 108.
    Hahad O, Lelieveld J, Birklein F, Lieb K, Daiber A, Münzel T. 2020. Ambient air pollution increases the risk of cerebrovascular and neuropsychiatric disorders through induction of inflammation and oxidative stress. Int. J. Mol. Sci. 21:4306
    [Google Scholar]
  109. 109.
    Costa LG, Cole TB, Dao K, Chang YC, Coburn J, Garrick JM. 2020. Effects of air pollution on the nervous system and its possible role in neurodevelopmental and neurodegenerative disorders. Pharmacol. Ther. 210:107523
    [Google Scholar]
  110. 110.
    Li H, Uittenbogaard M, Hao L, Chiaramello A. 2021. Clinical insights into mitochondrial neurodevelopmental and neurodegenerative disorders: their biosignatures from mass spectrometry-based metabolomics. Metabolites 11:233
    [Google Scholar]
  111. 111.
    Daiber A, Kuntic M, Hahad O, Delogu LG, Rohrbach S et al. 2020. Effects of air pollution particles (ultrafine and fine particulate matter) on mitochondrial function and oxidative stress: implications for cardiovascular and neurodegenerative diseases. Arch. Biochem. Biophys. 696:108662
    [Google Scholar]
  112. 112.
    González-Maciel A, Reynoso-Robles R, Torres-Jardón R, Mukherjee PS, Calderón-Garcidueñas L. 2017. Combustion-derived nanoparticles in key brain target cells and organelles in young urbanites: culprit hidden in plain sight in Alzheimer's disease development. J. Alzheimer's Dis. 59:189–208
    [Google Scholar]
  113. 113.
    Moretto E, Murru L, Martano G, Sassone J, Passafaro M. 2018. Glutamatergic synapses in neurodevelopmental disorders. Prog. Neuropsychopharmacol. Biol. Psychiatry 84:328–42
    [Google Scholar]
  114. 114.
    Hu W, MacDonald ML, Elswick DE, Sweet RA. 2015. The glutamate hypothesis of schizophrenia: evidence from human brain tissue studies. Ann. N. Y. Acad. Sci. 1338:38–57
    [Google Scholar]
  115. 115.
    Onaolapo AY, Onaolapo OJ. 2021. Peripheral and central glutamate dyshomeostasis in neurodegenerative disorders. Curr. Neuropharmacol. 19:1069–89
    [Google Scholar]
  116. 116.
    Allen JL, Liu X, Weston D, Prince L, Oberdörster G et al. 2014. Developmental exposure to concentrated ambient ultrafine particulate matter air pollution in mice results in persistent and sex-dependent behavioral neurotoxicity and glial activation. Toxicol. Sci. 140:160–78
    [Google Scholar]
  117. 117.
    Davis DA, Akopian G, Walsh JP, Sioutas C, Morgan TE, Finch CE. 2013. Urban air pollutants reduce synaptic function of CA1 neurons via an NMDA/NȮ pathway in vitro. J. Neurochem. 127:509–19
    [Google Scholar]
  118. 118.
    Haghani A, Johnson R, Safi N, Zhang H, Thorwald M et al. 2020. Toxicity of urban air pollution particulate matter in developing and adult mouse brain: comparison of total and filter-eluted nanoparticles. Environ. Int. 136:105510
    [Google Scholar]
  119. 119.
    Cainelli E, Arrigoni F, Vedovelli L. 2020. White matter injury and neurodevelopmental disabilities: a cross-disease (dis)connection. Prog. Neurobiol. 193:101845
    [Google Scholar]
  120. 120.
    Bankston AN, Mandler MD, Feng Y. 2013. Oligodendroglia and neurotrophic factors in neurodegeneration. Neurosci. Bull. 29:216–28
    [Google Scholar]
  121. 121.
    Thorup E, Jensen LN, Bak GS, Ekelund CK, Greisen G et al. 2019. Neurodevelopmental disorder in children believed to have isolated mild ventriculomegaly prenatally. Ultrasound Obstet. Gynecol. 54:182–89
    [Google Scholar]
  122. 122.
    Marques F, Sousa JC, Brito MA, Pahnke J, Santos C et al. 2017. The choroid plexus in health and in disease: dialogues into and out of the brain. Neurobiol. Dis. 107:32–40
    [Google Scholar]
  123. 123.
    Cory-Slechta DA, Sobolewski M, Oberdörster G. 2020. Air pollution-related brain metal dyshomeostasis as a potential risk factor for neurodevelopmental disorders and neurodegenerative diseases. Atmosphere 11:1098
    [Google Scholar]
  124. 124.
    Mezzaroba L, Alfieri DF, Colado Simão AN, Vissoci Reiche EM. 2019. The role of zinc, copper, manganese and iron in neurodegenerative diseases. Neurotoxicology 74:230–41
    [Google Scholar]
  125. 125.
    Thirupathi A, Chang YZ 2019. Brain iron metabolism and CNS diseases. Advances in Experimental Medicine and Biology, Vol. 1173 YZ Chang. Singapore Springer https://doi.org/10.1007/978-981-13-9589-5_1
    [Crossref] [Google Scholar]
  126. 126.
    Masaldan S, Bush AI, Devos D, Rolland AS, Moreau C. 2019. Striking while the iron is hot: iron metabolism and ferroptosis in neurodegeneration. Free Radic Biol. Med. 133:221–33
    [Google Scholar]
  127. 127.
    Braak H, Braak E. 1995. Staging of Alzheimer's disease-related neurofibrillary changes. Neurobiol. Aging 16:271–78
    [Google Scholar]
  128. 128.
    Braak H, Del Tredici K, Rub U, de Vos RA, Jansen Steur EN, Braak E 2003. Staging of brain pathology related to sporadic Parkinson's disease. Neurobiol. Aging 24:197–211
    [Google Scholar]
  129. 129.
    Hawkes CH, Del Tredici K, Braak H. 2007. Parkinson's disease: a dual-hit hypothesis. Neuropathol. Appl. Neurobiol. 33:599–614
    [Google Scholar]
  130. 130.
    Ajmani GS, Suh HH, Pinto JM. 2016. Effects of ambient air pollution exposure on olfaction: a review. Environ. Health Perspect. 124:1683–93
    [Google Scholar]
  131. 131.
    Nakane H. 2012. Translocation of particles deposited in the respiratory system: a systematic review and statistical analysis. Environ Health Prev. Med. 17:263–74
    [Google Scholar]
  132. 132.
    Hasegawa Y, Namkung H, Smith A, Sakamoto S, Zhu X et al. 2021. Causal impact of local inflammation in the nasal cavity on higher brain function and cognition. Neurosci. Res. 172:110–15
    [Google Scholar]
  133. 133.
    Hasegawa-Ishii S, Shimada A, Imamura F. 2019. Neuroplastic changes in the olfactory bulb associated with nasal inflammation in mice. J. Allergy Clin. Immunol. 143:978–89.e3
    [Google Scholar]
  134. 134.
    Squitti R, Ventriglia M, Simonelli I, Bonvicini C, Costa A et al. 2021. Copper imbalance in Alzheimer's disease: meta-analysis of serum, plasma, and brain specimens, and replication study evaluating ATP7B gene variants. Biomolecules 11:960
    [Google Scholar]
  135. 135.
    Isaev NK, Stelmashook EV, Genrikhs EE. 2020. Role of zinc and copper ions in the pathogenetic mechanisms of traumatic brain injury and Alzheimer's disease. Rev. Neurosci. 31:233–43
    [Google Scholar]
  136. 136.
    Baccarelli AA, Zheng Y, Zhang X, Chang D, Liu L et al. 2014. Air pollution exposure and lung function in highly exposed subjects in Beijing, China: a repeated-measure study. Part. Fibre Toxicol. 11:51
    [Google Scholar]
  137. 137.
    Cakmak S, Dales R, Kauri LM, Mahmud M, Van Ryswyk K et al. 2014. Metal composition of fine particulate air pollution and acute changes in cardiorespiratory physiology. Environ. Pollut. 189:208–14
    [Google Scholar]
  138. 138.
    Cory-Slechta DA, Sobolewski M, Marvin E, Conrad K, Merrill A et al. 2019. The impact of inhaled ambient ultrafine particulate matter on developing brain: potential importance of elemental contaminants. Toxicol. Pathol. 47:976–92
    [Google Scholar]
  139. 139.
    Green KN, LaFerla FM. 2008. Linking calcium to Aβ and Alzheimer's disease. Neuron 59:190–94
    [Google Scholar]
  140. 140.
    Scassellati C, Bonvicini C, Benussi L, Ghidoni R, Squitti R. 2020. Neurodevelopmental disorders: metallomics studies for the identification of potential biomarkers associated to diagnosis and treatment. J. Trace Elem. Med. Biol. 60:126499
    [Google Scholar]
  141. 141.
    Lakshmi Priya MD, Geetha A 2011. Level of trace elements (copper, zinc, magnesium and selenium) and toxic elements (lead and mercury) in the hair and nail of children with autism. Biol. Trace Elem. Res. 142:148–58
    [Google Scholar]
  142. 142.
    Skalny AV, Simashkova NV, Skalnaya AA, Klyushnik TP, Bjørklund G et al. 2017. Assessment of gender and age effects on serum and hair trace element levels in children with autism spectrum disorder. Metab. Brain Dis. 32:1675–84
    [Google Scholar]
  143. 143.
    Mold M, Umar D, King A, Exley C. 2018. Aluminium in brain tissue in autism. J. Trace Elem. Med. Biol. 46:76–82
    [Google Scholar]
  144. 144.
    Exley C, Clarkson E. 2020. Aluminium in human brain tissue from donors without neurodegenerative disease: a comparison with Alzheimer's disease, multiple sclerosis and autism. Sci. Rep. 10:7770
    [Google Scholar]
  145. 145.
    Skalny AV, Simashkova NV, Skalnaya AA, Klyushnik TP, Zhegalova IV et al. 2018. Trace element levels are associated with neuroinflammatory markers in children with autistic spectrum disorder. J. Trace Elem. Med. Biol. 50:622–28
    [Google Scholar]
  146. 146.
    Cai L, Chen T, Yang J, Zhou K, Yan X et al. 2015. Serum trace element differences between Schizophrenia patients and controls in the Han Chinese population. Sci. Rep. 5:15013
    [Google Scholar]
  147. 147.
    Joe P, Petrilli M, Malaspina D, Weissman J. 2018. Zinc in schizophrenia: a meta-analysis. Gen. Hosp. Psychiatry 53:19–24
    [Google Scholar]
  148. 148.
    Scassellati C, Bonvicini C, Faraone SV, Gennarelli M. 2012. Biomarkers and attention-deficit/hyperactivity disorder: a systematic review and meta-analyses. J. Am. Acad. Child Adolesc. Psychiatry 51:1003–19.e20
    [Google Scholar]
  149. 149.
    Degremont A, Jain R, Philippou E, Latunde-Dada GO. 2021. Brain iron concentrations in the pathophysiology of children with attention deficit/hyperactivity disorder: a systematic review. Nutr. Rev. 79:615–26
    [Google Scholar]
  150. 150.
    de Jesus AL, Rahman MM, Mazaheri M, Thompson H, Knibbs LD et al. 2019. Ultrafine particles and PM2.5 in the air of cities around the world: Are they representative of each other?. Environ. Int. 129:118–35
    [Google Scholar]
  151. 151.
    Cox A, Andreozzi P, Dal Magro R, Fiordaliso F, Corbelli A et al. 2018. Evolution of nanoparticle protein corona across the blood–brain barrier. ACS Nano 12:7292–300
    [Google Scholar]
  152. 152.
    Peterson BS, Rauh VA, Bansal R, Hao X, Toth Z et al. 2015. Effects of prenatal exposure to air pollutants (polycyclic aromatic hydrocarbons) on the development of brain white matter, cognition, and behavior in later childhood. JAMA Psychiatry 72:531–40
    [Google Scholar]
  153. 153.
    Barraza F, Jorquera H, Heyer J, Palma W, Edwards AM et al. 2016. Short-term dynamics of indoor and outdoor endotoxin exposure: case of Santiago, Chile, 2012. Environ. Int. 92–93:97–105
    [Google Scholar]
  154. 154.
    Cardoso FL, Herz J, Fernandes A, Rocha J, Sepodes B et al. 2015. Systemic inflammation in early neonatal mice induces transient and lasting neurodegenerative effects. J. Neuroinflamm. 12:82
    [Google Scholar]
  155. 155.
    Jung CR, Lin YT, Hwang BF. 2013. Air pollution and newly diagnostic autism spectrum disorders: a population-based cohort study in Taiwan. PLOS ONE 8:e75510
    [Google Scholar]
  156. 156.
    Lin CC, Yang SK, Lin KC, Ho WC, Hsieh WS et al. 2014. Multilevel analysis of air pollution and early childhood neurobehavioral development. Int. J. Environ. Res. Public Health 11:6827–41
    [Google Scholar]
/content/journals/10.1146/annurev-pharmtox-051921-020812
Loading
/content/journals/10.1146/annurev-pharmtox-051921-020812
Loading

Data & Media loading...

Supplemental Material

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error